CN114455943A - 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法 - Google Patents

一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法 Download PDF

Info

Publication number
CN114455943A
CN114455943A CN202210328147.8A CN202210328147A CN114455943A CN 114455943 A CN114455943 A CN 114455943A CN 202210328147 A CN202210328147 A CN 202210328147A CN 114455943 A CN114455943 A CN 114455943A
Authority
CN
China
Prior art keywords
sic
sio
gel
ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210328147.8A
Other languages
English (en)
Other versions
CN114455943B (zh
Inventor
魏汉军
赵峰
王清远
余亚苹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202210328147.8A priority Critical patent/CN114455943B/zh
Publication of CN114455943A publication Critical patent/CN114455943A/zh
Application granted granted Critical
Publication of CN114455943B publication Critical patent/CN114455943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • C04B35/62834Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,属于微波吸收材料技术领域。本发明将Si(OC2H5)4溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,凝胶C干燥得到干凝胶,干凝胶研磨成凝胶粉,凝胶粉进行冷压成型后置于温度为1400~1500℃的空气中烧结热处理2~3h,得到Y2Si2O7粉末;Y2Si2O7粉末采用碳化硅化学气相渗透技术沉积,得到SiC‑Y2Si2O7复合陶瓷,SiC‑Y2Si2O7复合陶瓷经温度为1100~1200℃下氧化2~3h,得到SiO2/SiC‑Y2Si2O7复合陶瓷,SiO2/SiC‑Y2Si2O7复合陶瓷经氮化硅化学气相渗透技术沉积得到Si3N4/SiO2/SiC‑Y2Si2O7复合陶瓷。本发明复相陶瓷的电磁波吸收性能的可控性调节。

Description

一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制 备方法
技术领域
本发明涉及一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,属于微波吸收材料技术领域。
背景技术
无线通信和雷达探测技术已成为爆炸性的应用,严重威胁着人类健康、国防和电子安全。为了缓解这些问题,电磁波吸收材料被广泛应用于许多领域的。大多数电磁波吸收材料被广泛应用于室温。然而,高温潮湿环境的不利环境由于其微观结构恶化和电导率波动,通常导致微波吸收能力差,是其应用的严重障碍。因此,电磁波吸收材料的设计为在环境、高温甚至恶劣环境下保持显著的电磁波吸收性能。
目前,单吸收器阻抗匹配差,单损耗机制不能满足要求。为了扩大电磁波吸收材料的应用环境,二元/三元复合材料的构建在电磁波场中很受欢迎。复合材料的高温吸收性能仍需进一步提高,因此开发适合恶劣环境应用的新型电磁波吸收材料是非常必要的。
发明内容
本发明的目的是提出一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,利用二氧化硅层和氮化硅层结构来改善阻抗匹配特性,通过碳化硅纳米晶体来改善导电损耗,生成的纳米界面进一步促进电磁波的吸收性能;将Y2Si2O7颗粒在1400~1500℃下烧结形成珊瑚结构,形成多孔结构,有利于碳化硅层和氮化硅层在陶瓷孔隙和表面的沉积;碳化硅层包裹Y2Si2O7颗粒形成榴莲结构,经过1100~1200℃氧化形成二氧化硅层,颗粒增大,使榴莲结构变成菜花结构,有利于电导率的降低,导致阻抗匹配的改善。菜花结构明显增加了界面,颗粒的表面变得光滑,孔隙被填充形成一个连续的基体,密度明显增加。
本发明使用溶胶-凝胶法制备Y2Si2O7粉末,Y2Si2O7粉末压制成型后高温焙烧得到多孔Y2Si2O7陶瓷,采用碳化硅化学气相渗透技术沉积,得到SiC-Y2Si2O7复合陶瓷;SiC-Y2Si2O7复合陶瓷在温度为1100~1200℃下氧化处理2~3h,得到SiO2/SiC-Y2Si2O7复合陶瓷;SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透技术沉积得到Si3N4/SiO2/SiC基微波吸收陶瓷;Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷最外层为非晶态氮化硅层,中间层为二氧化硅层,碳化硅层位于内部,构建了具有逐渐阻抗匹配特征的结构。
一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,具体步骤如下:
(1)将Si(OC2H5)4溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,凝胶C干燥得到干凝胶,干凝胶研磨成凝胶粉,凝胶粉进行冷压成型后置于温度为1400~1500℃的空气中烧结热处理2~3h,得到Y2Si2O7粉末;
(2)Y2Si2O7粉末经碳化硅化学气相渗透技术沉积,得到SiC-Y2Si2O7复合陶瓷;
(3)SiC-Y2Si2O7复合陶瓷经氧化处理,得到SiO2/SiC-Y2Si2O7复合陶瓷;
(4)SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透沉积,得到Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷。
所述步骤(1)凝胶C中Si元素与Y的摩尔比为1:1,凝胶C依次置于温度为70~100℃下干燥2~3h和温度为120~150℃下干燥2~3h;
所述步骤(2)碳化硅化学气相渗透的气源为CH3SiCl3,温度为1000~1100℃,压强为5~6kPa,H2为载气,Ar为稀释气,渗透沉积时间为80~85h;
所述步骤(3)氧化处理温度为1100~1200℃,处理时间为2~3h;
所述步骤(4)化学气相渗透沉积的气源为SiCl4和NH3,温度800~900℃,压强为5~6kPa,H2为载气,Ar为稀释气,渗透沉积时间为80~85h。
本发明的有益效果是:
(1)本发明采用化学渗透气相和氧化技术合成了具有菜花状结构的Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷,二氧化硅层和氮化硅层结构来改善阻抗匹配特性,碳化硅纳米晶体提高导电损耗,生成的纳米界面进一步促进了电磁波的吸收性能;
(2)本发明Si3N4/SiO2/SiC-Y2Si2O7陶瓷具有良好的相稳定性和耐水蒸汽腐蚀性能,可用于制备高达1500℃的温度下使用的环境屏障涂层;
(3)本发明方法操作过程简便,易于实施,适合于规模化工业生产应用。
附图说明
图1为实施例3纳米多孔Y2Si2O7陶瓷的SEM图;
图2为实施例3纳米SiC-Y2Si2O7复相陶瓷的SEM图;
图3为实施例3纳米SiO2/SiC-Y2Si2O7复相陶瓷的SEM图;
图4为实施例3纳米Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷的SEM图;
图5为实施例3纳米Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷的TEM图;
图6为实施例3纳米Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷在100~600℃下的反射系数二维曲线。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,具体步骤如下:
(1)将Si(OC2H5)4搅拌溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,其中凝胶C中Si元素与Y的摩尔比为1:1,凝胶C置于温度为80℃下干燥2h,再置于温度为130℃下干燥2h得到干凝胶,干凝胶放入玛瑙球磨罐中研磨2h形成凝胶粉,凝胶粉进行冷压成型后置于温度为1400℃的热空气中烧结热处理2h得到Y2Si2O7粉末;其中冷压成型的压强为8Mpa;
(2)Y2Si2O7经碳化硅化学气相渗透沉积,得到SiC-Y2Si2O7复合陶瓷;其中气源为CH3SiCl3,温度为1000℃,压强为5kPa,H2为载气,Ar为稀释气,渗透沉积时间为80h;
(3)SiC-Y2Si2O7复合陶瓷经氧化处理即得SiO2/SiC-Y2Si2O7微波吸收复合陶瓷;其中氧化处理温度为1100℃,氧化处理时间为2h;
(4)SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透沉积,得到Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷;其中化学气相渗透沉积的气源为SiCl4和NH3,温度800℃,压强为5kPa,H2为载气,Ar为稀释气,渗透沉积时间为80h;
本实施例Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷呈现多孔性质及颗粒状骨骼结构,Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷最外层为非晶态氮化硅层,中间层为二氧化硅层,碳化硅层位于内部,构建了具有逐渐阻抗匹配特征的结构。
实施例2:一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,具体步骤如下:
(1)将Si(OC2H5)4搅拌溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,其中凝胶C中Si元素与Y的摩尔比为1:1,凝胶C置于温度为90℃下干燥2h,再置于温度为140℃下干燥2h得到干凝胶,干凝胶放入玛瑙球磨罐中研磨2h形成凝胶粉,凝胶粉进行冷压成型后置于温度为1500℃的热空气中烧结热处理2h得到Y2Si2O7粉末;其中冷压成型的压强为9Mpa;
(2)Y2Si2O7经碳化硅化学气相渗透沉积,得到SiC-Y2Si2O7复合陶瓷;其中气源为CH3SiCl3,温度为1100℃,压强为5kPa,H2为载气,Ar为稀释气,渗透沉积时间为82h;
(3)SiC-Y2Si2O7复合陶瓷经氧化处理即得SiO2/SiC-Y2Si2O7微波吸收复合陶瓷;其中氧化处理温度为1100℃,氧化处理时间为3h;
(4)SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透沉积,得到Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷;其中化学气相渗透沉积的气源为SiCl4和NH3,温度900℃,压强为6kPa,H2为载气,Ar为稀释气,渗透沉积时间为82h;
本实施例Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷呈现多孔性质及颗粒状骨骼结构,Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷最外层为非晶态氮化硅层,中间层为二氧化硅层,碳化硅层位于内部,构建了具有逐渐阻抗匹配特征的结构。
实施例3:一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,具体步骤如下:
(1)将Si(OC2H5)4搅拌溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,其中凝胶C中Si元素与Y的摩尔比为1:1,凝胶C置于温度为100℃下干燥3h,再置于温度为150℃下干燥2h得到干凝胶,干凝胶放入玛瑙球磨罐中研磨2h形成凝胶粉,凝胶粉进行冷压成型后置于温度为1500℃的热空气中烧结热处理3h得到Y2Si2O7粉末;其中冷压成型的压强为10Mpa;
本实施例多孔Y2Si2O7陶瓷的SEM图见图1,从图中可以观察到陶瓷呈现多孔性质及颗粒状骨骼结构;
(2)Y2Si2O7经碳化硅化学气相渗透沉积,得到SiC-Y2Si2O7复合陶瓷;其中气源为CH3SiCl3,温度为1100℃,压强为6kPa,H2为载气,Ar为稀释气,渗透沉积时间为85h;
(3)SiC-Y2Si2O7复合陶瓷经氧化处理即得SiO2/SiC-Y2Si2O7微波吸收复合陶瓷;其中氧化处理温度为1200℃,氧化处理时间为3h;
(4)SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透沉积,得到Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷;其中化学气相渗透沉积的气源为SiCl4和NH3,温度900℃,压强为6kPa,H2为载气,Ar为稀释气,渗透沉积时间为85h;
本实施例SiC/Y2Si2O7复合陶瓷的SEM见图2,Y2Si2O7颗粒被碳化硅导电层覆盖,与Y2Si2O7相比,SiC/Y2Si2O7复合陶瓷只有少量的孔隙;纳米SiO2/SiC-Y2Si2O7复相陶瓷的SEM见图3,SiO2/SiC-Y2Si2O7复合陶瓷表面粗糙,多个SiC/Y2Si2O7颗粒通过二氧化硅绝缘层连接在一起,扩大整体陶瓷颗粒,形成花椰菜状结构,许多较小的孔隙转化为微米级的孔隙,在SiO2/SiC-Y2Si2O7复合陶瓷中形成裂纹;纳米Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷的SEM见图4,最外层为非晶态氮化硅层,中间层为二氧化硅层,碳化硅层位于内部,构建了具有逐渐阻抗匹配特征的结构;
Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷的TEM见图5,非晶态氮化硅层均匀地分布和包裹着Y2Si2O7纳米颗粒;纳米Si3N4/SiO2/SiC-Y2Si2O7复相陶瓷在100~600℃下的反射系数二维曲线见图6,复合陶瓷在25~300℃的温度范围内保持了稳定的电磁波吸收性能,RC<-20dB(有效吸收高达99%)。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (5)

1.一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,其特征在于,具体步骤如下:
(1)将Si(OC2H5)4溶解于乙醇中得到溶液A,Y(NO3)3·6H2O搅拌溶解于去离子水中得到溶液B;室温下,溶液A和溶液B搅拌混合得到凝胶C,凝胶C干燥得到干凝胶,干凝胶研磨成凝胶粉,凝胶粉进行冷压成型后置于温度为1400~1500℃的空气中烧结热处理2~3h,得到Y2Si2O7粉末;
(2)Y2Si2O7粉末经碳化硅化学气相渗透沉积,得到SiC-Y2Si2O7复合陶瓷;
(3)SiC-Y2Si2O7复合陶瓷经氧化处理得到SiO2/SiC-Y2Si2O7复合陶瓷;
(4)SiO2/SiC-Y2Si2O7复合陶瓷经氮化硅化学气相渗透沉积,得到Si3N4/SiO2/SiC-Y2Si2O7复合陶瓷。
2.根据权利要求1所述以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,其特征在于:步骤(1)凝胶C中Si元素与Y的摩尔比为1:1,凝胶C依次置于温度为70~100℃下干燥2~3h和温度为120~150℃下干燥2~3h。
3.根据权利要求1所述以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,其特征在于:步骤(2)化学气相渗透沉积的气源为CH3SiCl3,温度1000~1100℃,压强为5~6kPa,H2为载气,Ar为稀释气,渗透沉积时间为80~85h。
4.根据权利要求1所述以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,其特征在于:步骤(3)氧化处理的温度为1100~1200℃,处理时间为2~3h。
5.根据权利要求1所述以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法,其特征在于:步骤(4)化学气相渗透沉积的气源为SiCl4和NH3,温度800~900℃,压强为5~6kPa,H2为载气,Ar为稀释气,渗透沉积时间为80~85h。
CN202210328147.8A 2022-03-30 2022-03-30 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法 Active CN114455943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210328147.8A CN114455943B (zh) 2022-03-30 2022-03-30 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210328147.8A CN114455943B (zh) 2022-03-30 2022-03-30 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN114455943A true CN114455943A (zh) 2022-05-10
CN114455943B CN114455943B (zh) 2023-04-21

Family

ID=81418356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210328147.8A Active CN114455943B (zh) 2022-03-30 2022-03-30 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114455943B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178039A (zh) * 2023-01-05 2023-05-30 成都大学 一种吸波复相陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143239A (en) * 1996-08-28 2000-11-07 W. Haldenwanger Technische Keramik Gmbh & Co., Kg Method for manufacturing an anti-oxidation system for porous ceramics on the basis of SIC and Si3 N4
CN103693997A (zh) * 2013-11-22 2014-04-02 西安交通大学 一种多孔陶瓷表面致密陶瓷涂层的结构及制备方法
JP2020161759A (ja) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 サーミスタ材料
CN112876273A (zh) * 2021-03-17 2021-06-01 中南大学 一种耐高温吸波结构一体化陶瓷基复合材料及其制备方法
CN113896543A (zh) * 2021-10-11 2022-01-07 西北工业大学 一种具有层状结构吸波硅碳氮陶瓷及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143239A (en) * 1996-08-28 2000-11-07 W. Haldenwanger Technische Keramik Gmbh & Co., Kg Method for manufacturing an anti-oxidation system for porous ceramics on the basis of SIC and Si3 N4
CN103693997A (zh) * 2013-11-22 2014-04-02 西安交通大学 一种多孔陶瓷表面致密陶瓷涂层的结构及制备方法
JP2020161759A (ja) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 サーミスタ材料
CN112876273A (zh) * 2021-03-17 2021-06-01 中南大学 一种耐高温吸波结构一体化陶瓷基复合材料及其制备方法
CN113896543A (zh) * 2021-10-11 2022-01-07 西北工业大学 一种具有层状结构吸波硅碳氮陶瓷及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANJUN WEI 等: "A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
MIAN LI 等: "High-temperature dielectric and microwave absorption properites of Si3N4 -SiC/SiO2 composite ceramics", 《JOURNAL OF MATERIALS SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178039A (zh) * 2023-01-05 2023-05-30 成都大学 一种吸波复相陶瓷及其制备方法
CN116178039B (zh) * 2023-01-05 2023-11-14 成都大学 一种吸波复相陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114455943B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN105293499B (zh) 一种b、n共掺杂碳化硅纳米吸波材料的制备方法
CN108329037A (zh) 一种SiC/Si3N4复合吸波陶瓷的制备方法
CN103085385B (zh) 一种聚四氟乙烯基板及其制备方法
CN109868118B (zh) 一种具有高热导率的氮化铝-氧化铝核壳结构的制备方法
CN104973589B (zh) 一种两步法生长的高密度、高导电、高导热性的石墨烯材料及其制备方法
CN108751969A (zh) 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法
CN107602127B (zh) SiC空心球及其制备方法
CN113174751B (zh) 多级异质结构复合材料及其制备方法和电磁微波吸收应用
CN114455943A (zh) 一种以Y2Si2O7为基体的Si3N4/SiO2/SiC基微波吸收陶瓷的制备方法
CN103724036B (zh) 一种透波氮化硅天线罩材料及其制备方法
CN107325787A (zh) 一种中空碳纳米颗粒及由其制备得到的吸波材料
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN105601316A (zh) 一种碳化硅气凝胶及其制备方法
Liu et al. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network
CN111484080B (zh) 一种钕掺杂的镨锰氧化物吸波粉体材料及其制备方法
CN113233889A (zh) 一种钙钕钛系微波介质陶瓷及其制备方法
CN115074086A (zh) 一种Zn-MOFs衍生的ZnO/C/Ti3C2复合吸波材料及其制备方法
CN109293939B (zh) 一种具有分级孔结构的zif-67的制备方法及类蜂窝状碳/钴吸波材料的制备方法
Zhang et al. Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source
CN114573347B (zh) 一种以Y2Si2O7为基体的SiO2/SiC基微波吸收陶瓷的制备方法
Meng et al. Fabrication of core-shell Co@ HCN@ PANI composite material with enhanced electromagnetic wave absorption
CN112499685B (zh) 一种制备MnO2@多孔碳复合吸波材料的方法
CN111217342B (zh) 一种多孔氮化铌粉体微波吸收材料的制备方法
CN103864423B (zh) 一种微波介质陶瓷材料的制备方法
CN109133936A (zh) 一种a/b/c型微结构陶瓷基吸波材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant