CN114472898A - 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法 - Google Patents

一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法 Download PDF

Info

Publication number
CN114472898A
CN114472898A CN202111565707.3A CN202111565707A CN114472898A CN 114472898 A CN114472898 A CN 114472898A CN 202111565707 A CN202111565707 A CN 202111565707A CN 114472898 A CN114472898 A CN 114472898A
Authority
CN
China
Prior art keywords
layer
sintering
metal
ceramic
selective laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111565707.3A
Other languages
English (en)
Other versions
CN114472898B (zh
Inventor
邰召山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoshan Technology Beijing Co ltd
Original Assignee
Zhaoshan Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoshan Technology Beijing Co ltd filed Critical Zhaoshan Technology Beijing Co ltd
Priority to CN202111565707.3A priority Critical patent/CN114472898B/zh
Publication of CN114472898A publication Critical patent/CN114472898A/zh
Application granted granted Critical
Publication of CN114472898B publication Critical patent/CN114472898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法,所述梯度金属陶瓷涂层由打底层、过渡层和外层组成;所述打底层为高耐蚀镍基高耐蚀合金金属层,其成分为:Co 21.3%,Cr 25.6%,Mo 12.5%,Nb 6.7%,余量为Ni;所述外层为陶瓷层,其成分为:C 12.5‑18.7%,N 19.7‑23.4%,B 15.8%,Re 2.7%,余下为Si;所述过渡层为金属—陶瓷复合层;所述涂层的烧结方式采用选区激光烧结技术。本发明中采用选区激光烧结技术形成具有冶金结合、且物理与力学性能基本连续变化的陶瓷‑金属复合涂层,避免层间应力集中而导致的陶瓷层脱落,有效提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力,适用于规模化生产。

