CN114438036A - 一种促进干细胞向红系细胞定向分化与成熟的方法与应用 - Google Patents

一种促进干细胞向红系细胞定向分化与成熟的方法与应用 Download PDF

Info

Publication number
CN114438036A
CN114438036A CN202210074204.4A CN202210074204A CN114438036A CN 114438036 A CN114438036 A CN 114438036A CN 202210074204 A CN202210074204 A CN 202210074204A CN 114438036 A CN114438036 A CN 114438036A
Authority
CN
China
Prior art keywords
cells
dsup
gene
stem cell
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210074204.4A
Other languages
English (en)
Other versions
CN114438036B (zh
Inventor
曾泉
张彪
裴雪涛
岳�文
周军年
张博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Military Medical Sciences AMMS of PLA
Original Assignee
Academy of Military Medical Sciences AMMS of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Military Medical Sciences AMMS of PLA filed Critical Academy of Military Medical Sciences AMMS of PLA
Publication of CN114438036A publication Critical patent/CN114438036A/zh
Application granted granted Critical
Publication of CN114438036B publication Critical patent/CN114438036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/14Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)

Abstract

本发明提出了一种促进干细胞向红系细胞定向分化与成熟的方法与应用,该方法中构建了包含DSUP基因的重组干细胞,所述DSUP基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQ ID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。所述包含DSUP基因的重组干细胞的红系集落形成数量是未经基因修饰的干细胞的10倍,向红系细胞分化的产出量提高了近6倍,所述重组干细胞定向分化为红系细胞的能力显著高于未经过DSUP基因修饰改造的干细胞。

Description

一种促进干细胞向红系细胞定向分化与成熟的方法与应用
技术领域
本发明涉及基因工程领域,具体地,本发明涉及一种促进干细胞向红系细胞定向分化与成熟的方法与应用,更具体地,涉及重组干细胞、包含DSUP基因的试剂在干细胞向红系细胞分化中的用途、制备所述重组干细胞的方法、促进干细胞向红系细胞分化的方法、包含DSUP基因的试剂在治疗疾病中的用途。
背景技术
水熊虫是地球上生命力最强的生物,它可以生存于极其恶劣的自然环境中,并且可在没有防护的条件下在外太空生存。它能够抵抗极端的环境变化包括失水、低温、饥饿、缺氧等。为了弄清楚水熊虫如何耐受这种极端恶劣环境,东京大学分子生物学家TakekazuKunieda等选择了一个耐受力最强的水熊虫物种(Ramazzottius varieornatus),该物种处于无水生物状态的成年期时对90℃和-196℃的温度具有耐受性,并且可以暴露于99.8%的乙腈或用4000Gy He离子辐照。研究者对它们进行了基因组测序,并研究了不同阶段的基因表达情况。通过分析,发现了水熊虫对抗辐射极端环境的蛋白质-Dsup(Damagesuppressor),该蛋白质由445个氨基酸组成,研究人员将Dsup基因插入到人类细胞的基因组中,从而让人源细胞(293T)表达Dsup蛋白,结果发现与没有表达该蛋白的细胞相比,表达的Dsup蛋白在细胞中能够与染色体相结合,在接受x射线辐射时发挥了对染色体的保护作用,使其DNA损伤比对照组减轻了40%,从而使细胞在受到辐射损伤后仍然保持了一定的活性和增殖能力。
目前,临床输血是广泛使用的疾病治疗手段之一,但随着医疗卫生技术的快速发展及血液中病原体的污染使血液及其制品供应十分紧张。干细胞是一类具有高度自我更新能力、高度增殖和多向分化潜能的细胞,在不同的诱导环境下可以分化成机体不同类型的组织器官,包括胚胎干细胞(human embryonic stem cells,hESC)、诱导多能干细胞(induced pluripotent stem cells,iPSC)、脐血、外周血来源的造血干细胞(Hematopoietic stem cell,HSC)或者祖细胞(progenitor cell)等在内的干细胞都可以作为种子细胞,通过干细胞研究的相关技术在体外大规模诱导干细胞分化为血液细胞,可作为解决血液及其制品来源匮乏问题的方法。目前在体外大规模诱导造血干/祖细胞分化为红系细胞并最终应用于临床治疗还有很多关键性的技术瓶颈需要解决,其中如何能高效率诱导造血干/祖细胞向红系细胞的分化从而获得高数量和高纯度的红系细胞是研究的重点内容,提高造血干/祖细胞向红系细胞的诱导分化效率将为干细胞体外扩增及诱导分化为成熟血细胞奠定重要基础。
发明内容
本申请是基于发明人对以下事实和问题的发现和认识作出的:
Dsup基因在细胞DNA抵抗射线和脱水破坏的过程中能够起到保护作用,而DNA损伤修复是细胞具有的基本功能,该功能发生紊乱也是诸如癌症、衰老等许多疾病的诱因,通过对相关抗性基因的研究为人类细胞提高耐受应激能力提供了一种策略,因此,将Dsup基因应用于细胞或者机体损伤防护、衰老及干细胞分化等方面具有重要意义。
为此,在本发明的第一方面,本发明提出了一种重组干细胞。根据本发明的实施例,包含DSUP基因,所述DSUP基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。根据本发明实施例所述的重组干细胞为经过基因修饰优化改造后的重组干细胞,所述重组干细胞的红系集落形成数量是未经基因修饰的干细胞的10倍,向红系细胞分化的产出量提高了近6倍,所述重组干细胞定向分化为红系细胞的能力显著高于未经过DSUP基因修饰改造的干细胞。
根据本发明的实施例,上述用途还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述重组干细胞为人多能干细胞。
根据本发明的实施例,所述重组干细胞为人胚胎干细胞。
根据本发明的实施例,所述重组干细胞为人胚胎干细胞系-H9。
根据本发明的实施例,所述DSUP基因来源于水熊虫,优选为水熊虫的Ramazzottius varieornatus物种。
根据本发明的实施例,所述SEQ ID NO:1所示的核酸序列位于人类第19号染色体上。
根据本发明的实施例,所述SEQ ID NO:1所示的核酸序列位于人类第19号染色体的AAVS1位点上。
在本发明的第二方面,本发明提出了包含DSUP基因的试剂在干细胞向红系细胞分化中的用途。根据本发明的实施例,所述试剂为基于包括选自核酸、基因药物、细胞治疗制剂、DNA疫苗的至少之一的试剂。施用本发明的实施例所述的包含DSUP基因的试剂于干细胞后,所述重组干细胞的红系集落形成数量是未经基因修饰的干细胞的10倍,向红系细胞分化的产出量提高了近6倍,所述重组干细胞定向分化为红系细胞的能力显著高于未经过DSUP基因修饰改造的干细胞。
根据本发明的实施例,上述用途还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQ ID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。
atggcatccacacaccaatcatccacagaaccctcttccacaggtaaatctgaggaaacgaagaaagatgcttcgcaagggagcgggcaagactccaagaacgtaaccgttaccaaaggtaccggttcctccgccacctcagctgccattgtcaagacaggaggatcccaaggcaaagattcctctactacagcgggctcttctagtactcagggacagaagttcagtactacacctaccgacccgaaaactttcagctctgaccaaaaggagaaatccaaaagcccagccaaagaagtcccgtctggtggcgatagtaagtcccaaggtgacaccaagtctcaaagcgacgccaaatcttctggacaaagtcagggccagtctaaagacagcggcaaatcatcttccgacagtagcaagagtcactctgtcatcggagctgtcaaagacgtcgttgcaggcgccaaagatgtcgcaggaaaagccgtcgaggatgctcctagcatcatgcatactgcagtcgatgctgtgaagaacgcagccacgactgtgaaggatgtggcatcgtcggctgcatcgactgtggcggagaaggtagtcgatgcttaccacagtgtggtgggagacaagacggacgacaagaaagagggcgagcacagcggcgacaagaaggacgactccaaagctggaagtggctctggacaaggtggtgacaacaagaagtctgaaggagagacttctggccaagcagaatccagctctggcaacgaaggagctgctccagccaaaggccgtggtcgtggacggcctccagcagctgctaaaggagttgctaagggtgctgcaaagggcgctgccgcctccaaaggagccaagagcggtgctgaatcctccaagggaggagaacagtcgtcaggagatatcgagatggcagatgcttcctccaagggaggctcggaccagagggattccgcggcgaccgttggcgaaggtggtgcatcaggcagtgagggtggagctaagaaaggcagagggcggggcgctggtaagaaagcggatgcgggtgatacgtccgctgagccgcctcggcggtcgtcccgcctgacgtcttcaggtacaggggcgggttccgctccagctgcagcgaaaggcggagcgaagcgtgctgcttcttcctccagtacaccttccaacgctaagaagcaagcgactggaggtgctggcaaagctgctgccaccaaagcaactgctgccaaatcggcagcctctaaagctccccagaatggcgcaggtgccaagaagaagggaggaaaggctggaggacggaagaggaagtaa(SEQ ID NO:1)。
