CN114470321A - 一种管状纳米纤维材料及其制备方法 - Google Patents

一种管状纳米纤维材料及其制备方法 Download PDF

Info

Publication number
CN114470321A
CN114470321A CN202111532795.7A CN202111532795A CN114470321A CN 114470321 A CN114470321 A CN 114470321A CN 202111532795 A CN202111532795 A CN 202111532795A CN 114470321 A CN114470321 A CN 114470321A
Authority
CN
China
Prior art keywords
tubular
solution
spinning
electrostatic spinning
collecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111532795.7A
Other languages
English (en)
Inventor
潘浩波
吴桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202111532795.7A priority Critical patent/CN114470321A/zh
Publication of CN114470321A publication Critical patent/CN114470321A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明提供一种管状纳米纤维材料的制备方法,包括如下步骤:1)静电纺丝装置使用水溶性物质进行静电纺丝,采用收集装置收集管状材料1;所述收集装置包括圆柱形金属棒;2)静电纺丝装置使用纺丝溶液进行静电纺丝,采用收集有管状材料1的收集装置收集管状材料2;3)用有机溶剂溶解管状材料1,收集得到管状材料2;4)将管状材料用结晶材料处理,得到管状纳米纤维材料。本发明提出使用具有串晶结构的纤维材料模仿血管细胞外基质的微环境形貌、促进体内诱导内皮形成的方案。相较于传统的化学小分子修饰方式,本专利所使用的物理结晶方式操作简便结构稳定,不易受外在环境的影响而失效。

Description

一种管状纳米纤维材料及其制备方法
技术领域
本发明涉及生物医药领域,具体涉及一种管状纳米纤维材料及其制备方法。
背景技术
体内原位诱导血管再生是通过构建一种功能性材料,使其在结构上和功能上模拟天然细胞外基质的微环境,这种支架能够在体内诱导细胞定向分化,随着支架的逐渐降解,受损部位重新长出新组织。具体而言,原位诱导血管再生就是强调对支架材料进行活性和功能修饰,诱导血管新生,促进组织的迅速修复和再生,使组织构建在体内完成。与传统组织工程研究手段不同之处在于没有细胞接种和体外培养,依靠材料调动人体自我康复能力,引导或诱导受损组织再生。对于小口径人工血管来说,支架材料的结构设计主要考虑材料的微观形貌、力学强度和生物降解性。
静电纺丝的纤维粗细与胶原蛋白纤维粗细相近,近期研究人员新发现一种聚合物纤维杂化串晶结构,这一具有周期性分布的串晶结构与人体中胶原蛋白纤维的微结构十分相似,在其交错排列的微结构中,包含了在连续的胶原分子末端之间所形成的间隙,并形成了具有周期性分布的间隙和重叠的区域。串晶微结构能够明显提升细胞相容性,有利于促进细胞和组织的再生。除了单根纤维的形貌之外,纤维之间的排列方式同样会对细胞行为产生影响。人体中有许多具有高度有序微观结构的特异性组织,如神经、肌腱、韧带、骨骼肌以及血管等。这些组织内部细胞和细胞外基质的有序排列赋予了它们的特定功能。这一独特的组织学结构对组织功能的发挥起到了举足轻重的作用。天然血管的多级(纤维)组分有序排列是其结构特异性的基本特征。
发明内容
因此,本发明要解决的技术问题在于克服目前临床上仍然缺乏能够满足移植要求的小口径人工血管材料,在满足良好的力学、细胞相容性的同时,针对小口径人工血管材料的设计构建还需协同考虑材料的促内皮化能力。本发明提供一种技术简单易行,成本低,生物安全性高,可实现大规模工业生产的管状纳米纤维材料(人工血管材料)的制备方法。该方法通过串晶纤维材料微形貌的可控制备,构建一种具有促内皮化的小口径人工血管材料,为人工血管材料的内皮化策略和抗凝性研究提供新思路。
本发明提供一种管状纳米纤维材料的制备方法,包括如下步骤:
1)静电纺丝装置使用水溶性物质进行静电纺丝,采用收集装置收集管状材料1;所述收集装置包括圆柱形金属棒;
2)静电纺丝装置使用纺丝溶液进行静电纺丝,采用收集有管状材料1的收集装置收集管状材料2;
3)用有机溶剂溶解管状材料1,收集得到管状材料2;
4)将管状材料2用结晶材料处理,得到管状纳米纤维材料。
优选的,所述结晶材料为如下至少一种:聚己内酯、聚乳酸、聚丙交酯-己内酯共聚物和聚乙二醇-己内酯共聚物。
优选的,所述水溶性物质为聚氧化乙烯、聚乙烯醇或聚乙二醇或羧甲基纤维素;
所述纺丝溶液为聚己内酯溶液或聚乳酸溶液。
优选的,所述纺丝溶液的溶剂为氯仿与N,N–二甲基甲酰胺的混合液;优选的,氯仿与N,N–二甲基甲酰胺体积比(5-7):3.5;更有选的,氯仿与N,N–二甲基甲酰胺体积比为6.5:3.5;
所述洗脱溶液的溶剂为去离子水;
所述纺丝溶液中聚己内酯的质量分数为5%-15%;
所述结晶溶液中溶质的质量分数为0.1%-2%;
所述有机溶剂为酒精溶液;所述酒精溶液的体积百分含量为0-50%。
优选的,述圆柱形金属棒外径为1~4mm。
优选的,所述收集装置还包括2个导电平板,所述导电平板长度方向与金属圆棒轴向平行;2个导电平板分别位于金属圆棒两侧;马达,与金属圆棒的一端连接。
优选的,步骤1)中:
针头型号为20号,针头与下方圆柱形金属棒之间的垂直距离为12cm,溶液流率0.5ml/h,电压13千伏,纺丝时间2小时;
步骤2)中:针头型号为18号,针头与下方圆柱形金属棒之间的垂直距离为15cm,溶液流率1ml/h,电压18千伏,纺丝时间为3小时。
上述方法制备得到的管状纳米纤维材料。
优选的,所述管状纳米纤维材料的内径为1.5mm-4mm;优选为2-3mm。
采用上述管状纳米纤维材料所制备的人工器官或组织;所述组织为血管。
聚己内酯的分子量为5~15万;
聚氧化乙烯分子量60~100万;
本发明具有以下优点:
(1)本发明提出使用具有串晶结构的纤维材料模仿血管细胞外基质的微环境形貌、促进体内诱导内皮形成的方案。相较于传统的化学小分子修饰方式,本专利所使用的物理结晶方式操作简便结构稳定,不易受外在环境的影响而失效。
(2)串晶结构的纤维材料在一定程度上模仿了细胞外基质的微结构形貌,与普通的光滑纤维相比,其细胞相容性有了较为明显的提升。
(3)管状纳米纤维材料使用在兔颈动脉移植手术中,验证了其在体内诱导血管内皮再生的作用,为小口径人工血管材料的构建研究提供了新的方向。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的一种管状的纳米纤维材料制备方法示意图;
1为静电纺丝装置,2为纤维丝,3为马达,4为导电平板,5为金属圆棒;6为轴承;
图2是本发明一个实施例的一种管状的纳米纤维材料外形图。
图3是本发明一个实施例的串晶纤维结构材料的显微镜照片。
图4是本发明一个实施例的管状的纳米纤维材料力学测试结果,200和400表示管状的纳米纤维材料的壁厚是200和400μm。
图5是本发明一个实施例的细胞活/死染色及细胞骨架染色结果,PCL表示没有结晶处理的管状的纳米纤维材料,PCL-SK表示经结晶溶液处理后的管状纤维材料。
图6是本发明一个实施例的内皮细胞(a)对低密度脂蛋白的内吞作用和(b)一氧化氮释放;TCPS未放入纳米纤维材料,用来做对照;PCL表示没有结晶处理的管状的纳米纤维材料,PCL-SK表示经结晶溶液处理后的管状纤维材料。
图7是本发明一个实施例的(a)血管移植示意图、(b)彩色多普勒和(c)CD31染色结果。
具体实施方式
实施例1
(1)静电纺丝溶液的制备:首先将聚己内酯(Sigma-Aldrich公司,货号440744,分子量80000)溶于氯仿与N,N–二甲基甲酰胺体积比为6.5:3.5的混合液中,其质量分数为13%。过夜搅拌,使聚己内酯充分溶解在氯仿与N,N–二甲基甲酰胺溶液中。
(2)洗脱溶液的制备:将聚氧化乙烯(Sigma-Aldrich公司,货号182028,分子量600000)粉末常温溶于去离子水中制得聚氧化乙烯溶液,其质量分数为5%。过夜搅拌,使聚氧化乙烯充分水解,形成均一稳定的溶液。
(3)结晶溶液的制备:将聚己内酯加入乙酸戊酯中,聚己内酯质量分数为1%。加热至63℃使其充分溶解。并保温在60℃,备用。
(4)管状的静电纺丝纳米纤维材料的制备:
使用图1所示实验方法(图1中附图标记1为静电纺丝装置,附图标记2为纤维丝),通过采用包括圆柱形金属棒的收集装置制备管状的静电纺丝纤维材料。收集装置还包括2个导电平板4,所述导电平板长度方向与圆柱形金属棒5轴向平行,2个导电平板分别位于圆柱形金属棒5两侧,用于增强纺丝纤维的取向程度;马达3,与圆柱形金属棒5的一端连接;轴承6,与圆柱形金属棒5另一端连接,使得圆柱形金属棒5随马达转动。收集装置所使用圆柱形金属棒5外径为2.5mm。
具体包括如下步骤:
(a)在静电纺丝装置1上,采用洗脱溶液进行静电纺丝,制备得到纤维丝,静电纺丝装置1针头型号为20号,针头与下方圆柱形金属棒之间的垂直距离为12cm,溶液流率0.5ml/h,电压13千伏,纺丝时间2小时,得到管状材料1,结束后静置1小时以上。
(b)使用纺丝溶液进行静电纺丝,其针头型号为18号,与下方圆柱形金属棒(本步骤所用的圆柱形金属棒为收集有管状材料1的圆柱形金属棒)之间的距离为15cm,溶液流率1ml/h,电压18千伏,纺丝时间3小时,制得管状材料2。结束后将圆柱形金属棒连同管状材料1和管状材料2取下,静置室温中24h以上使溶剂充分挥发。
(c)将圆柱形金属棒连同管状材料一起先后浸入0、25%(v/v)和50%(v/v)的酒精溶液中,使用磁力转子使圆柱形金属棒和管状材料旋转,每次3小时以上,使得洗脱溶液能够充分被水解,从而在金属棒与管状材料中制造空隙,使得管状材料2能轻易从圆柱形金属棒上滑脱取下。
(d)将管状材料2静置室温中48h以上使溶剂和水分充分挥发。
(e)将管状材料2剪裁成1cm的长度,等待结晶溶液降温至35℃,使用注射器吸取100μl结晶溶液,均匀注滴在管状材料2的内表面,得到管状纳米纤维材料,最后将管状的纳米纤维材料静置室温中48h以上使溶剂充分挥发。
实验结果:本发明已经过初步的实验验证,结果如下。
形貌的观察:
所制得管状的纳米纤维材料的实际外形图如图2所示。实验采用了不同直径的芯轴,制得管状的纳米纤维材料的内径分别约为1.5、2、2.5、3和4mm。整个材料表面光滑,整体粗细均匀,长度可达5cm以上,可以满足后续动物实验的要求(内径2-3mm、长度2-3cm)。管状的纳米纤维材料壁厚较为均匀,不存在明显的缺陷和塌陷,整体圆度良好。此外对于直径在2~3mm的人体血管而言,由于血管种类不同,厚度在100~1000μm之间均符合实际生理情况。
串晶纤维结构材料的场发射扫描电镜图和原子力显微镜图如图3所示。图中可见纤维上都可以看到明显的聚己内酯晶体,这些晶体呈周期性地生长在纤维上,几乎所有的晶片都能在纤维表面进行外延生长,呈现了典型的串晶结构。此外,纤维能够进行取向排列,纤维表面光滑、粗细均匀,孔径大小也能够适合细胞的生长和繁殖。
力学性能:
采用拉伸实现测试管状的纳米纤维材料的拉伸力学特性,分别在其圆周(circumferential)方向和长度(longitudinal)方向进行测试,使用仪器夹钳夹住长度为2.5cm的人工血管的两端,沿长度方向(轴向)拉伸速度为5mm/min,直至断裂。圆周方向力学测试时,使用两个“L”形金属棒分别夹在仪器两端的夹钳上,截取人工血管长度为0.5cm,将人工血管从上方同时套入两个“L”形金属棒中并预紧,以5mm/min的速度拉伸至断裂,测试断裂时的最大应力。其测试方法和力学测试结果应力–应变曲线分别如图4所示。从图中可见血管材料的强度在4MPa左右,这已经可以满足对于人体血管的要求。此外与长度方向相比,材料在圆周方向展现出了较大的强度和较低的刚性,这也很可能是由于纺丝纤维在其圆周方向取向的结果。
使用细胞毒性测试试剂(美国Invitrogen公司)来对细胞进行活/死染色:分别将红、绿色染剂按照说明书中的比例加入到PBS缓冲液中。然后吸出孔板中的细胞培养液,再重新加入缓冲液清洗2遍。吸出缓冲液后加入染色剂溶液,盖盖、遮光等待45分钟。细胞骨架的分析主要是通过对细胞肌动蛋白(actin)的染色来实现的。加入4%的多聚甲醛(PFA)/PBS溶液(碧云天公司)对细胞进行固定15分钟。之后再次将其吸出然后用缓冲液清洗2遍后吸出。随后加入0.1%的聚乙二醇辛基苯基醚(Triton–X 100,碧云天公司)对细胞膜进行刺破处理5分钟。然后移去该溶液并再此用缓冲液清洗2遍,最后加入染色液在室温下遮光染色1小时。采用尼康倒置荧光显微镜进行观察。
内皮细胞成活及骨架形貌结果如图5所示。在串晶结构的样品上可以看到有更多数量的细胞吸附,而且还可以看到细胞展现出了更加铺展的状态,并且有不少细胞已经生成了细胞伪足,这表明细胞在这些具有串晶结构的样品上生长的状态更好。所有样品细胞的成活率也较为理想,几乎不见红色的光斑,因此可以证明材料有良好的细胞相容性,并未产生明显的细胞毒性。细胞骨架染色结果可见生长在具有串晶结构的试样上的细胞则呈现出了更加铺展的形状,在其上的细胞已经出现了许多丝状伪足。7天时在修饰过聚己内酯串晶的样品上,细胞的状态十分良好。特别在那些串晶直径较大的试样上,已经可以看到束状的肌动蛋白微丝。此外,纤维的取向排列可以明显诱导细胞的取向生长。
内皮细胞的功能表达:
细胞培养到特定天数时,将荧光标记乙酰化低密度脂蛋白(上海懋康生物)加入培养液中共同孵育4小时。吸出培养液并清洗3遍后加入4%的多聚甲醛(PFA)/PBS溶液(碧云天公司)对细胞进行固定15分钟。采用尼康倒置荧光显微镜拍照并计算荧光强度。采用一氧化氮检测试剂盒(碧云天公司)进行一氧化氮释放测定。细胞培养到特定天数时吸取培养液上清液50μl加入在96孔板中,后依次加入试剂盒中的Griess Reagent(格里斯试剂)I和II号各50μl。随后使用酶标仪在540nm下测定吸光度。
低密度脂蛋白摄取和一氧化氮释放是衡量内皮细胞的重要功能指标。通过低密度脂蛋白荧光强度的定量分析结果表明(如图6所示),与其他组相比,串晶形貌导致内皮细胞对低密度脂蛋白的摄取显著增加。此外,可观察到内皮细胞在具有大尺寸串晶结构的表面上释放的一氧化氮量大于其他两种表面。说明串晶结构有利于内皮细胞的成熟和内皮功能的表达。
体内移植研究:
所用人工血管样品内径约为2.5mm,长度为1cm。新西兰兔麻醉后呈仰卧位固定于手术台上,颈前部剃毛碘伏消毒。颈前正中切口,分离气管筋膜,显露两侧颈动脉。安置动脉夹后剪断动脉血管,用8-0的细线将移植血管与颈动脉端侧吻合,渗血量较多时适当修补。吻合后,使血流仅通过移植血管,可见移植血管充盈及搏动。
新西兰兔颈动脉移植实验表明移植一个月后通畅性良好,如图7所示,移植三个月后切片染色表明具有串晶材料的人工血管能够在一定程度上促进内皮细胞的铺展,这可能也是得益于内皮化进程加速的结果。

Claims (10)

1.一种管状纳米纤维材料的制备方法,其特征在于,包括如下步骤:
1)静电纺丝装置使用水溶性物质进行静电纺丝,采用收集装置收集管状材料1;所述收集装置包括圆柱形金属棒;
2)静电纺丝装置使用纺丝溶液进行静电纺丝,采用收集有管状材料1的收集装置收集管状材料2;
3)用有机溶剂溶解收集装置上的管状材料1,收集得到管状材料2;
4)将管状材料2用结晶材料处理,得到管状纳米纤维材料。
2.根据权利要求1所述方法,其特征在于,所述结晶材料为如下至少一种:
聚己内酯、聚乳酸、聚丙交酯-己内酯共聚物和聚乙二醇-己内酯共聚物。
3.根据权利要求1或2所述方法,其特征在于,所述水溶性物质为聚氧化乙烯、聚乙烯醇或聚乙二醇或羧甲基纤维素;
所述纺丝溶液为聚己内酯溶液或聚乳酸溶液。
4.根据权利要求1-3任一所述的方法,其特征在于,所述纺丝溶液的溶剂为氯仿与N,N–二甲基甲酰胺的混合液;优选的,氯仿与N,N–二甲基甲酰胺体积比(5-7):3.5;更有选的,氯仿与N,N–二甲基甲酰胺体积比为6.5:3.5;
所述纺丝溶液中聚己内酯的质量分数为5%-15%;
所述结晶溶液中溶质的质量分数为0.1%-2%;
所述有机溶剂为酒精溶液;所述酒精溶液的体积百分含量为0-50%。
5.根据权利要求1-4任一所述的方法,其特征在于,所述圆柱形金属棒外径为1~4mm。
6.根据权利要求1-5任一所述的方法,其特征在于,所述收集装置还包括2个导电平板,所述导电平板长度方向与金属圆棒轴向平行;2个导电平板分别位于金属圆棒两侧;马达,与金属圆棒的一端连接。
7.根据权利要求1-6任一所述的方法,其特征在于,步骤1)中:
针头型号为20号,针头与下方圆柱形金属棒之间的垂直距离为12cm,溶液流率0.5ml/h,电压13千伏,纺丝时间2小时;
步骤2)中:针头型号为18号,针头与下方圆柱形金属棒之间的垂直距离为15cm,溶液流率1ml/h,电压18千伏,纺丝时间为3小时。
8.权利要求1-7任一所述方法制备得到的管状纳米纤维材料。
9.根据权利要求8所述的管状纳米纤维材料,其特征在于,所述管状纳米纤维材料的内径为1.5mm-4mm;优选为2-3mm。
10.采用权利要求7所述管状纳米纤维材料所制备的人工器官或组织;所述组织为血管。
CN202111532795.7A 2021-12-15 2021-12-15 一种管状纳米纤维材料及其制备方法 Pending CN114470321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111532795.7A CN114470321A (zh) 2021-12-15 2021-12-15 一种管状纳米纤维材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111532795.7A CN114470321A (zh) 2021-12-15 2021-12-15 一种管状纳米纤维材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114470321A true CN114470321A (zh) 2022-05-13

Family

ID=81493246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111532795.7A Pending CN114470321A (zh) 2021-12-15 2021-12-15 一种管状纳米纤维材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114470321A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115944785A (zh) * 2022-12-16 2023-04-11 上海工程技术大学 一种匀质纤维管状支架的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
CN105463848A (zh) * 2015-12-17 2016-04-06 华南理工大学 一种取向的串晶纤维的制备方法
US20170101726A1 (en) * 2015-10-09 2017-04-13 Massachusetts Institute Of Technology Gel-Electrospinning Process for Preparing High-Performance Polymer Nanofibers
CN107789666A (zh) * 2016-08-30 2018-03-13 北京航空航天大学 一种内壁微图案化小口径人造血管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US20170101726A1 (en) * 2015-10-09 2017-04-13 Massachusetts Institute Of Technology Gel-Electrospinning Process for Preparing High-Performance Polymer Nanofibers
CN105463848A (zh) * 2015-12-17 2016-04-06 华南理工大学 一种取向的串晶纤维的制备方法
CN107789666A (zh) * 2016-08-30 2018-03-13 北京航空航天大学 一种内壁微图案化小口径人造血管

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUO X等: "Endothelial cell migration on poly (ε-caprolactone) nanofibers coated with a nanohybrid shish-kebab structure mimicking collagen fibrils", 《BIOMACROMOLECULES》 *
JIANG L等: "Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds", 《APPLIED SURFACE SCIENCE》 *
WU T等: "Fabrication of shish-kebab-structured carbon nanotube/poly(epsilon-caprolactone) composite nanofibers for potential tissue engineering applications", 《RARE METALS》 *
郭欣: "血管组织工程支架微结构对细胞迁移行为的影响研究", 《中国优秀硕士学位论文全文数据库 (基础科学辑)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115944785A (zh) * 2022-12-16 2023-04-11 上海工程技术大学 一种匀质纤维管状支架的制备方法
CN115944785B (zh) * 2022-12-16 2024-08-13 上海工程技术大学 一种匀质纤维管状支架的制备方法

Similar Documents

Publication Publication Date Title
CN109847105B (zh) 一种神经导管支架及其制备方法和应用
US7285637B2 (en) Method for the preparation of a non-woven silk fibroin fabrics
CN106075598B (zh) 一种光交联丝胶蛋白水凝胶及其制备方法和应用
Soffer et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts
Mandal et al. Biospinning by silkworms: silk fiber matrices for tissue engineering applications
Pan et al. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering
Zhang et al. Poly (glyceryl sebacate)/silk fibroin small-diameter artificial blood vessels with good elasticity and compliance
CN103751839B (zh) 一种聚乳酸和壳聚糖复合神经导管及其制备方法
CN103127548B (zh) 促进神经缺损修复的人工神经导管的制备方法
CN107537063B (zh) 一种含碳纳米管的复合多孔支架及其制备方法
JP2023078119A (ja) マイクロフルイディック押出
CN105233339A (zh) 一种肝素与双生因子协同调控的p(lla-cl)/胶原蛋白双层血管支架的制备方法
Yin et al. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration
AU2021221909A1 (en) Engineered materials and methods of forming
CN103848928B (zh) 可注射的改性透明质酸及其制备方法和组合物
RU2483756C1 (ru) СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМОГО КОМПОЗИТНОГО МАТРИКСА НА ОСНОВЕ РЕГЕНЕРИРОВАННОГО ФИБРОИНА ШЕЛКА Bombyx mori И ЕГО ПРИМЕНЕНИЕ
CN106390196A (zh) 一种纳米纤维神经组织工程支架的制备方法
CN112870439A (zh) 核壳-串晶结构的纳米纤维骨组织工程支架及其制备方法
CN114470321A (zh) 一种管状纳米纤维材料及其制备方法
CN102133432A (zh) 一种丝素蛋白微孔支架的制备方法
CN109943974B (zh) 基于聚羟基脂肪酸酯/明胶电纺纳米纤维的神经导管材料的制备方法
CN115068687B (zh) 梯度纳/微纤维支架及其制备方法与应用
KR102073650B1 (ko) 섬유/하이드로겔 복합 스캐폴드의 제조 방법 및 섬유/하이드로겔 복합 스캐폴드
CN110384820A (zh) 一种冻干脱细胞肌腱线及其构建方法
WO2023108469A1 (zh) 一种管状纳米纤维材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220513