Description

一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法
技术领域
本发明涉及陶瓷涂层技术领域,尤其涉及选区激光烧结制备的梯度金属陶瓷涂层及制备方法。
背景技术
随着科技的发展,许多的工业设备都需要金属基体长时间在恶劣的环境中服役,比如高温,潮湿,高压和酸碱等环境,极大的缩短了金属材料的使用寿命,从而无法满足实际生产要求。陶瓷涂层具有良好的耐高温、抗氧化、耐磨、耐腐蚀等优点,也得到了越来越多的科研人员及企业的广泛关注。
通过在金属基体表面沉积熔覆一层陶瓷涂层,由于陶瓷涂层的存在可以将金属基体与高温高腐蚀环境隔离,大大减低了金属基体被氧化腐蚀的风险,使得引入陶瓷涂层的器件(如过热器管)能在高温高腐环境下运行。
在金属表面制备金属陶瓷涂层的工艺方法主要有火焰喷涂、等离子喷涂、喷焊、气相沉积等。气相沉积存在的主要问题是设备昂贵,沉积速度慢,一般只能得到几至几十微米厚度的涂层,且制备的金属陶瓷涂层在热循环中会产生裂纹。喷焊法难于制备硬质颗粒体积分数高的金属陶瓷涂层,难于发挥以提高硬质相比例来强化金属陶瓷涂层耐磨性。火焰及等离子焰流的高温特性,使得纳米材料极易氧化、分解及晶粒长大等一系列不利的反应,同时由于热应力的原因使得涂层中存在层间裂纹,从而降低整个涂层的耐磨和耐蚀性能。等离子喷涂的特点是涂覆速度快,效率高,可以达到几百微米至毫米级的厚度,但存在涂层孔隙率大,涂层中陶瓷颗粒之间,涂层与基体之间结合不强等问题,涂层的耐磨性、耐蚀性和耐冲击性都受到很大限制。
另外陶瓷材料易脆的属性以及金属基体物理性能的较大差异,导致陶瓷涂层与金属基体的结合强度较低,层间应力集中容易导致陶瓷涂层脱落。
发明内容
针对上述背景技术中的问题,本发明的提供了一种选区激光烧结制备的梯度金属陶瓷涂层,采用选区激光烧结技术形成具有冶金结合、且物理与力学性能基本连续变化的陶瓷-金属复合涂层,避免层间应力集中而导致的陶瓷层脱落,有效提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力,适用于规模化生产。
本发明的技术方案具体如下:
一种选区激光烧结制备的梯度金属陶瓷涂层,所述梯度金属陶瓷涂层由打底层、过渡层和外层组成;
所述打底层为高耐蚀镍基高耐蚀合金金属层,按重量百分比计算其成分为:Co21.3%,Cr 25.6%,Mo 12.5%,Nb 6.7%,余量为Ni;
所述外层为陶瓷层,按重量百分比计算其成分为:C 12.5-18.7%,N 19.7-23.4%,B 15.8%,Re 2.7%,余下为Si;所述Re选自Y、La、Gd、Yb或Lu;
所述过渡层为金属—陶瓷复合层,是由与打底层、外层相同组份的粉体按体积比1:(0.5-2)复合烧结形成;
所述涂层厚度在0.2-2.0mm,所述涂层的烧结方式采用选区激光烧结技术,采用的金属或陶瓷粉体粒径在20-100μm。
进一步地,所述打底层所用金属烧结粉体包括Co、Mo、Ni、Nb、Cr3C2粉末,平均粒径为20-80μm,其中,Co、Mo、Nb、Cr3C2、Ni粉末的体积比为(12-18):(6-10):(3-6):(16-24):(22-36)。
进一步地,所述外层所用的陶瓷烧结粉体包括:SiC、Si3N4、BC、Re2O3粉末,其中,SiC、Si3N4、BC、Re2O3粉末的体积比为(20-35):(25-45):(10-25):(3-9)。
进一步地,所述过渡层是由打底层金属烧结粉体与外层陶瓷烧结粉体按体积比1:1混合烧结形成。
进一步地,所述打底层金属层的厚度在0.02-0.2mm,所述外层陶瓷层的厚度在0.05-0.5mm。
本发明的另一目的在于,提供一种如上所述的梯度金属陶瓷涂层的选区激光烧结制备方法,包括以下步骤:
(1)表面处理:将合金基材表面进行打磨、清洗、烘干处理;
(2)打底层制备:以PVB与酒精的混合液作为粘结剂稀释液,将金属烧结粉体组分加入到粘结剂稀释液中,混合静置后干燥制取粘结剂包覆的金属粉末;
采用选区激光烧结工艺,在合金基材表面形成镍基高耐蚀金属层,在惰性气体的烧结气氛内,于1020-1060℃温度条件下高温烧结30-60min;
(3)过滤层制备:
按照1:1的体积比混合金属烧结粉体组分、陶瓷烧结粉体组分,采用选区激光烧结工艺,在步骤(2)金属层表面形成金属—陶瓷梯度过渡层;
(4)外层制备:
采用选区激光烧结工艺,在步骤(3)金属—陶瓷梯度过渡层表面形成高温耐磨耐蚀陶瓷层;
(5)最后再将熔覆有梯度涂层的合金基材进行梯度烧结,烧结工艺的条件是:在150-220℃的温度下保温1小时,而后在520~650℃的温度下保温0.5-1h,最终在合金基材的表面形成梯度金属—陶瓷复合涂层。
进一步地,步骤(2)中所述粘结剂与金属烧结粉体的质量比在1:(3-5)。
更进一步地,所述选区激光烧结条件为:激光功率40-800W,扫描速度160-300mm/s,扫描间隔在0.2-0.6mm。
更进一步地,所述打底层烧结的激光功率在40-80W,所述过渡层烧结的激光功率在300-400W,所述外层烧结的激光功率在700-800W。
本发明的有益效果是:
(1)本发明中采用选区激光烧结技术形成具有冶金结合、且物理与力学性能基本连续变化的陶瓷-金属复合涂层,避免层间应力集中而导致的陶瓷层脱落,有效提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力,适用于规模化生产。
(2)设计高耐腐蚀磨损的三层梯度结构的陶瓷—金属复合涂层,以含Co、Cr、Mo、Nb组分的金属层为打底层,以含C、N、B、Re、Si组分的陶瓷层为外层,陶瓷层以抗氧化、抗腐蚀性能优异的四氮化三硅、碳化硅、碳化硼等陶瓷粉体为原料,金属—陶瓷过渡层为金属/陶瓷含量梯度变化区域,减弱界面效应,提高涂层与金属基体的结合力,有效提高陶瓷涂层的耐高温、抗氧化和抗腐蚀能力。
(3)在梯度涂层形成后进行梯度高温烧结,在烧结过程中金属—陶瓷过渡互渗层内部金属向疏松状的打底层表面烧结孔隙渗入,内部陶瓷向外陶瓷层渗入,有效消除了传统技术中陶瓷-金属结合界面处的应力集中,形成具有冶金结合、且物理与力学性能基本连续变化的陶瓷-金属复合涂层,即便顶层的陶瓷层出现微裂纹等局部缺陷,也能有效阻止腐蚀向基体扩展。
附图说明
图1为本发明中梯度陶瓷涂层的的横剖面扫描电镜照片。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
一种选区激光烧结制备的梯度金属陶瓷涂层的制备:
(1)表面处理:将过热器管炉管基材表面进行打磨、清洗、烘干处理;
(2)打底层制备:以PVB与酒精的混合液作为粘结剂稀释液,按照4:1的质量比将金属烧结粉体加入到粘结剂稀释液中,混合静置后干燥制取粘结剂包覆的金属粉末;
所述金属烧结粉体为体积比为15:8:5:22:32的Co、Mo、Nb、Cr3C2、Ni粉末;
采用选区激光烧结工艺,烧结条件为:激光功率80W,扫描速度200mm/s,扫描间隔在0.2mm,在合金基材表面形成镍基高耐蚀金属层,在惰性气体的烧结气氛内,于1160℃温度条件下高温烧结30-60min;
(3)过滤层制备:
按照1:1的体积比混合金属烧结粉体组分、陶瓷烧结粉体组分,采用选区激光烧结工艺,烧结条件为:激光功率350W,扫描速度200mm/s,扫描间隔在0.4mm,在步骤(2)金属层表面形成金属—陶瓷梯度过渡层;
所述金属烧结粉体为体积比为15:8:5:22的Co、Mo、Nb、Ni、Cr3C2粉末;
所述陶瓷烧结粉体为体积比为30:40:18:5的SiC、Si3N4、BC、Re2O3粉末;
(4)外层制备:
采用选区激光烧结工艺,烧结条件为:激光功率800W,扫描速度200mm/s,扫描间隔在0.2mm,在步骤(3)金属—陶瓷梯度过渡层表面形成高温耐磨耐蚀陶瓷层;
所述陶瓷烧结粉体为体积比为30:40:18:5的SiC、Si3N4、BC、Re2O3粉末;
(4)最后再将熔覆有梯度涂层的合金基材进行梯度烧结,烧结工艺的条件是:在180℃的温度下保温1小时,而后在580℃的温度下保温1h,最终在合金基材的表面形成梯度金属—陶瓷复合涂层。
实施例2
制备过程同实施例1,不同之处在于:
所述金属烧结粉体为体积比为18:6:4:20的Co、Mo、Nb、Ni、Cr3C2粉末;
所述陶瓷烧结粉体为体积比为28:42:20:5的SiC、Si3N4、BC、Re2O3粉末;
实施例3
制备过程同实施例1,不同之处在于:
所述金属烧结粉体为体积比为18:6:6:18的Co、Mo、Nb、Ni、Cr3C2粉末;
所述陶瓷烧结粉体为体积比为27:44:18:6的SiC、Si3N4、BC、Re2O3粉末;
试验:耐腐蚀性能测试方法
采用电化学试验研究实施例1-3制备的梯度金属—陶瓷涂层的耐腐蚀性能,以金属基体未涂覆涂层作为对比例1,以金属基体直接涂覆陶瓷涂层作为对比例2。通过极化曲线分析法对梯度涂层的腐蚀行为进行研究,电化学腐蚀实验采用上海辰华CHI660E电化学工作站,实验采用三电极测试体系,铂电极为辅助电极,银-氯化银电极为参比电极,涂有涂层的样件为工作电极,测量体系在室温下,3.5%NaCl电解液中进行,为保证实验的准确性,每种样品取3片进行测试,结果取其平均值。所得数据如表1所示。
表1耐腐蚀测试结果
Figure BDA0003421926520000071
由表1所示:通过电化学试验(极化曲线分析法)对本发明梯度金属—陶瓷复合涂层进行腐蚀行为评定。腐蚀电流密度越小,耐腐蚀效率越高,由此可见本发明的梯度金属—陶瓷涂层,可显著提高涂层的耐腐蚀性,保护基体免受腐蚀的破坏。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种选区激光烧结制备的梯度金属陶瓷涂层,其特征在于,所述梯度金属陶瓷涂层由打底层、过渡层和外层组成;
所述打底层为高耐蚀镍基高耐蚀合金金属层,按重量百分比计算其成分为:Co21.3%,Cr 25.6%,Mo 12.5%,Nb 6.7%,余量为Ni;
所述外层为陶瓷层,按重量百分比计算其成分为:C 12.5-18.7%,N 19.7-23.4%,B15.8%,Re 2.7%,余下为Si;所述Re选自Y、La、Gd、Yb或Lu;
所述过渡层为金属—陶瓷复合层,是由与打底层、外层相同组份的粉体按体积比1:(0.5-2)复合烧结形成;
所述涂层厚度在0.2-2.0mm,所述涂层的烧结方式采用选区激光烧结技术,采用的金属或陶瓷粉体粒径在20-100μm。
2.根据权利要求1所述的一种选区激光烧结制备的梯度金属陶瓷涂层,其特征在于,所述打底层所用金属烧结粉体包括Co、Mo、Ni、Nb、Cr3C2粉末,平均粒径为20-80μm,其中,Co、Mo、Nb、Cr3C2、Ni粉末的体积比为(12-18):(6-10):(3-6):(16-24):(22-36)。
3.根据权利要求1所述的一种选区激光烧结制备的梯度金属陶瓷涂层,其特征在于,所述外层所用的陶瓷烧结粉体包括:SiC、Si3N4、BC、Re2O3粉末,其中,SiC、Si3N4、BC、Re2O3粉末的体积比为(20-35):(25-45):(10-25):(3-9)。
4.根据权利要求1所述的一种选区激光烧结制备的梯度金属陶瓷涂层,其特征在于,所述过渡层是由打底层金属烧结粉体与外层陶瓷烧结粉体按体积比1:1混合烧结形成。
5.根据权利要求1所述的一种选区激光烧结制备的梯度金属陶瓷涂层,其特征在于,所述打底层金属层的厚度在0.02-0.2mm,所述外层陶瓷层的厚度在0.05-0.5mm。
6.一种权利要求1-5任一所述的梯度金属陶瓷涂层的选区激光烧结制备方法,包括以下步骤:
(1)表面处理:将合金基材表面进行打磨、清洗、烘干处理;
(2)打底层制备:以PVB与酒精的混合液作为粘结剂稀释液,将金属烧结粉体组分加入到粘结剂稀释液中,混合静置后干燥制取粘结剂包覆的金属粉末;
采用选区激光烧结工艺,在合金基材表面形成镍基高耐蚀金属层,在惰性气体的烧结气氛内,于1020-1060℃温度条件下高温烧结30-60min;
(3)过滤层制备:
按照1:1的体积比混合金属烧结粉体组分、陶瓷烧结粉体组分,采用选区激光烧结工艺,在步骤(2)金属层表面形成金属—陶瓷梯度过渡层;
(4)外层制备:
采用选区激光烧结工艺,在步骤(3)金属—陶瓷梯度过渡层表面形成高温耐磨耐蚀陶瓷层;
(5)最后再将熔覆有梯度涂层的合金基材进行梯度烧结,烧结工艺的条件是:在150-220℃的温度下保温1小时,而后在520~650℃的温度下保温0.5-1h,最终在合金基材的表面形成梯度金属—陶瓷复合涂层。
7.如权利要求6所述的梯度金属陶瓷涂层的选区激光烧结制备方法,其特征在于,步骤(2)中所述粘结剂与金属烧结粉体的质量比在1:(3-5)。
8.如权利要求6所述的梯度金属陶瓷涂层的选区激光烧结制备方法,其特征在于,所述选区激光烧结条件为:激光功率40-800W,扫描速度160-300mm/s,扫描间隔在0.2-0.6mm。
9.如权利要求7所述的梯度金属陶瓷涂层的选区激光烧结制备方法,其特征在于,所述打底层烧结的激光功率在40-80W,所述过渡层烧结的激光功率在300-400W,所述外层烧结的激光功率在700-800W。
CN202111565707.3A 2021-12-20 2021-12-20 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法 Active CN114472898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111565707.3A CN114472898B (zh) 2021-12-20 2021-12-20 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111565707.3A CN114472898B (zh) 2021-12-20 2021-12-20 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法

Publications (2)

Publication Number Publication Date
CN114472898A true CN114472898A (zh) 2022-05-13
CN114472898B CN114472898B (zh) 2023-11-03

Family

ID=81493179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111565707.3A Active CN114472898B (zh) 2021-12-20 2021-12-20 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法

Country Status (1)

Country Link
CN (1) CN114472898B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733652A (zh) * 2005-06-30 2006-02-15 北京科技大学 应用于选区激光烧结快速成型的陶瓷粉末材料的制备方法
CN101113487A (zh) * 2007-09-04 2008-01-30 广州市锐优表面科技有限公司 一种退火炉炉辊表面强化涂层及其制备方法
CN101748404A (zh) * 2010-01-08 2010-06-23 南京航空航天大学 具有微孔过渡层的涂层结构及制备方法
CN107686939A (zh) * 2017-07-11 2018-02-13 芜湖锐华暖通科技有限公司 一种耐磨耐高温电源箱外壳及其制备方法
CN108559941A (zh) * 2018-04-27 2018-09-21 齐鲁工业大学 一种不锈钢汽车消音器表面高致密梯度金属陶瓷涂层及其制备方法
CN109988958A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 镍基合金粉末、相应耐腐蚀涂层及其制备方法
CN110714198A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种真空烧结法用于激光熔覆制备涂层工艺的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733652A (zh) * 2005-06-30 2006-02-15 北京科技大学 应用于选区激光烧结快速成型的陶瓷粉末材料的制备方法
CN101113487A (zh) * 2007-09-04 2008-01-30 广州市锐优表面科技有限公司 一种退火炉炉辊表面强化涂层及其制备方法
CN101748404A (zh) * 2010-01-08 2010-06-23 南京航空航天大学 具有微孔过渡层的涂层结构及制备方法
CN107686939A (zh) * 2017-07-11 2018-02-13 芜湖锐华暖通科技有限公司 一种耐磨耐高温电源箱外壳及其制备方法
CN108559941A (zh) * 2018-04-27 2018-09-21 齐鲁工业大学 一种不锈钢汽车消音器表面高致密梯度金属陶瓷涂层及其制备方法
CN109988958A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 镍基合金粉末、相应耐腐蚀涂层及其制备方法
CN110714198A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种真空烧结法用于激光熔覆制备涂层工艺的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴王平;王晓杰;王智尧;吴涵;赵文;: "激光熔覆陶瓷涂层研究", 陶瓷学报, no. 01 *

Also Published As

Publication number Publication date
CN114472898B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
Lee et al. Concept of functionally graded materials for advanced thermal barrier coating applications
Zhao et al. Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting
JP2006052466A (ja) 保護コーティング堆積方法および被コーティング物品
Chen et al. Oxidation properties of tri-layer ytterbium-disilicate/mullite/silicon-carbide environment barrier coatings for Cf/SiC composites
CN108517518B (zh) 一种提高钛合金高温抗氧化性能的复合涂层的制备方法
Wenhai et al. Study of yttrium and cerium on the oxidation resistance of silicide coatings prepared on Ti-6Al-4V alloy by pack-cementation process
CN109354512A (zh) 一种高导热氮化硅陶瓷表面化学镀铜的制备方法
JP2021191899A (ja) 基材上に高温保護層を接合するための付着促進層、並びにそれの製造方法
CN106256928B (zh) γ-TiAl合金表面(Al2O3+Y2O3)/AlYMoSi多层结构涂层及其制备方法
CN106119758B (zh) 钛合金及钛铝金属间化合物表面硼化钛基涂层的制备方法
Salimi et al. Infiltration brazed core-shell WC@ NiP/NiCrBSi composite cladding
Liu et al. Preparation of MoSi2-SiB6 oxidation inhibition coating on graphite by spark plasma sintering method
Singh et al. Effect of nano yttria-stabilized zirconia on properties of Ni-20Cr composite coatings
CN106148873B (zh) 钛合金及钛铝金属间化合物表面氧化物基涂层的制备方法
CN108359977B (zh) 一种激光熔覆用FeCoVWNbSc高熵合金粉末及使用方法
CN114472898B (zh) 一种选区激光烧结制备的梯度金属陶瓷涂层及制备方法
CN108179377B (zh) 一种复合梯度涂层及其制备方法
CN111962004B (zh) 一种延长不锈钢在强腐蚀性气体环境中使用寿命的复合陶瓷粉末及其制备方法
CN110607494B (zh) 一种钛合金表面等离子喷涂-电子束熔覆改性的抗高温氧化涂层
CN101117718A (zh) 一种耐高温抗氧化材料及其制备方法
CN110791726B (zh) 一种降低可磨耗组分损失率的可磨耗涂层喷涂方法
CN114478043A (zh) 一种基于液相烧结的碳化硅陶瓷的连接方法
CN114351134B (zh) 一种抗裂纹耐高温腐蚀的梯度陶瓷涂层及制备方法
CN110408880A (zh) 一种大气等离子喷涂技术制备y+y2o3/y2o3复合涂层的方法
Wang et al. Preparation and anodizing of SiCp/Al composites with relatively high fraction of SiCp

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant