CN114438141B - 一种胞内聚合物聚羟基脂肪酸的制备方法 - Google Patents

一种胞内聚合物聚羟基脂肪酸的制备方法 Download PDF

Info

Publication number
CN114438141B
CN114438141B CN202210185229.1A CN202210185229A CN114438141B CN 114438141 B CN114438141 B CN 114438141B CN 202210185229 A CN202210185229 A CN 202210185229A CN 114438141 B CN114438141 B CN 114438141B
Authority
CN
China
Prior art keywords
pha
phenol
sludge
chlorophenol
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210185229.1A
Other languages
English (en)
Other versions
CN114438141A (zh
Inventor
张轶
邹雨琪
杨鸣凤
陶秋越
玛丽·哈德
严群
王寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202210185229.1A priority Critical patent/CN114438141B/zh
Publication of CN114438141A publication Critical patent/CN114438141A/zh
Application granted granted Critical
Publication of CN114438141B publication Critical patent/CN114438141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种胞内聚合物聚羟基脂肪酸的制备方法,将驯化的污泥、苯酚、4‑氯酚同时加入至MSM培养基中,在反应器不间断地同时进行搅拌和曝气以开始一个批次。与现有技术相比,本发明以苯酚+4‑氯酚为模型废水,进水方式为批次式(batch)时,合成得到的胞内PHBV中HV单元的百分率提高,这将有助于提高胞内聚合物聚羟基脂肪酸产品价值。

Description

一种胞内聚合物聚羟基脂肪酸的制备方法
技术领域
本发明属于微生物发酵技术领域,具体涉及一种胞内聚合物聚羟基脂肪酸的制备方法。
背景技术
聚羟基脂肪酸酯(PHA)是一类微生物细胞内合成的高分子聚合物,可作为碳源或能源储备物供细胞生存、生长。它与传统的塑料有着相似的材料与机械性能,能够广泛应用于多种场景,具有替代石油基塑料的可能性。同时,PHA还有着良好的生物兼容性和可生物降解性,对环境更为友好,是一种具有广泛应用前景的绿色材料。
PHA的材料性质与其单体组成有密切关系。根据单体碳链长短可将PHA分为三类:含有3-5个碳原子的短链PHA (Short chain PHAs, SCL)、含有6-14个碳原子的中链PHA(Medium chain PHAs, MCL)、含有15个及以上碳原子的长链PHA (Long chain PHAs,LCL)。其中,短链PHA结晶度较高,脆性较大;中长链PHA则结晶度较低,脆性相对较低,延展性好。此外,还可以根据单体的种类将PHA分为:仅含一种单体组分的均聚PHA(homopolymer)、含两种或以上单体的共聚PHA (copolymer) 等。
聚羟基丁酸脂 (poly (3-hydroxybutyrate), PHB) 是结构最简单、最为常见的PHA种类,属于短链均聚PHA。但PHB有一定的缺陷,如其脆性高、熔化温度和分解温度之间的窗口较小、加工处理时的热稳定性较差等,这些缺陷限制了PHB的工业化应用。而当PHB中有其他单体掺入时,形成的共聚PHA材料性质会发生明显变化,例如当掺入3-羟基戊酸 (3-hydroxyvalerate, HV) 单体后所形成的共聚物 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV),其结晶度、硬度、强度、熔点均下降,但分解温度不下降、而机械性能得到提升。随着PHBV中HV单元百分率的提高,材料的熔点继续下降,韧性及冲击强度不断上升,其生物降解性也会得到提高 (陈国强,魏岱旭,2014)。因此,相较于PHB,更复杂的共聚物如PHBV有着更大的热处理窗口和更广泛的工业应用前景,其价值也更高。
PHA的合成可以使用各种碳源来进行,如葡萄糖、蔗糖、乙酸等。这些物质经过一定的生化反应后,形成PHA合成前驱体——各种短链脂肪酸,然后进一步合成PHA长链分子。芳香族化合物也可用于合成PHA,但由于大多数芳香族化合物存在一定程度的生物毒性,因此以有毒芳香族化合物为底物合成PHA的研究还相对较少。以酚类物质为例,Maskow等人试验了其中最简单的种类——苯酚,以之为碳源、纯种菌Ralstonia eutropha JMP 134及Variovorax paradoxusJMP 116为媒介,成功地合成了PHB,发现胞内PHB含量可达细胞干重的50% (Maskow and Babel, 2000)。Chen等人试验并优化了以苯酚为碳源,纯种菌Cupriavidus taiwanensis187为媒介合成PHB的操作条件,最终胞内PHB含量由72 mg/L提升到213 mg/L (Chen et al., 2018)。Reddy等人以苯酚、4-氯酚等简单芳香族化合物为碳源,纯种菌Bacillussp. CYR1为载体,得到了PHB,其胞内含量分别可达细胞干重的51%及32% ( Reddy et al., 2015)。
发明人团队在先期的研究中,首先对城市污水处理厂的剩余活性污泥进行了驯化,得到一个混合菌群,可完全适应高苯酚浓度并将其高效转化为胞内PHA;将此污泥菌群与氮、磷、钙、镁、铁等营养液混合,形成反应混合液;加入苯酚,即开始细胞生长和PHA积累,使用有毒工业污染物苯酚制备聚羟基脂肪酸酯的方法已由专利申请CN105907806A公开。
发明人团队在后续的研究中发现,在以苯酚作为唯一碳源的情况下,该混合菌群合成仅含单一组分的均聚PHA——PHB。进一步试验了以苯酚+氯酚作为混合碳源的情况,发现加入单氯酚后,胞内PHA的产量有所降低,但合成所得的PHA产物由均聚物PHB变为共聚物PHBV。
苯酚和氯酚都为有毒物质,可对细胞产生抑制和毒害作用。而调整一些操作方法和参数、如采用不同的底物浓度、进料方式等,有望在一定程度上减轻抑制作用。一般情况下 ,反应器的进水模式可以分为以下几种。第一种为批次式(batch),其特点为一次性向反应器中注入所需处理的废水,进水停止、反应完成后,沉淀微生物并一次性排出上清液;如对此模式进行重复,则为批序式操作;第二种为连续流式 (continuous),指的是进水为连续进水,同时连续排水,在进水排水的过程中微生物对水中的底物进行降解;而第三种介于批次式和连续流式之间,为流加式(fed-batch),采取连续进水的方式,在进水的过程中以及进水结束后微生物对碳源进行摄取,处理完毕后沉淀微生物、并一次性排水。在发明人团队的另一项先期研究中,发现相比起批次操作,流加式进水可以显著降低苯酚+氯酚混合底物的毒性,提高PHA的合成效率。
由于PHBV的热力学、机械性能等会随着聚合物中HV比例的上升而得到改善,因此如果能够在合成过程中增加共聚物中HV单元的百分率,所得的聚合物应用范围将得到进一步扩大,其应用价值将大大提高。
发明内容
基于此,本发明提供了一种胞内聚合物聚羟基脂肪酸的制备方法,本发明意外发现,以苯酚+4-氯酚为模型废水,进水方式为批次式 (batch) 时,合成得到的胞内PHBV中HV单元的百分率提高,这将有助于提高胞内聚合物聚羟基脂肪酸产品价值。目前没有报道通过改变进水操作模式来提高细胞内PHBV中HV单元的百分率的研究。
本发明的技术方案具体为:
一种胞内聚合物聚羟基脂肪酸的制备方法,将驯化的污泥、苯酚、4-氯酚同时加入至MSM培养基中,在反应器不间断地同时进行搅拌和曝气以开始一个批次。
进一步地,污泥浓度为0.6-0.8 g/L。
进一步地,苯酚浓度为750-850mg/L,4-氯酚浓度为100-105mg/L。
进一步地,苯酚浓度为470-480 mg/L,4-氯酚浓度为30-35mg/L。
进一步地,所述MSM培养基成分为185.2 mg/L (NH4)2SO4,122 mg/L K2HPO4,24 mg/L MgSO4,45 mg/L FeSO4·7H2O,108 mg/L Ca(NO3)2以及400 mg/L NaHCO3
进一步地,所述MSM培养基中还加入一些微量元素。
进一步地,将合成PHA后的污泥沉淀,去除上清液,将剩下的污泥离心,向沉淀中加入十二烷基硫酸钠 (SDS) 并在恒温振荡器中孵育以破碎细胞,离心后收集沉淀,加入次氯酸钠 (NaClO),将混合物再次离心,残留的固体用去离子水洗涤,去除残留的SDS和NaClO,所得的粗PHA进一步用氯仿纯化,氯仿蒸发后剩余的膜状提取物即为PHA。
本发明中,发明人对混合菌群在以苯酚+4-氯酚为碳源时,采用批次式和流加式两种模式下合成的PHA进行了定性,通过HPLC的方式确定了该聚合物为PHBV。由于PHB的单体为4个碳原子,而PHV的单体为5个碳原子,说明在两种模式下加入4-氯酚都能使聚合物单体的碳链变长;再通过HPLC方法检测不同产物中这两种单体的含量,比较两种模式下合成的PHBV中HB与HV的峰面积和浓度,确定了批次式下较流加式下合成的PHBV中,HV单元的百分率更高。由于增加PHBV中HV单元的百分率可使材料的熔点下降,韧性及冲击强度上升,说明了批次式更利于提高所得PHBV产物的材料性能。
附图说明
图1、2为不同浓度下PHB与PHV所对应的2BE、2PE的峰面积的标准曲线;
图3为每个样品中具体的HB、HV浓度。
实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一、PHA合成方法
在批次式进水和流加式进水模式试验中,PHA的合成分别在1L的烧杯或相同容积具支玻璃烧瓶中进行。使用污泥总量皆为0.35 g(干重),最终加入碳源总量皆为800 mg苯酚+102 mg 4-氯酚或475 mg苯酚+34 mg 4-氯酚。实验过程中不间断曝气和搅拌以传质供氧,污泥开始去除苯酚和氯酚、同时合成PHA。
二、进水操作方式
2.1 批次式进水
实验操作中MSM培养基成分为185.2 mg/L (NH4)2SO4, 122 mg/L K2HPO4, 24 mg/LMgSO4, 45 mg/L FeSO4·7H2O,108 mg/L Ca(NO3)2以及400 mg/L NaHCO3,此外还加入一些微量元素。将上述污泥和碳源同时加入至MSM培养基中,使得总体积为500 mL、污泥浓度约为0.7 g/L, 苯酚浓度为800 mg/L左右,4-氯酚浓度为102 mg/L左右;或者苯酚浓度为475mg/L左右,4-氯酚浓度为34 mg/L左右。搅拌和曝气同时开启以开始一个批次。
2.2 流加式进水
将上述同样的0.35g污泥加入到MSM培养基中,使得总体积为100 mL、污泥初始浓度为3.5 g/L左右,各营养盐类浓度与2.1所述保持一致。另取一个烧杯,加入另外的400 mLMSM培养基以及400 mg 苯酚+51 mg 4-氯酚或237.5 mg 苯酚+17 mg 4-氯酚,使得两种进水方式所处理的总底物量保持一致。
将400 mL含有底物的MSM培养基经由蠕动泵泵入100 mL污泥中,同时开启搅拌和曝气,开始一个流加式试验。两者总体积为500 mL,与批次式进水试验体积保持一致。进水速度设为16 mL/min,25 min完成进水。
三、PHA提取
将不同进水模式条件下合成PHA后的污泥初步沉淀,去除大部分上清液,将剩下的污泥在10000 rpm 条件下离心5min,向沉淀中加入20 mL十二烷基硫酸钠 (SDS,10 g/L,pH=10)并在恒温振荡器(200 rpm,37℃)中孵育60min以破碎细胞。离心(10000 rpm,10min)后收集沉淀,加入 20 mL次氯酸钠,氧化非PHA生物质。混合2 min后,将混合物再次以 7000rpm 离心4 min,残留的固体用去离子水洗涤两次,以去除残留的SDS和NaClO。所得的粗PHA进一步用氯仿纯化,氯仿蒸发后剩余的膜状提取物为PHA。
四、对提取出的聚合物进行分析
HPLC分析方法与原理
为了确认聚合物单体的组成,采用了 HPLC检测方法。根据现有研究,在碱性水解条件下,3-羟基丁酸(3HB,PHB的单体)可转化为2-丁烯酸(2BE,又称巴豆酸),而3-羟基戊酸(3HV,PBV的单体)可转化为2-戊烯酸(2PE)。聚合物中PHB和PHV的含量可以通过用HPLC检测2BE和2PE的浓度来计算。将1-2 mg提取的聚合物转移到玻璃管中,加入1mL去离子水,然后将 0.5 mL NaOH (2N) 加入管中,放入105 ℃的烘箱中1小时。在样品冷却至室温后加入0.5 mL H2SO4(2N)。HPLC分析系统(Agilent Technologies,1260 infinities)中,使用C18分析柱(Agilent,5 μm,4.6×150 mm),检测器为 UV-Vis检测器,分析波长为210 nm。色谱柱保持在40 ,流动相为乙腈和0.05% 磷酸(V/V=5:95)。流速为1mL/min,经预处理后的样品进样量为10 μL。2BE和2PE的保留时间分别为 3.9 和 9.3 min。
(1)PHB、PHV浓度与2BE、2PE峰面积的标准曲线测定
准确称取0.0432 g 市售标准PHBV物质(Sigma-Aldrich, HV 9 wt%)置于COD管中,溶于10 mL氯仿中(100 ℃加热1h),得到浓度4320 mg/L PHBV贮备液。取2 mL 此PHBV贮备液于5 mL离心管中,以氯仿定容到4 mL,浓度2160 mg/L。取不同体积浓度为2160 mg/L的PHBV样液,置于5 mL离心管中,放于通风橱内过夜,待氯仿挥发后,得到不同质量的PHBV。根据商家提供的组分含量,准确计算出各离心管中PHB、PHV的质量。将离心管中的样品按照上述HPLC分析方法进行检测,最终得到不同浓度下PHB与PHV所对应的2BE、2PE的峰面积,绘制标准曲线,如图1、2所示。
(2)不同进水模式下合成的聚合物HPLC分析
将一定量提取出来的聚合物用上述HPLC方法进行分析,经HPLC检测后的出峰时间为3.9 min和9.3min,证明聚合物中存在PHBV。不同进水模式下所得产物经HPLC分析所得峰面积记录可见表1。每个样品经HPLC所测得的HB、HV峰面积,代入上述(1)中的标准曲线计算得HB、HV浓度则如图3所示。
表1 不同条件下所得产物经HPLC检测所得峰面积记录表
从表1中HB峰面积与HV峰面积的比值数据可以看出,在相同底物条件下,采用批次式进水,其比值比流加式进水的比值更小,也即相对于产物中的HV单体,HB单体的量更少。因此可以得出批次式合成的PHBV中HV单元百分率更高的结论。
将上述原始数据代入图1与图2,得到每个样品中具体的HB、HV浓度,结果可见图3。如图3所示,当底物浓度相同时,批次式进水较流加式进水所获得产物,其中的HV比例(g/g)更高。这也说明了在相同底物浓度下,批次式进水所得产物中HV单元占比更高。
当PHBV中HV单元百分率提高时,对应材料的熔点下降,韧性及冲击强度将上升,所得材料也有着更广泛的工业应用前景,其价值也更高。而发明人团队不仅在以混合有毒酚类为底物的情况下合成了共聚物PHBV,还发现了改变进水模式可提高产物PHBV中HV单元百分率,从而可改善PHA产物的材料性质,因此发明人团队的发现具有实际应用价值。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (3)

1.一种胞内聚合物聚羟基脂肪酸的制备方法,其特征在于,将驯化的污泥、苯酚、4-氯酚同时加入至MSM培养基中,在反应器不间断地同时进行搅拌和曝气以开始一个批次;用批次式合成的PHA为PHBV;其中,苯酚浓度为750-850mg/L,4-氯酚浓度为100-105mg/L;或者苯酚浓度为470-480 mg/L,4-氯酚浓度为30-35mg/L;
所述驯化的污泥为能够将750-850mg/L苯酚转化成胞内PHA的混合污泥。
2.根据权利要求1所述的一种胞内聚合物聚羟基脂肪酸的制备方法,其特征在于,污泥浓度为0.6-0.8 g/L。
3.根据权利要求1所述的一种胞内聚合物聚羟基脂肪酸的制备方法,其特征在于,将合成PHA后的污泥沉淀,去除上清液,将剩下的污泥离心,向沉淀中加入十二烷基硫酸钠(SDS) 并在恒温振荡器中孵育以破碎细胞,离心后收集沉淀,加入次氯酸钠 (NaClO),将混合物再次离心,残留的固体用去离子水洗涤,去除残留的SDS和NaClO,所得的粗PHA进一步用氯仿纯化,氯仿蒸发后剩余的膜状提取物即为PHA。
CN202210185229.1A 2022-02-28 2022-02-28 一种胞内聚合物聚羟基脂肪酸的制备方法 Active CN114438141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210185229.1A CN114438141B (zh) 2022-02-28 2022-02-28 一种胞内聚合物聚羟基脂肪酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210185229.1A CN114438141B (zh) 2022-02-28 2022-02-28 一种胞内聚合物聚羟基脂肪酸的制备方法

Publications (2)

Publication Number Publication Date
CN114438141A CN114438141A (zh) 2022-05-06
CN114438141B true CN114438141B (zh) 2024-01-23

Family

ID=81373169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210185229.1A Active CN114438141B (zh) 2022-02-28 2022-02-28 一种胞内聚合物聚羟基脂肪酸的制备方法

Country Status (1)

Country Link
CN (1) CN114438141B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058461B (zh) * 2022-06-20 2024-05-28 宁波天安生物材料有限公司 一种从发酵液中直接分离提纯聚羟基烷酸酯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907806A (zh) * 2016-06-14 2016-08-31 复旦大学 使用有毒工业污染物苯酚制备聚羟基脂肪酸酯的方法
JP2018012053A (ja) * 2016-07-19 2018-01-25 国立大学法人室蘭工業大学 汚水の処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907806A (zh) * 2016-06-14 2016-08-31 复旦大学 使用有毒工业污染物苯酚制备聚羟基脂肪酸酯的方法
JP2018012053A (ja) * 2016-07-19 2018-01-25 国立大学法人室蘭工業大学 汚水の処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A/0"工艺处理苯酚废水研究;努巴;中国优秀硕士学位论文全文数据库 工程科学I辑;B027-216 *
Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste;M. Venkateswar Reddy等;Bioresource Technology;第192卷;711-717 *
低温污水生物处理技术研究现状与展望;王硕;时文歆;王燕;于水利;李激;;生物技术通报;31(05);48-53 *
苯系物降解菌的筛选及改进补料策略的PHA生产;倪宇洋;李荣河;;环境科学与技术(05);11-16 *

Also Published As

Publication number Publication date
CN114438141A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Novelli et al. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives
Albuquerque et al. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties
Yan et al. Bioconversion of renewable lignocellulosic biomass into multicomponent substrate via pressurized hot water pretreatment for bioplastic polyhydroxyalkanoate accumulation
Chaleomrum et al. Production of PHA from cassava starch wastewater in sequencing batch reactor treatment system
CN114438141B (zh) 一种胞内聚合物聚羟基脂肪酸的制备方法
Xin et al. An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011
Shen et al. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from excess activated sludge as a promising substitute of pure culture
Ghosh et al. Production of polyhydroxyalkanoates (PHA) from aerobic granules of refinery sludge and Micrococcus aloeverae strain SG002 cultivated in oily wastewater
US20140378646A1 (en) UTILIZATION OF THE NOVEL, ENVIRONMENTAL ISOLATES PSEUDOMONAS sp. IPB-B26 AND N-128 FOR THE EFFICIENT HIGH YIELD PRODUCTION OF mcl/lcl-PHAs
Mozejko-Ciesielska et al. Cheese whey mother liquor as dairy waste with potential value for polyhydroxyalkanoate production by extremophilic Paracoccus homiensis
AU2010359156B2 (en) Method for recovery of stabilized polyhydroxyalkanoates from biomass that has been used to treat organic waste
AU2011381254B2 (en) Process for producing microbial copolyesters from sucrose-containing feedstocks
Alsafadi et al. Production of polyhydroxyalkanoate from sesame seed wastewater by sequencing batch reactor cultivation process of Haloferax mediterranei
Chen et al. Synthesis of short-chain-length and medium-chain-length polyhydroxyalkanoate blends from activated sludge by manipulating octanoic acid and nonanoic acid as carbon sources
WO2004029266A1 (ja) 3−ヒドロキシアルカン酸共重合体の精製方法
Heepkaew et al. Polyhydroxyalkanoate production using two‐stage continuous stirred tank activated sludge systems with glycerol as a carbon source
Mumtaz et al. Fed-batch production of P (3HB-co-3HV) copolymer by Comamonas sp EB 172 using mixed organic acids under dual nutrient limitation
CN114250255B (zh) 一种聚羟基脂肪酸酯的制备方法
Mishra et al. Polyhydroxybutyrate (PHB) accumulation by a mangrove isolated cyanobacteria Limnothrix planktonica using fruit waste
Koller et al. Linking Salinity to Microbial Biopolyesters Biosynthesis: Polyhydroxyalkanoate Production by Haloarchaea and Halophilic Eubacteria
Morya et al. Polyhydroxyalkanoate production from rice straw hydrolysate: Insights into feast-famine dynamics and microbial community shifts
Mineo et al. Polyhydroxyalkanoates production by an advanced food-on-demand strategy: The effect of operational conditions
CN117904220A (zh) 一种调控胞内聚合物聚羟基脂肪酸高分子单体组成的制备方法
JPH1132789A (ja) ヒドロキシアルカン酸共重合体の製造方法
Kanzariya et al. Thermally Stable P (3HB) Synthesis from Cane Molasses by Co-culture of Alcaligenes sp. NCIM 5085 and Bacillus subtilis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant