CN109133936A - 一种a/b/c型微结构陶瓷基吸波材料及其制备方法 - Google Patents

一种a/b/c型微结构陶瓷基吸波材料及其制备方法 Download PDF

Info

Publication number
CN109133936A
CN109133936A CN201810827217.8A CN201810827217A CN109133936A CN 109133936 A CN109133936 A CN 109133936A CN 201810827217 A CN201810827217 A CN 201810827217A CN 109133936 A CN109133936 A CN 109133936A
Authority
CN
China
Prior art keywords
absorbing material
phase
preparation
graphene
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810827217.8A
Other languages
English (en)
Other versions
CN109133936B (zh
Inventor
孔杰
焦甜
罗春佳
唐玉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810827217.8A priority Critical patent/CN109133936B/zh
Publication of CN109133936A publication Critical patent/CN109133936A/zh
Application granted granted Critical
Publication of CN109133936B publication Critical patent/CN109133936B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes

Abstract

本发明公开了一种A/B/C型微结构陶瓷基吸波材料及其制备方法,包括:(1)制备氧化石墨烯;(2)制备沉积四氧化三铁纳米颗粒的石墨烯;(3)制备超支化聚硼硅氮烷;(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的沉积四氧化三铁纳米颗粒的石墨烯按质量比100:0.3溶于无水四氢呋喃中,得到混合液,去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,并压片成胚体,将胚体放入高温裂解炉中在1000℃的温度下裂解成陶瓷片,并退火至1100℃‑1300℃,得到厚度为2.15mm‑2.58mm吸波陶瓷。本发明制备的吸波材料中C相的位置得到了有效控制,为A/B/C三相层次结构的聚合物转化陶瓷吸波材料的制备提供了一种可行策略。

Description

一种A/B/C型微结构陶瓷基吸波材料及其制备方法
技术领域
本发明属于吸波材料技术领域,具体涉及一种A/B/C型微结构陶瓷基吸波材料及其制备方法。
背景技术
吸波材料是指能有效吸收入射电磁波,并将电磁能转化为热能或者其他形式能而耗散(损耗型),或者能使电磁波干涉相消(干涉型),从而显著减弱回波强度的一类电磁功能材料。吸波材料的结构设计需要满足以下两个原则:(1)阻抗匹配原则,要求材料的阻抗(Zin)接近空气阻抗值(Z0),使得入射到材料表面的电磁波尽可能多的进入到材料内部而不是在表面被反射;(2)电磁衰减原则,要求材料具有较大的复介电常数或复磁导率常数,使得进入到材料内部的电磁波能量尽可能多的被消耗,而不是透过材料。但是,过高的复介电常数或复磁导率常数会导致材料的阻抗匹配失衡。因此吸波材料需同时兼顾阻抗匹配与衰减原则。
传统吸波材料的复相结构可以表示为A/B型,其中,A代表透波基体相,B代表损耗相。近期,殷小伟课题组提出一种A/B/C型复相结构。其中,C相对于电磁波的损耗能力介于A、B之间,通常包裹着B相以实现A相与B相间损耗能力的梯度变化,降低B相表面对电磁波的反射,从而进一步提高材料整体的吸波性能。
在A/B/C型复相结构研究中,目前碳系吸波材料的三相结构设计比较成熟,Zhao等人采用原子层沉积的方法制备出石蜡/碳纳米纤维/ZnO&Al2O3三相结构吸波材料,RC最低可达-58dB,有效吸收带宽为5.9GHz。Han等人制得C/ZnO核壳结构并分散在基体A相石蜡中,材料的RC值为-52dB。尽管碳系吸波材料的三相结构设计较成熟,并且吸波性能较好,但是该类体系多采用石蜡作为基体A相,力学性能较差,制得的吸波材料无法实现结构/功能一体化。
前驱体热解转化陶瓷(PDC)是指利用聚合物前驱体热分解制得的一类多功能陶瓷,作为本体吸波材料,其具有良好的抗氧化性、耐高温性、力学性能以及分子结构可设计性。Zhang制备了SiBCN/MWCNTs/SiC体系,在热处理过程中产生的纳米SiC作为C相,起到连接B相(MWCNT)的作用,在X波段,RC最小值为-32dB。Duan等采用纳米SiC(B相)改性SiOC陶瓷,原位生成尺寸更小的晶相SiC纳米颗粒(C相),复合材料的RC值在8.6GHz时达到最小值-61dB,而有效吸收带宽可达到3.5GHz。Han等人成功制备出无定形SiOC/石墨烯/SiC纳米线三相结构材料,当氧化石墨烯负载量为3wt%时,RC值为-69.3dB。
尽管A/B/C型PDCs具有良好的吸波性能,但目前的三相结构体系中没有实现对生成的C相位置的控制,产生的C相只是均匀的分布在无定型陶瓷基体A相中,而不是包裹着B相。因此如何对A/B/C型PDCs结构中C相位置进行有效控制,从而制备出一种吸波性能与力学性能协同,实现A/B/C型结构/功能一体化的吸波材料是本领域研究人员需要解决的问题。
发明内容
本发明提供一种A/B/C型微结构陶瓷基吸波材料及其制备方法,利用负载过渡金属催化剂Fe3O4纳米颗粒的石墨烯掺杂超支化聚硅硼氮烷,采用聚合物前驱体热解法制得微结构为A/B/C三相层次结构的陶瓷基吸波材料,实现了对C相位置的控制。其中,无定型陶瓷基体作为A相,石墨烯作为B相,陶瓷热解过程中催化剂Fe3O4原位催化得到的SiC晶体作为C相。
本发明是通过如下技术方案来实现的。
本发明目的之一是提供一种A/B/C型微结构陶瓷基吸波材料的制备方法,包括以下步骤:
(1)采用改进的Hummer法制备氧化石墨烯(GO):将天然石墨烯、浓硫酸(浓H2SO4)、磷酸(H3PO4)三者混合,并分次加入高锰酸钾(KMnO4),冰水浴下搅拌1h,得浓度为0.05g/mL-0.06g/mL反应混合液,升温至50℃,保温反应12h,得产物混合液;将所述产物混合液倒入冰水中,搅拌条件下,加入质量分数为30%的双氧水(H2O2),过滤,并用体积分数为5%的盐酸(HCl)及蒸馏水洗涤至pH为7,得到预产物;将所述预产物分散在水中,超声8h,真空干燥,得到氧化石墨烯(GO);
所述天然石墨烯:KMnO4质量比为1:6,浓H2SO4:H3PO4体积比9:1,H2O2的加入体积为反应混合液体积的0.75%;
(2)将氢氧化钠(NaOH)固体颗粒溶于二乙二醇(DEG)中,升温至120℃,惰性气体氛围下搅拌1h,冷却至70℃,得到浓度为10mg/mL的NaOH/DEG溶液;将步骤(1)制得的GO均匀分散在DEG中,制得浓度为1.5mg/mL的悬浮液;惰性气体氛围下,向所述悬浮液中加入三氯化铁(FeCl3),得到混合体系,搅拌1h后,将混合体系升温至220℃并持续搅拌30min,加入70℃的NaOH/DEG溶液,搅拌1h,干燥,得到沉积四氧化三铁纳米颗粒的石墨烯(rGO@Fe3O4);
所述GO:FeCl3质量比为1:4,所述悬浮液:NaOH/DEG溶液体积比为4:1;
(2)惰性气体氛围下,将二氯甲基乙烯基硅烷和硼烷二甲硫醚按摩尔比为3:1混合,搅拌,反应24h,得到中间产物;室温下,向所述中间产物中加入二氯甲基乙烯基硅烷、二氯甲基硅烷和六甲基二硅杂氮烷,升温至60℃反应2h后,升温至110℃反应12h,再升温至180℃反应2h,减压蒸馏,得到超支化聚硼硅氮烷;
所述中间产物:二氯甲基乙烯基硅烷:二氯甲基硅烷:六甲基二硅杂氮
烷摩尔比为1:1:2:9;
(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的rGO@Fe3O4按质量比100:0.3溶于无水四氢呋喃中,得到混合液,去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,并压片成胚体,将胚体放入高温裂解炉中在1000℃的温度下裂解成陶瓷片,并退火至1100℃-1300℃,得到厚度为2.15mm-2.58mm吸波陶瓷。
优选地,所述步骤(4)中混合液的制备方法为:将超支化聚硼硅氮烷与rGO@Fe3O4分别溶于无水四氢呋喃中,再将两者溶液体系混合均匀并搅拌8-12h,得到混合液。
优选地,所述步骤(4)中粉体通过200目筛网过筛。
优选地,所述步骤(4)中胚体在1000℃保持4h。
本发明目的之二提供一种A/B/C型微结构陶瓷基吸波材料,所制备的吸波材料中,A相为无定型陶瓷基体,B相为石墨烯,C相为陶瓷热解过程中催化剂Fe3O4原位催化得到的SiC晶体,所述C相集中分布在B相周围,所述吸波材料厚度为2.15mm-2.58mm。
本发明与现有技术相比具有如下有益效果:利用负载过渡金属催化剂Fe3O4纳米颗粒的石墨烯掺杂超支化聚硅硼氮烷,采用聚合物前驱体热解法制得微结构为A/B/C三相层次结构的陶瓷基吸波材料,具有优异的吸波性能。本发明制备的吸波材料中C相位置得到了有效控制,实现了A/B/C型吸波材料的结构/功能一体化,为A/B/C三相层次结构的聚合物转化陶瓷吸波材料的制备提供了一种可行策略。
附图说明
图1为本发明陶瓷吸波材料制备流程图;
图2为实施例1中陶瓷样品的TEM图;
图3为实施例2及对照组中陶瓷样品的XRD图;
图4为实施例1-2及对照组中陶瓷样品的反射系数计算值。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和数据对本发明作进一步说明,但所举实施例不作为对本发明的限定。
下述各实施例中所述实验方法和检测方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可在市场上购买得到。
实施例1
如图1所示制备流程制备陶瓷吸波材料,具体步骤如下:
(1)采用改进的Hummer法制备GO:将3g天然石墨烯分散于360mL浓H2SO4与40mLH3PO4的混合溶液中,并分次加入18gKMnO4,冰水浴下搅拌1h,升温至50℃,保温反应12h,得产物混合液;将所述产物混合液倒入冰水中,搅拌条件下,加入3mL质量分数为30%的双氧水(H2O2),过滤,并用体积分数为5%的盐酸(HCl)及蒸馏水洗涤至pH为7,得到预产物;将所述预产物分散在水中,超声8h,真空干燥,得到氧化石墨烯(GO);
(2)将200mg NaOH固体颗粒加入到20mL DEG溶液中,升温至120℃,在氩气氛围下搅拌1h后,冷却至70℃;将步骤(1)制得的GO均匀分散在DEG中,制得1.5mg/mL的悬浮液;取20mL GO/DEG悬浮液,在氩气保护下,加入120mg FeCl3,搅拌1h后,升温至220℃并搅拌30min,然后快速注入5mL70℃的NaOH/DEG溶液,继续搅拌1h,产物经抽滤后用乙醇洗涤,干燥,得到rGO@Fe3O4
(3)氩气保护下,将二氯甲基乙烯基硅烷和硼烷二甲硫醚按摩尔比为3:1混合,搅拌,反应24h,得到中间产物;室温下,向所述中间产物中加入二氯甲基乙烯基硅烷、二氯甲基硅烷和六甲基二硅杂氮烷,升温至60℃反应2h后,升温至110℃反应12h,再升温至180℃反应2h,减压蒸馏,得到超支化聚硼硅氮烷;
所述中间产物:二氯甲基乙烯基硅烷:二氯甲基硅烷:六甲基二硅杂氮烷摩尔比为1:1:2:9;
(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的rGO@Fe3O4按质量比100:0.3溶于无水四氢呋喃中,得到混合液,去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,粉体通过200目的筛网过筛,称取2.6g粉体通过压机和模具压成胚体,放入高温裂解炉中1000℃下进行高温裂解,保温4h,并退火至1200℃,得到陶瓷样品Ⅰ。
实施例2
如图1所示制备流程制备陶瓷吸波材料,具体步骤如下:
(1)采用改进的Hummer法制备GO:将3g天然石墨烯分散于360mL浓H2SO4与40mLH3PO4的混合溶液中,并分次加入18gKMnO4,冰水浴下搅拌1h,升温至50℃,保温反应12h,得产物混合液;将所述产物混合液倒入冰水中,搅拌条件下,加入3mL质量分数为30%的双氧水(H2O2),过滤,并用体积分数为5%的盐酸(HCl)及蒸馏水洗涤至pH为7,得到预产物;将所述预产物分散在水中,超声8h,真空干燥,得到氧化石墨烯(GO);
(2)将200mg NaOH固体颗粒加入到20mL DEG溶液中,升温至120℃,在氩气氛围下搅拌1h后,冷却至70℃;将步骤(1)制得的GO均匀分散在DEG中,制得1.5mg/mL的悬浮液;取20mL GO/DEG悬浮液,在氩气保护下,加入120mg FeCl3,搅拌1h后,升温至220℃并搅拌30min,然后快速注入5mL70℃的NaOH/DEG溶液,继续搅拌1h,产物经抽滤后用乙醇洗涤,干燥,得到rGO@Fe3O4
(3)氩气保护下,将二氯甲基乙烯基硅烷和硼烷二甲硫醚按摩尔比为3:1混合,搅拌,反应24h,得到中间产物;室温下,向所述中间产物中加入二氯甲基乙烯基硅烷、二氯甲基硅烷和六甲基二硅杂氮烷,升温至60℃反应2h后,升温至110℃反应12h,再升温至180℃反应2h,减压蒸馏,得到超支化聚硼硅氮烷;
所述中间产物:二氯甲基乙烯基硅烷:二氯甲基硅烷:六甲基二硅杂氮烷摩尔比为1:1:2:9;
(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的rGO@Fe3O4按质量比100:0.3溶于无水四氢呋喃中,得到混合液,去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,粉体通过200目的筛网过筛,称取3.1g粉体通过压机和模具压成胚体,放入高温裂解炉中1000℃下进行高温裂解,保温4h,并退火至1200℃,得到陶瓷样品Ⅱ。
对照组
(1)采用改进的Hummer法制备GO:将3g天然石墨烯分散于360mL浓H2SO4与40mLH3PO4的混合溶液中,并分次加入18gKMnO4,冰水浴下搅拌1h,升温至50℃,保温反应12h,得产物混合液;将所述产物混合液倒入冰水中,搅拌条件下,加入3mL质量分数为30%的双氧水(H2O2),过滤,并用体积分数为5%的盐酸(HCl)及蒸馏水洗涤至pH为7,得到预产物;将所述预产物分散在水中,超声8h,真空干燥,得到氧化石墨烯(GO);
(2)将200mg NaOH固体颗粒加入到20mL DEG溶液中,升温至120℃,在氩气氛围下搅拌1h后,冷却至70℃;将步骤(1)制得的GO均匀分散在DEG中,制得1.5mg/mL的悬浮液;取20mL GO/DEG悬浮液,在氩气保护下,加入120mg FeCl3,搅拌1h后,升温至220℃并搅拌30min,然后快速注入5mL70℃的NaOH/DEG溶液,继续搅拌1h,产物经抽滤后用乙醇洗涤,干燥,得到rGO@Fe3O4
(3)氩气保护下,将二氯甲基乙烯基硅烷和硼烷二甲硫醚按摩尔比为3:1混合,搅拌,反应24h,得到中间产物;室温下,向所述中间产物中加入二氯甲基乙烯基硅烷、二氯甲基硅烷和六甲基二硅杂氮烷,升温至60℃反应2h后,升温至110℃反应12h,再升温至180℃反应2h,减压蒸馏,得到超支化聚硼硅氮烷;
所述中间产物:二氯甲基乙烯基硅烷:二氯甲基硅烷:六甲基二硅杂氮烷摩尔比为1:1:2:9;
(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的rGO@Fe3O4按质量比100:0.3分别溶于无水四氢呋喃中,然后将两者混合均匀,得到混合液,旋蒸去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,粉体通过200目的筛网过筛,称取3.1g粉体通过压机和模具压成胚体,放入高温裂解炉中1000℃下进行高温裂解,保温4h,得到陶瓷样品Ⅲ。
对实施例1-2及对照组所制得的陶瓷样品进行吸波性能测试,测试结果如表1所示:
表1实施例1-2及对照组制得的陶瓷样品吸波性能参数
由图4及表1结果可以看出,与对照组中的样品Ⅲ相比,利用负载过渡金属催化剂Fe3O4纳米颗粒的石墨烯掺杂超支化聚硅硼氮烷,采用聚合物前驱体热解法制得微结构为A/B/C三相层次结构的陶瓷基吸波材料,其吸波性能优势明显,由图3可得,未经退火处理制得的陶瓷样品Ⅲ未能形成三相结构,由图2可以看出,经过退火处理制备的陶瓷样品中,无定型陶瓷基体作为A相,石墨烯作为B相,陶瓷热解过程中催化剂Fe3O4原位催化得到的SiC晶体作为C相,且C相集中分布在B相周围,实现了对C相的位置控制,这是由于通过高温裂解,陶瓷基体中原位催化生成SiC晶体,且分布在Fe3O4纳米颗粒周围,即覆盖着B相石墨烯,实现了对C相位置的控制,成功制得A/B/C三相结构陶瓷。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。

Claims (5)

1.一种A/B/C型微结构陶瓷基吸波材料的制备方法,其特征在于,包括以下步骤:
(1)采用改进的Hummer法制备氧化石墨烯;
(2)将氢氧化钠固体颗粒溶于二乙二醇中,升温至120℃,惰性气体氛围下搅拌1h,冷却至70℃,得到浓度为10mg/mL的氢氧化钠/二乙二醇溶液;将步骤(1)制得的氧化石墨烯均匀分散在二乙二醇中,制得浓度为1.5mg/mL的悬浮液;惰性气体氛围下,向所述悬浮液中加入三氯化铁,得到混合体系,搅拌1h后,将混合体系升温至220℃并持续搅拌30min,加入70℃的所述氢氧化钠/二乙二醇溶液,搅拌1h,干燥,得到沉积四氧化三铁纳米颗粒的石墨烯;
所述氧化石墨烯:三氯化铁质量比为1:4;所述悬浮液:氢氧化钠/二乙二醇溶液体积比为4:1;
(3)惰性气体氛围下,将二氯甲基乙烯基硅烷和硼烷二甲硫醚按摩尔比为3:1混合,搅拌,反应24h,得到中间产物;室温下,向所述中间产物中加入二氯甲基乙烯基硅烷、二氯甲基硅烷和六甲基二硅杂氮烷,升温至60℃反应2h后,升温至110℃反应12h,再升温至180℃反应2h,减压蒸馏,得到超支化聚硼硅氮烷;
所述中间产物:二氯甲基乙烯基硅烷:二氯甲基硅烷:六甲基二硅杂氮烷摩尔比为1:1:2:9;
(4)将步骤(3)制得的超支化聚硼硅氮烷与步骤(2)制得的沉积四氧化三铁纳米颗粒的石墨烯按质量比100:0.3溶于无水四氢呋喃中,得到混合液,去除溶剂,在400℃下交联2h后,将交联产物球磨成粉体,并压片成胚体,将胚体放入高温裂解炉中在1000℃的温度下裂解成陶瓷片,并退火至1100℃-1300℃,得到厚度为2.15mm-2.58mm吸波陶瓷。
2.根据权利要求1所述的一种A/B/C型微结构陶瓷基吸波材料的制备方法,其特征在于,所述步骤(4)中混合液的制备方法为:将超支化聚硼硅氮烷与沉积四氧化三铁纳米颗粒的石墨烯分别溶于无水四氢呋喃中,再将两者溶液体系混合均匀并搅拌8h-12h,得到混合液。
3.根据权利要求1所述的一种A/B/C型微结构陶瓷基吸波材料的制备方法,其特征在于,所述步骤(4)中粉体通过200目筛网过筛。
4.根据权利要求1所述的一种A/B/C型微结构陶瓷基吸波材料的制备方法,其特征在于,所述步骤(4)中胚体在1000℃保持4h。
5.根据权利要求1-4中任一项制备方法制得的A/B/C型微结构陶瓷基吸波材料,其特征在于,所制备的吸波材料中,A相为无定型陶瓷基体,B相为石墨烯,C相为陶瓷热解过程中催化剂Fe3O4原位催化得到的SiC晶体,所述C相集中分布在B相周围,所述吸波材料厚度为2.15mm-2.58mm。
CN201810827217.8A 2018-07-25 2018-07-25 一种a/b/c型微结构陶瓷基吸波材料及其制备方法 Expired - Fee Related CN109133936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810827217.8A CN109133936B (zh) 2018-07-25 2018-07-25 一种a/b/c型微结构陶瓷基吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810827217.8A CN109133936B (zh) 2018-07-25 2018-07-25 一种a/b/c型微结构陶瓷基吸波材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109133936A true CN109133936A (zh) 2019-01-04
CN109133936B CN109133936B (zh) 2021-01-15

Family

ID=64798997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810827217.8A Expired - Fee Related CN109133936B (zh) 2018-07-25 2018-07-25 一种a/b/c型微结构陶瓷基吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109133936B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266593A (zh) * 2020-11-09 2021-01-26 河南龙都天仁生物材料有限公司 一种可降解生物树脂基吸波材料及其制备方法
CN112441845A (zh) * 2020-12-16 2021-03-05 广东欧文莱陶瓷有限公司 一种低色差陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1317463B1 (de) * 2000-09-12 2005-03-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hochtemperaturstabile siliciumborcarbidnitridkeramiken aus silylalkylborazinen, verfahren zu deren herstellung sowie deren verwendung
CN104529468A (zh) * 2015-01-26 2015-04-22 哈尔滨工业大学 石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法
CN104987078A (zh) * 2015-07-06 2015-10-21 哈尔滨工业大学 Co@SiNBC陶瓷材料的制备方法
CN105272326A (zh) * 2015-11-23 2016-01-27 哈尔滨工业大学 一种碳纳米管改性碳纤维增强SiBCN陶瓷复合材料的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1317463B1 (de) * 2000-09-12 2005-03-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hochtemperaturstabile siliciumborcarbidnitridkeramiken aus silylalkylborazinen, verfahren zu deren herstellung sowie deren verwendung
CN104529468A (zh) * 2015-01-26 2015-04-22 哈尔滨工业大学 石墨烯增强硅硼碳氮陶瓷复合材料及其制备方法
CN104987078A (zh) * 2015-07-06 2015-10-21 哈尔滨工业大学 Co@SiNBC陶瓷材料的制备方法
CN104987078B (zh) * 2015-07-06 2017-03-15 哈尔滨工业大学 Co@SiNBC陶瓷材料的制备方法
CN105272326A (zh) * 2015-11-23 2016-01-27 哈尔滨工业大学 一种碳纳米管改性碳纤维增强SiBCN陶瓷复合材料的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTONIO EUFRAZIO DA COSTA JU´NIOR: "A self-assembly of graphene oxide@Fe3O4/metallophthalocyanine", 《J MATER SCI》 *
FANG YE: "Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
张亚君: "吸波型SiC 陶瓷材料的研究进展", 《功能陶瓷及抗氧化技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266593A (zh) * 2020-11-09 2021-01-26 河南龙都天仁生物材料有限公司 一种可降解生物树脂基吸波材料及其制备方法
CN112441845A (zh) * 2020-12-16 2021-03-05 广东欧文莱陶瓷有限公司 一种低色差陶瓷的制备方法

Also Published As

Publication number Publication date
CN109133936B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
Liang et al. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties
Ye et al. Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity
Wang et al. Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers
Su et al. Ultralight and high-strength SiCnw@ SiC foam with highly efficient microwave absorption and heat insulation properties
Qian et al. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing
Farhan et al. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires
Zhang et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures
Zeng et al. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires
Liu et al. Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption
Ye et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment
Song et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption
Ye et al. Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio
Meng et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance
Yang et al. Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon-boron carbonitride composites with broadband and tunable high-performance microwave absorption
Zhao et al. Precursor infiltration and pyrolysis cycle-dependent microwave absorption and mechanical properties of lightweight and antioxidant carbon fiber felts reinforced silicon oxycarbide composites
Liu et al. Enhanced microwave-absorption properties of polymer-derived SiC/SiOC composite ceramics modified by carbon nanowires
CN101864547B (zh) 均匀分散的碳纳米管增强铝基复合材料的制备方法
Wang et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics
Lusha et al. Synthesis and electromagnetic wave absorbing properties of a polymer-derived SiBNC ceramic aerogel
Chen et al. Large-scale and low-cost synthesis of in situ generated SiC/C nano-composites from rice husks for advanced electromagnetic wave absorption applications
Liu et al. An overview of C-SiC microwave absorption composites serving in harsh environments
CN109133936A (zh) 一种a/b/c型微结构陶瓷基吸波材料及其制备方法
Yuan et al. Effect of mullite phase formed in situ on pore structure and properties of high-purity mullite fibrous ceramics
Duan et al. Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis
Su et al. Simultaneously enhancing mechanical and microwave absorption properties of Cf/SiC composites via SiC nanowires additions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210115

Termination date: 20210725