根据本发明的实施例,所述DSUP基因来源于水熊虫。
根据本发明的实施例,所述水熊虫为水熊虫的Ramazzottius varieornatus物种。
根据本发明的实施例,所述干细胞为人多能干细胞。
根据本发明的实施例,所述人多能干细胞为人胚胎干细胞。
根据本发明的实施例,所述人胚胎干细胞为人胚胎干细胞系-H9。
根据本发明的实施例,所述红系细胞包含髓系细胞、红系祖细胞、原始红细胞、早幼红细胞、中幼红细胞、晚幼红细胞、网织红细胞、成熟红细胞中的至少之一。
在本发明的第三方面,本发明提出了一种制备第一方面所述的重组干细胞的方法,其特征在于,包括:1)构建包含DSUP基因的载体;2)制备靶向干细胞基因组预定基因位置并实现剪切的基因靶向核酸序列;3)将所述载体、所述靶向核酸序列以及所述干细胞基因组同时转染,以便获得所述重组干细胞。根据本发明实施例的方法制备的重组干细胞向红系细胞分化的速度是未经过基因修饰的天然干细胞(实施例中的对照组干细胞)向红系细胞分化速度的5~7倍,所述重组干细胞定向分化为红系细胞的速度显著高于未经过基因修饰改造的天然干细胞。
根据本发明的实施例,所述靶向所述干细胞基因组预定基因位置并实现剪切通过Crisper-Cas9基因编辑系统实现。
根据本发明的实施例,所述干细胞基因组预定位置中的位点为AAVS1位点。
在本发明的第四方面,本发明提出了一种促进干细胞向红系细胞分化的方法。根据本发明的实施例,包括:利用第三方面所述的方法构建重组干细胞;2)使所述重组干细胞形成EB囊状拟胚体;3)对所述EB囊状拟胚体进行第一、二、三诱导分化处理,以获得所述红系细胞。
根据本发明的实施例,所述第一诱导分化处理包含利用BMP4、FGF-2、Activin A和CHIR99021处理EB囊状拟胚体1d~1.5d的步骤。
根据本发明的实施例,所述第二诱导分化处理包含利用VEGF、FGF-2和SB431542处理所述第一诱导分化处理产物3d~5d的步骤。
根据本发明的实施例,所述第三诱导分化处理包含利用SCF、TPO、IL-3、Flt3L、VEGF和EPO处理所述第二诱导分化处理产物13d~15d的步骤。
在本发明的第五方面,本发明提出了一种包含DSUP基因的试剂在治疗或缓解疾病中的用途。根据本发明的实施例,所述试剂为基于包括选自核酸、蛋白、重组细胞、基因药物、细胞治疗制剂、DNA疫苗的至少之一的试剂。根据本发明实施例的包含DSUP基因的试剂可以有效的治疗或缓解造血障碍及免疫系统疾病。
根据本发明的实施例,上述用途还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述疾病为白血病、淋巴瘤、骨髓异常增生综合征、多发性骨髓瘤、地中海贫血、联合免疫缺陷病、结缔组织病、再生障碍性贫血、血红蛋白尿、下肢缺血、红系细胞减少症中的至少之一。根据本发明的具体实施例,当所述红系细胞减少症为药物或治疗手段引起时,例如,放疗或化疗等方式引起的红系细胞减少症,所述包含DSUP基因的试剂治疗或缓解药物或治疗手段引起的红系细胞减少症的作用更加显著。
根据本发明的实施例,所述DSUP基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQ ID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的pDSUP载体的结构图;
图2是根据本发明实施例的Dsup基因修饰的人多能干细胞构建过程中DNA转染的操作流程图;
图3是根据本发明实施例的hES-H9的插入Dsup基因的PCR检测(3-A)及测序鉴定(3-B)结果图,其中,3-A中chromosome表示染色体;
图4-A是根据本发明实施例的hES-H9-CON/Dsup干性表面标志物SSEA4及Tra-1-60表达情况检测图;
图4-B是根据本发明实施例的hES-H9-CON/Dsup中DSUP基因mRNA表达水平统计分析结果图;
图4-C是根据本发明实施例的hES-H9-CON/Dsup碱性磷酸酶(AP)染色结果图;
图4-D是根据本发明实施例的hES-H9-CON/Dsup干性标志物OCT、SOX2、NANOG表达情况免疫荧光检测结果图;
图5是根据本发明实施例的hES-H9-CON核型检测结果图;
图6是根据本发明实施例的hES-H9-Dsup核型检测结果图;
图7是根据本发明实施例的hES-H9-CON/Dsup向血细胞诱导分化的过程图,其中,stageⅠ、stageⅡ、stageⅢ分别表示第1、2、3阶段;
图8是根据本发明实施例的hES-H9-CON/Dsup向血细胞诱导分化的过程中第12、15、18、21天的表型变化结果图;
图9是根据本发明实施例的hES-H9-CON/Dsup来源的造血干/祖细胞红系集落形成能力结果截图,包括hES-H9-CON/Dsup来源的造血干/祖细胞红系集落形成能力的表观图及数量统计分析图;以及
图10是根据本发明实施例的hES-H9-CON/Dsup诱导分化为红系细胞,其中:
10-A为DSUP基因对EKLF基因的mRNA水平影响的结果图,
10-B为DSUP基因对干细胞诱导分化过程中的CD71和CD235阳性红系细胞含量的影响。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
同一性,本发明,为了比较两个或更多个核苷酸序列,可以通过将[第一序列中与相应位置的核苷酸相同的核苷酸的数目相除]来计算第一序列和第二序列之间的“序列同一性”的百分比。第二个序列中的核苷酸]减去[第一个序列中核苷酸的总数],然后乘以[100%],其中第二个核苷酸序列中每个核苷酸的缺失,插入,取代或添加-相对于第一核苷酸序列-被认为是单个核苷酸(位置)上的差异。
或者,可以使用标准设置,使用用于序列比对的已知计算机算法,例如NCBI Blastv2.0,计算两个或多个核苷酸序列之间的序列同一性程度。
用于确定序列同一性程度的一些其他技术,计算机算法和设置例如在WO 04/037999,EP 0 967 284,EP 1 085 089,WO 00/55318,WO 00/78972,WO 98/49185和GB2357768-A。
发明人以人类细胞AAVS1位点为基因编辑位点,AAVS1位点(又名PPP1R2C位点)位于人类第19号染色体上,是一个开放的染色体结构,并且是一个经过验证的安全位点,在该位点插入基因能够在保证该基因转录的同时不会对细胞产生已知的副作用及影响细胞的功能。发明人通过CRISPR-Cas9体系使人19号染色体上的AAVS1位点产生DNA双链断裂,进而触发DNA的修复机制,使供体DNA与该位点进行同源重组,从而使DSUP基因精准整合入该位点。
发明人以经过DSUP基因修饰过的人多能干细胞为种子细胞,经过体外扩增和红系定向诱导分化,发现了在体外定向诱导分化成红系细胞的过程中,DSUP基因的表达能够明显促进干/祖细胞向红系细胞的分化,hESC-H9-DSUP来源的造血干/祖细胞红系集落的体积明显大于对照组细胞,CFU-E及BFU-E等红系集落数量是部分具体实施例中对照组(未导入DSUP基因的人胚胎干细胞)的10倍,提示DSUP基因明显促进了红系集落的形成,并且和具体实施方案中的对照组相比经过DSUP基因修饰的干/祖细胞定向诱导分化为红系细胞的数量提高近6倍。因此,基于发明人的以上发现,提供了一种促进干/祖细胞分化为红系细胞的方法,通过Dsup蛋白可以显著促进红系细胞的诱导分化,有利于提高红系细胞的产量。
下面将对实施例作具体介绍。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1载体的构建
根据NCBI数据库水熊虫Dsup基因序列(LC050827)设计引物,引物序列如表1所示,以pAcGFP-N1-DSUP载体(购自addgene)为模板,通过PCR技术克隆水熊虫Dsup基因,反应体系如下:
DSUP基因的PCR扩增体系(25μl)如表2所示,反应条件为:98℃2min,(98℃15s,58℃20s,72℃60s)×30cycles,72℃5min,10℃hold。
表1:
名称 核酸序列(5’-3’)
DSUP-上游引物 gcgatcgcatggcatccacacaccaat(SEQ ID NO:2)
DSUP-下游引物 acgcgtcttcctcttccgtcctcca(SEQ ID NO:3)
表2:
组分 用量/μL
2×Q5 mastermix 12.5
DSUP-上游引物 1.25
DSUP-下游引物 1.25
pAcGFP-N1-DSUP 1
ddH<sub>2</sub>O 9
配置1%的琼脂糖凝胶并对上述酶切产物进行电泳,使用凝胶回收试剂盒回收约1300bp左右的DSUP片段,并按照试剂盒说明书操作将PCR获得的DSUP基因克隆入pClone007载体(购自擎科生物),利用限制性内切酶SgfI和mLuI酶切插入DSUP基因序列的pClone007-DSUP载体和供体载体pSH(购自GeneCopaeia),以获得带有SgfI和mLuI酶切突出端的片段,酶切反应体系如下:
限制性内切酶酶切体系(20μl)如表3所示,反应条件为37℃酶切5小时。
表3:
组分 用量/μL
10×缓冲液 2
SgfI 0.5
mLuI 0.5
Pclone007-DSUP和pSH 5
ddH<sub>2</sub>O 14
配置1%的琼脂糖凝胶并对上述酶切产物进行电泳,使用凝胶回收试剂盒回收约1300bp左右的DSUP片段和8700bp的pSH载体片段,然后使用连接试剂盒将回收的DSUP片段连接入pSH载体,具体实验操作按照试剂盒说明书进行,从而获得基因修饰供体载体pDSUP,如图1所示,经过测序pDSUP载体构建成功。
DSUP基因序列为:
atggcatccacacaccaatcatccacagaaccctcttccacaggtaaatctgaggaaacgaagaaagatgcttcgcaagggagcgggcaagactccaagaacgtaaccgttaccaaaggtaccggttcctccgccacctcagctgccattgtcaagacaggaggatcccaaggcaaagattcctctactacagcgggctcttctagtactcagggacagaagttcagtactacacctaccgacccgaaaactttcagctctgaccaaaaggagaaatccaaaagcccagccaaagaagtcccgtctggtggcgatagtaagtcccaaggtgacaccaagtctcaaagcgacgccaaatcttctggacaaagtcagggccagtctaaagacagcggcaaatcatcttccgacagtagcaagagtcactctgtcatcggagctgtcaaagacgtcgttgcaggcgccaaagatgtcgcaggaaaagccgtcgaggatgctcctagcatcatgcatactgcagtcgatgctgtgaagaacgcagccacgactgtgaaggatgtggcatcgtcggctgcatcgactgtggcggagaaggtagtcgatgcttaccacagtgtggtgggagacaagacggacgacaagaaagagggcgagcacagcggcgacaagaaggacgactccaaagctggaagtggctctggacaaggtggtgacaacaagaagtctgaaggagagacttctggccaagcagaatccagctctggcaacgaaggagctgctccagccaaaggccgtggtcgtggacggcctccagcagctgctaaaggagttgctaagggtgctgcaaagggcgctgccgcctccaaaggagccaagagcggtgctgaatcctccaagggaggagaacagtcgtcaggagatatcgagatggcagatgcttcctccaagggaggctcggaccagagggattccgcggcgaccgttggcgaaggtggtgcatcaggcagtgagggtggagctaagaaaggcagagggcggggcgctggtaagaaagcggatgcgggtgatacgtccgctgagccgcctcggcggtcgtcccgcctgacgtcttcaggtacaggggcgggttccgctccagctgcagcgaaaggcggagcgaagcgtgctgcttcttcctccagtacaccttccaacgctaagaagcaagcgactggaggtgctggcaaagctgctgccaccaaagcaactgctgccaaatcggcagcctctaaagctccccagaatggcgcaggtgccaagaagaagggaggaaaggctggaggacggaagaggaagtaa(SEQ ID NO:1)。
实施例2 Dsup基因修饰的人多能干细胞的构建及基因组鉴定
分别以未插入DSUP基因序列的供体载体pSH为对照组和构建的插入Dsup基因序列的供体载体pSH为实验组,与CRISPR/CAS9载体(购自GeneCopaeia)共同对人多能干细胞系(hESC-H9)进行转染,利用载体上的左右同源臂(图1:AAVS1 HA-Left为AAVS1位点左同源臂,AAVS1 HA-Right为AAVS1位点右同源臂)使Dsup基因插入到细胞的AAVS1位点,然后利用嘌呤霉素(Puro)进行药物筛选,再利用标签蛋白GFP蛋白进行流式分选纯化,进一步将纯化的Dsup及其对照组人多能干细胞进行基因鉴定和测序(WT为野生型细胞,CON为对照组,DSUP为实验组),从而获得基因组中稳定插入Dsup的细胞系及其对照组细胞系。
1、细胞准备
转染前人多能干细胞系hESC-H9用Relesa进行消化,吹打至细胞团块(5~10个细胞为宜),传代至24孔板中,每孔细胞汇合度30%~50%,放入培养箱中培养,48h后细胞的汇合度达到75%~85%再进行转染。
2、DNA转染
DNA转染的详细操作流程见图1。
准备两个500μL的EP管为一组(EP管1和EP管2),各加入25μL室温Opti-MEM I培养基;其中EP管1中加入1μL的Lipofectamine Stem转染试剂,轻弹混匀;EP管2按1:1的比例加入总量500ng的CRISPR/CAS9载体及Dsup供体载体,轻弹混匀后,将此管中的混合物轻轻滴入上1个EP管中,轻弹混匀,室温静置10min;将混和物缓慢滴入24孔板中,轻微晃动摇匀后,放置37℃,5%CO2培养箱中过夜培养;第二天及时补加0.5mL新鲜的mTesR1培养基至24h,换入1mL新鲜的mTesR1培养基,继续培养至48h,细胞的汇合度约至75%~85%,转染流程如图2所示,人多能干细胞转导体系详见表4。
表4:
Figure BDA0003483335710000081
Figure BDA0003483335710000091
3、嘌呤霉素(Puro)筛选、单克隆培养及其插入基因鉴定
将本实施例步骤2中获得的培养至48h,汇合度约至75%~85%的细胞换入含有0.3μg/mL的Puro的mTesR1培养基,每孔含培养基1mL;连续每天换入含有0.3μg/mL的Puro的mTesR1培养基进行筛选,筛选6-8天后,细胞呈少数团块生长;挑取单个克隆,至24孔板中,继续以含有0.3μg/mL的Puro的mTesR1培养基培养6-8天;用Relesa消化24孔板中的细胞至12孔板中培养4-6天获得足够量的细胞;进一步将获得的单克隆细胞提取基因组后进行插入序列的PCR及测序鉴定,鉴定引物如表5所示。
表5:
名称 序列
AAVS1上游引物(LF) CCGGAACTCTGCCCTCTAAC(SEQ ID NO:4)
AAVS1下游引物(LR) CCCGTGAGTCAAACCGCTAT(SEQ ID NO:5)
DSUP上游引物(CF) TCTAGAGCCGCCGCGATCGCATGGCAT(SEQ ID NO:6)
DSUP下游引物(CR) GTTTAAACCTTATCGTCGTCATCCTT(SEQ ID NO:7)
利用引物AAVS1引物进行整合位点鉴定时,PCR产物序列应跨同源臂,包括染色体序列(Chromosome)、左同源臂(LHA)序列、载体序列(V),且三者序列应连续,预期PCR产物大小为1100bp;利用DSUP引物进行DSUP基因鉴定时,预期PCR产物大小为1400bp。鉴定结果如图3所示,对筛选的阳性克隆进行AAVS1位点基因组鉴定(引物LF、LR),PCR结果显示对照组2、5、6、8号克隆,DSUP组3、8、16、20号克隆,片段大小与预期相符(图3A),经过PCR产物测序并进行比对后显示结果正确;进一步对这些阳性克隆进行DSUP基因的PCR扩增(引物CF、CR),结果显示DSUP组3、8、16、20号克隆扩增出1400bp左右的片段,大小与预期相符,经过PCR产物测序并进行比对后显示结果正确(图3B)。因此我们初步确定已获得DSUP基因在AAVS1位点插入的DSUP细胞及其对照组细胞。
4、流式分选纯化富集
用Accutase消化液消化12孔板中经过PURO筛选纯化后的细胞,再利用SSEA-4和TRA-1-60荧光抗体标记人多能干细胞并进行流式分选,操作步骤如下:
1)6孔板常规培养hESC-H1至细胞长至合适密度,用DPBS洗涤细胞2次,加入500μLAccutase,37℃孵育3~5min;
2)加入1mL DPBS终止消化,用手轻拍孔板四周,使细胞从板底脱落,将细胞悬液转移至15mL离心管中;向离心管中补加DPBS,使终止消化的DPBS体积是Accutase体积的6~8倍;
3)室温,2000rpm,离心5min;
4)弃上清,用1mL缓冲液(0.5%BSA-2mMEDTA-PBS)重悬。
5)室温2000rpm离心5min;
6)弃上清,100μL缓冲液重悬细胞,加入0.2μL FVS510,2μL PE-TRA-1-60,8μLAPC-SSEA4,混匀,4℃避光孵育30min;
7)孵育完毕后,用1mL缓冲液洗涤两次;
8)弃上清,500μL缓冲液重悬细胞,40μm筛网过滤细胞。
9)在无菌条件下利用流式分选技术将SSEA-4和TRA-1-60和GFP三阳性细胞富集分离,并接种在基质胶铺被的12孔板中,加入10μM的Y27促进贴壁,然后团块法传代扩增纯化的hESC-H9-CON/Dsup。
5、基因组鉴定
用Accutase消化液消化12孔板中的细胞至6孔板中继续培养3~4天,收取一定量的细胞利用基因组鉴定引物对插入位点其进行全长测序鉴定,以确定整合框完整整合入hESC-H9细胞系中,经过基因组鉴定和基因组测序正确的细胞继续传代培养用于后续实验。
提取基因组后进行PCR检测,PCR扩增体系(25μL)构成及反应条件如表6所示。
表6:
组分 用量/μL
2×Q5 mastermix 12.5
上游引物 1.25
下游引物 1.25
DNA模板 1
ddH<sub>2</sub>O 9
反应条件为:98℃2min,(98℃15s,56℃20s,72℃20s)×30cycles,72℃5min,10℃hold。
基因组鉴定引物序列如表7所示。
表7:
Figure BDA0003483335710000101
Figure BDA0003483335710000111
利用基因组鉴定引物对经过纯化后的基因修饰的人多能干细胞进行全整合框测序鉴定。通过测序,确定构建的人多能干细胞系中Dsup基因整合入AAVS1位点,并且未出现有重要影响的突变情况。
实施例3 DSUP基因修饰的人多能干细胞的鉴定
1、表面标志物SSEA4及Tra-1-60表达情况检测
将培养的细胞弃掉培养基并用1mL PBS清洗一遍,加入0.5mL的Accutase消化酶并在37℃培养箱中消化2-3min。再用0.5mL的培养基中和消化液,然后转移到15mL离心管中1200rpm离心5min,弃掉上清液后,用1mL PBS重悬后用70μm筛网过滤一次得到单细胞悬液,再次离心后准备染色。按照抗体说明书以PBS稀释流式抗体SSEA-4及TRA-1-60成50μL的抗体工作液,后将抗体染色液加入细胞沉淀中,重悬混匀于室温避光孵育30分钟。反应结束后各补加1mL PBS终止反应,1200rpm离心5min,弃上清,重复清洗两次后用400μL PBS重悬细胞,进一步进行流式细胞仪检测。具体结果如图4-A所示,其中ISO为同型对照,结果显示DSUP基因修饰的人多能干细胞表面标志物能够正常表达。
2、DSUP基因mRNA表达情况检测
(1)Trizol法提取基因修饰后人多能干细胞的总RNA
吸弃培养细胞的培养液,加入PBS洗涤一次;每孔细胞加入500μL TRIzol,反复吹打使细胞破碎溶解;将液体转移到1.5mL的EP管中,室温静置5~10min;加入0.2mL氯仿/mLTRIzol,剧烈振荡混匀15s,室温静置10min;12000rpm,4℃,离心15min;离心后液体分为三层,从下至上依次为酚/氯仿层、中间蛋白层、上层无色水相。RNA存于上层水相中;吸取上层水相至新的EP管中,注意避免将中间蛋白吸出;加入预冷的异丙醇0.5mL/mL TRIzol,颠倒混匀,室温静置10min;12000rpm,4℃,离心10min;弃上清,RNA沉淀用75%乙醇(750μL无水乙醇,250μL DEPC水现配)洗涤,12000rpm,4℃,离心5min;弃上清,超净台中鼓风干燥3分钟左右,RNA呈半透明状;加入DEPC水溶解RNA沉淀,紫外分光光度计测定浓度及OD值,直接进行逆转录反应。
(2)RNA反转录为cDNA
将提取基因修饰后人多能干细胞的总RNA置于65℃变性5min,使用ReverTra AceqPCR RT Master Mix进行反转录,反应体系(20μL)构成及反应条件如表8所示:
表8:
Figure BDA0003483335710000112
Figure BDA0003483335710000121
混匀后置于PCR仪中,反应条件:37℃反应15min,50℃反应5min,98℃反应5min,保存于10℃。
(3)实时荧光定量PCR
将反转录的cDNA样品20倍稀释后,使用SYBR Green PCR MIX配置如表9所示的PCR反应体系。
表9:
组分名称 使用量μL
2×SYBR Green PCR master Mix 10.9
上游引物 0.5
下游引物 0.5
cDNA模板 0.1
无酶水 8
总体积 20
反应条件:95℃2min;95℃15s,58℃20s,72℃30s,40个循环;65℃~95℃读取溶解曲线。每个样品设置3个技术重复。数据分析:以GAPDH基因为内参进行标准化目的基因的表达量,计算方法为2-△△Ct相对定量法。
结果如图4-B所示,与野生型(WT)和对照组(CON)相比,DSUP组细胞能够表达DSUP基因。
3、干性标志物OCT4、SOX2和NANOG的免疫荧光检测
在无菌状态下将圆形盖玻片加入24孔板中,并加入300μL的1%基质胶培养基37℃包被,1小时后掉包被液并加入500μL培养基。将适量细胞团块接种于该孔板中贴壁过夜。培养3天后弃上清并用PBS清洗3次,加入新鲜配制的4%多聚甲醛固定15分钟后PBS清洗3次。用0.1%Triton-X-100-PBS破膜30min后PBS清洗3次,10%血清室温封闭30min。根据抗体说明书稀释抗体后每孔加入200μL抗体工作液,保湿4℃孵育过夜。PBS清洗3次后加入1:50稀释的荧光二抗,室温避光孵育45min,PBS清洗后DAPI染细胞核3min,然后用PBS清洗3次,留100μL PBS于孔板中避光保存。送样检测时将玻璃片取出倒扣在含有一小滴50%甘油溶液或抗淬灭剂载玻片上,在激光共聚焦显微镜下观察并记录。具体结果如图4-D所示,免疫荧光结果显示干性标志物OCT4、SOX2和NANOG的表达情况正常。
4、碱性磷酸酶检测
将细胞置于预先包被好Matrigel的细胞培养板上进行贴壁培养。长至80%汇合度时,吸弃培养上清,PBS洗涤细胞2次,加入500μL的ReLeSR,在一分钟内吸掉。37℃孵育3分钟后加入1mL的mTeSR plus,终止消化。将脱落的细胞团块转移到15mL离心管,室温900rpm离心5min。弃上清后用培养基重悬细胞,按照合适的密度(1:15~1:20)将细胞接种至预先包被好Matrigel的6孔板上,5%CO2,37℃孵育箱中进行培养。培养至细胞团块大小合适,PBS洗涤3次,加1mL 4%PFA,室温固定30分钟,PBS洗涤3~5次。按照比例(碱性磷酸酯酶显色缓冲液3mL,BCIP溶液(300X)10μL,NBT溶液(150X)
20μL,BCIP/NBT染色工作液3.03mL)依次加入各试剂,混匀后即配制成BCIP/NBT染色工作液。PBS洗涤后,加入适量BCIP/NBT染色工作液,确保能充分覆盖样品。室温避光孵育5~30分钟或更长时间,每隔10分钟显微镜下观察,直至显色至预期深浅。去除BCIP/NBT染色工作液,用PBS洗涤1~2次,终止显色反应。具体结果如图4-C所示,代表人多能干细胞性能的碱性磷酸酯酶染色实验呈阳性。
5、核型检测
在T-25的培养瓶中培养细胞,当细胞密度为60%~80%时进行检测。具体结果如图5和图6所示,各组细胞均为正常核型。
通过对DSUP基因修饰的人多能干细胞的鉴定,证明我们构建的基因修饰的人多能干细胞能正常表达DSUP基因,稳定传代并保留了原多能干细胞的干性,符合后续进行程序性诱导分化的实验要求。
实施例4 DSUP基因修饰的人多能干细胞向造血干/祖细胞的诱导分化
1)利用脱离饲养层细胞悬浮培养法培养hESC-H9-CON/DSUP细胞,接种2*105个细胞于低吸附6孔板中培养24小时,使其自发形成EB球拟胚体。
2)更换第一阶段培养基(表10)培养两天,每天换液,使细胞向中胚层分化。
3)更换第二阶段培养基(表11),培养四天,每天换液,使细胞向生血内皮分化。
4)更换第三阶段培养基(表12),培养两周,隔天换液,诱导细胞向造血干/祖细胞分化,并进一步向下游定向诱导分化成熟。
诱导分化成熟的过程如图7所示。
第一阶段培养基配方如表10所示:
表10:
Figure BDA0003483335710000131
第二阶段培养基配方如表11所示:
表11:
Figure BDA0003483335710000141
第三阶段培养基配方如表12所示:
表12:
成份 工作液浓度 母液浓度 配置200mL
IMDM 原液 91mL
F-12 Nutrient Mixture 原液 91mL
10%Deionized BSA 5mL
Synthechol solution 500× 400μl
Linoleic acid 10000× 20μl
Linolenicacid 10000× 20μl
Ascorbic acid 2-phosphate 50μg/mL 5mg/mL 2mL
MTG 原液 7.8μl
Glutamax 100× 2mL
Pen/Strep 100× 2mL
Protein-free hybridoma mix 原液 10mL
InsμLin-transferrin selenium 100× 2mL
SCF 50ng/mL 200μg/mL(1:4000) 50μL
TPO 20ng/mL 100μg/mL(1:5000) 40μL
Flt-3L 20ng/mL 100μg/mL(1:5000) 40μL
IL-3 20ng/mL 100μg/mL(1:5000) 40μL
VEGF 20ng/mL 100μg/mL(1:5000) 40μL
SB431542 5-10μM 10mM(1:1000-2000) 100-200μL
EPO 5U/mL 5000U/mL(1:1000) 200μL
转铁蛋白 100ug/mL 50mg/mL(1:500) 400μL
实施例5 Dsup基因促进人多能干细胞诱导来源的造血干/祖细胞向红系分化
1、hESC-H9-CON/Dsup向红系诱导分化过程中的表型变化
hESC-H9-CON/DSUP在向红系诱导分化过程中,DSUP组在第15天即开始产生大量悬浮血细胞,产生血细胞的速度明显快于对照组细胞(第18天),血红蛋白在第12天即开始产生,其时间明显早于对照组细胞第15天的结果,而且DSUP组产生血细胞的数量也明细高于对照组(图8)。实验结果说明了DSUP基因的表达明显促进了细胞向血细胞分化和血红蛋白的表达。
2、hESC-H9-CON/DSUP细胞诱导来源的造血干/祖细胞红系集落形成能力
对在诱导过程中第12天的细胞进行造血集落形成实验,此时正好处于诱导过程中造血干/祖细胞阶段,取5×103细胞/孔的细胞密度接种到含有1毫升半固体集落形成培养基的低吸附24孔板中,放于细胞培养箱进行集落形成实验,14天后检测集落形成实验的结果,统计并进行集落种类的分类和计数。实验结果如图9所示,hESC-H9-DSUP来源的造血干/祖细胞红系集落的体积明显大于对照组细胞,CFU-E及BFU-E等红系集落数量是对照组的10倍,这说明DSUP明显促进了红系集落的形成。
3、hESC-H9-CON/DSUP细胞诱导分化为红系细胞
在hESC-H9-DSUP与hESC-H9-CON细胞诱导来源的造血干/祖细胞继续向成熟红系细胞诱导过程中,通过对红系谱系相关关键基因EKLF的表达情况进行mRNA水平检测,图10-A显示在DSUP基因的影响下该基因的表达水平明显升高,最高时达到12倍(诱导分化第15天时EKLF基因mRNA表达水平与对照组相比上升约12倍);进一步对红系细胞的表面标志物CD71及CD235进行检测,结果如图10-B所示,hESC-H9-DSUP诱导分化过程中的CD71和CD235双阳性红系细胞比例能够维持在较高水平,比对照组相应细胞比例高30%~40%;经过测算,在相同诱导细胞数量的情况下,与对照组细胞相比DSUP基因能够促进红系细胞的产出量升高近6倍(即一个hES细胞最终产生CD71+/CD235+的数量)。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

1.一种重组干细胞,其特征在于,包含DSUP基因,所述DSUP基因的核酸序列选自SEQ IDNO:1所示的核酸序列,或者与SEQ ID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。
2.根据权利要求1所述的重组干细胞,其特征在于,所述重组干细胞为人多能干细胞,
任选地,所述重组干细胞为人胚胎干细胞;
任选地,所述重组干细胞为人胚胎干细胞系-H9。
3.根据权利要求1所述的重组干细胞,其特征在于,所述DSUP基因来源于水熊虫,优选为水熊虫的Ramazzottius varieornatus物种。
4.根据权利要求3所述的重组干细胞,其特征在于,所述DSUP基因位于人类第19号染色体上;
任选地,所述DSUP基因位于人类第19号染色体的AAVS1位点上。
5.包含DSUP基因的试剂在干细胞向红系细胞分化中的用途,其特征在于,所述试剂为基于包括选自核酸、基因药物、细胞治疗制剂、DNA疫苗的至少之一的试剂。
6.根据权利要求5所述的用途,其特征在于,所述DSUP基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQ ID NO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。
7.根据权利要求5所述的用途,其特征在于,所述DSUP基因来源于水熊虫,优选为水熊虫的Ramazzottius varieornatus物种。
8.根据权利要求5所述的用途,其特征在于,所述干细胞为人多能干细胞,
任选地,所述人多能干细胞为人胚胎干细胞;
任选地,所述人胚胎干细胞为人胚胎干细胞系-H9。
9.根据权利要求5所述的用途,其特征在于,所述红系细胞包含髓系细胞、红系祖细胞、原始红细胞、早幼红细胞、中幼红细胞、晚幼红细胞、网织红细胞、成熟红细胞中的至少之一。
10.一种制备权利要求1~4中任一项所述的重组干细胞的方法,其特征在于,包括:
1)构建包含DSUP基因的载体;
2)制备靶向干细胞基因组预定基因位置并实现剪切的基因靶向核酸序列;
3)将所述载体、所述靶向核酸序列以及所述干细胞基因组同时转染,以便获得所述重组干细胞。
11.根据权利要求10所述的方法,其特征在于,靶向所述干细胞基因组预定基因位置并实现剪切通过Crisper-Cas9基因编辑系统实现;
任选地,所述干细胞基因组预定基因位置中的位点为AAVS1位点。
12.一种促进干细胞向红系细胞分化的方法,其特征在于,所述方法包括:利用权利要求10或11所述的方法构建重组干细胞的步骤。
13.包含DSUP基因的试剂在治疗疾病中的用途,其特征在于,所述试剂为基于包括选自核酸、蛋白、重组细胞、基因药物、细胞治疗制剂、DNA疫苗的至少之一的试剂;
任选地,所述疾病为白血病、淋巴瘤、骨髓异常增生综合征、多发性骨髓瘤、地中海贫血、联合免疫缺陷病、结缔组织病、再生障碍性贫血、血红蛋白尿、下肢缺血、红系细胞减少症中的至少之一;
任选地,所述DSUP基因的核酸序列选自SEQ ID NO:1所示的核酸序列,或者与SEQ IDNO:1所示的核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同源性的核酸序列。
CN202210074204.4A 2021-12-03 2022-01-21 一种促进干细胞向红系细胞定向分化与成熟的方法与应用 Active CN114438036B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467728 2021-12-03
CN2021114677281 2021-12-03

Publications (2)

Publication Number Publication Date
CN114438036A true CN114438036A (zh) 2022-05-06
CN114438036B CN114438036B (zh) 2023-08-18

Family

ID=81370180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210074204.4A Active CN114438036B (zh) 2021-12-03 2022-01-21 一种促进干细胞向红系细胞定向分化与成熟的方法与应用

Country Status (1)

Country Link
CN (1) CN114438036B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694471A (zh) * 2015-03-25 2015-06-10 奥思达干细胞有限公司 体外诱导胚胎干细胞分化为红系细胞的方法
JP2016153383A (ja) * 2015-02-20 2016-08-25 國枝 武和 Dna傷害抑制剤
WO2017180587A2 (en) * 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
CN108085299A (zh) * 2017-12-28 2018-05-29 安徽中盛溯源生物科技有限公司 一种血液细胞的高效诱导多能干细胞重编程方法
WO2021224506A1 (en) * 2020-05-08 2021-11-11 Universitat Pompeu Fabra Crispr-cas homology directed repair enhancer
CN114023449A (zh) * 2021-11-05 2022-02-08 中山大学 基于深度自编码器的糖尿病风险预警方法与系统
US20220177921A1 (en) * 2018-08-27 2022-06-09 BioViva USA, Inc. Gene therapy using genetically modified viral vectors
CN115710578A (zh) * 2022-11-11 2023-02-24 中国人民解放军军事科学院军事医学研究院 白三烯在诱导干细胞分化为造血干/祖细胞中的用途及其应用
CN115786259A (zh) * 2022-12-02 2023-03-14 华南理工大学 一种诱导干细胞分化为巨核细胞和/或血小板的试剂盒及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153383A (ja) * 2015-02-20 2016-08-25 國枝 武和 Dna傷害抑制剤
CN104694471A (zh) * 2015-03-25 2015-06-10 奥思达干细胞有限公司 体外诱导胚胎干细胞分化为红系细胞的方法
WO2017180587A2 (en) * 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
CN108085299A (zh) * 2017-12-28 2018-05-29 安徽中盛溯源生物科技有限公司 一种血液细胞的高效诱导多能干细胞重编程方法
US20220177921A1 (en) * 2018-08-27 2022-06-09 BioViva USA, Inc. Gene therapy using genetically modified viral vectors
WO2021224506A1 (en) * 2020-05-08 2021-11-11 Universitat Pompeu Fabra Crispr-cas homology directed repair enhancer
CN114023449A (zh) * 2021-11-05 2022-02-08 中山大学 基于深度自编码器的糖尿病风险预警方法与系统
CN115710578A (zh) * 2022-11-11 2023-02-24 中国人民解放军军事科学院军事医学研究院 白三烯在诱导干细胞分化为造血干/祖细胞中的用途及其应用
CN115786259A (zh) * 2022-12-02 2023-03-14 华南理工大学 一种诱导干细胞分化为巨核细胞和/或血小板的试剂盒及其应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGELO LOMBARDO 等: "S ite-specific integration and tailoring of cassette design for sustainable gene transfer", 《NATURE METHODS》 *
CRAIG WESTOVER 等: "Engineering Radioprotective Human Cells Using the 1 Tardigrade Damage 2 Suppressor Protein, DSUP", 《BIORXIV》 *
NCBI: "Ramazzottius varieornatus Dsup mRNA for damage suppressor, complete cds", 《GENBANK DATABASE》 *
TAKUMA HASHIMOTO 等: "Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein", 《NATURE COMMUNICATIONS》 *
刘森泉 等: "多能性干细胞向红细胞定向诱导分化的研究进展", 《中国实验血液学杂志》 *
杨舟 等: "人胚胎干细胞定向诱导分化为红细胞及其生物学 特性的研究", 《军事医学》 *
陈俊;李磊;郭燕;毕瑞;沈磐;王立志;杨冬;张令强;: "杜氏高生熊虫实验室培养体系的建立", 军事医学, no. 02 *

Also Published As

Publication number Publication date
CN114438036B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
Zhang et al. CRISPR/Cas9‐mediated sheep MSTN gene knockout and promote sSMSCs differentiation
JP6773268B2 (ja) 多能性幹細胞を所望の細胞型へ分化する方法
CN106636210B (zh) 转录因子组合诱导成纤维细胞转分化为类睾丸间质细胞的方法
JP2002522069A (ja) 移植可能なヒトニューロン幹細胞
US20040234972A1 (en) Method for identifying and purifying smooth muscle progenitor cells
WO2021072329A1 (en) Cells with sustained transgene expression
Cirino et al. Chromatin and transcriptional response to loss of TBX1 in early differentiation of mouse cells
Wang et al. Correction of a CADASIL point mutation using adenine base editors in hiPSCs and blood vessel organoids
US20210228644A1 (en) Neural stem cell compositions and methods to treat neurodegenerative disorders
CN109294994A (zh) 有效修复地中海贫血Westmead突变的方法及应用
CN111662907B (zh) 一种敲除诱导多能干细胞nans基因的方法和应用
Wang et al. RIP-Seq of EZH2 Identifies TCONS-00036665 as a Regulator of Myogenesis in Pigs
CN114438036B (zh) 一种促进干细胞向红系细胞定向分化与成熟的方法与应用
JP2015534830A (ja) マイクロrna及び細胞リプログラミング
CN111254110A (zh) 一种将间充质干细胞转分化为精子的方法
EP4219719A1 (en) Nucleic acid molecule targeting mutation site of cyp4v2 gene and use thereof
Li et al. Galectin-1 promotes angiogenesis and chondrogenesis during antler regeneration
CN111926018B (zh) 降低usp1表达的物质在制备治疗儿童t系急性淋巴细胞白血病的药物中的应用
CN110066803B (zh) 一种调控神经干细胞中nestin基因表达的方法及靶向细胞的方法
CN110079526B (zh) sgRNA序列及利用CRISPR-Cas9技术制备RH阴性红细胞的方法
CN113528576A (zh) 含有nlrp7纯和突变的复发性葡萄胎患者特异性诱导多能干细胞系及构建方法
Wang et al. Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids
WO2020015279A1 (zh) 一种在干细胞中进行基因定向敲入的方法
CN111454944B (zh) 一种分离的rna及其dna模板的合成方法
CN110331165A (zh) 用于人体细胞重编程的重组仙台病毒的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant