CN1144341C - Permanent-magnet brushless DC motor - Google Patents

Permanent-magnet brushless DC motor Download PDF

Info

Publication number
CN1144341C
CN1144341C CNB991134141A CN99113414A CN1144341C CN 1144341 C CN1144341 C CN 1144341C CN B991134141 A CNB991134141 A CN B991134141A CN 99113414 A CN99113414 A CN 99113414A CN 1144341 C CN1144341 C CN 1144341C
Authority
CN
China
Prior art keywords
permanent
motor
rotor
electric machine
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991134141A
Other languages
Chinese (zh)
Other versions
CN1260627A (en
Inventor
唐文方
沈建新
戴国骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB991134141A priority Critical patent/CN1144341C/en
Publication of CN1260627A publication Critical patent/CN1260627A/en
Application granted granted Critical
Publication of CN1144341C publication Critical patent/CN1144341C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention discloses a permanent-magnet brushless direct-current motor which comprises a stator and a rotor, wherein grooves are arranged on the stator, windings are embedded in the grooves, and the magnetic poles of a permanent magnet is arranged on the rotor. The motor is characterized in that the stator grooves are straight grooves, and the ratio of the number of the stator grooves and the number of the poles of the rotor is selected from 12K to 10K or 12K to 14K for a three-phase motor, and 20K to 22K or 20K to 18K for a five-phase motor, and K is a positive integer. The motor has the advantages of convenient processing, material saving, low manufacture cost and high motor efficiency.

Description

Permanent-magnet brushless DC electric machine
The present invention relates to the brushless, permanently excited direct current motor of stationary armature and rotary magnet.
According to electric machine theory and design of electrical motor and manufacturing practice, the intrinsic teeth groove location torque of brush-less permanent magnetic direct current machine, it can cause motor oscillating, noise and exert oneself not steady, even motor can't be started and run well, for addressing this problem, the most frequently used method is slot pitch of stator slot deflection at present, as the Forever brand bicycle use 152SWX low-speed permanent-magnet brshless DC motor.But the skewed slot motor can bring following problem:
One, adopt hand insertion usually, be difficult to realize mechanization production, technology difficulty is big, the cost height, and production efficiency is low; And flume structure also can reduce winding coefficient, and motor performance is descended;
Two, winding increases with line, has both improved manufacturing cost, also increases copper loss simultaneously, reduces electric efficiency;
Three, common, permanent-magnet brushless DC electric machine adopts overlapping winding, and promptly each phase winding is spatially overlapped, and winding overhang is in contact with one another, thereby can further bring shortcomings such as processing difficulties, winding overhang copper consumption increase.
The objective of the invention is to provide a kind of permanent-magnet brushless DC electric machine that overcomes above-mentioned defective, when number of stator slots becomes special ratios to concern with the rotor pole number form, can directly adopt the straight trough structure, reduce manufacturing cost, enhance productivity, reduce copper cash consumption and copper loss, improve electric efficiency.
Another object of the present invention is when number of stator slots becomes special ratios to concern with the rotor pole number form, can adopt non-overlapping winding, thereby further reduce manufacturing cost, enhances productivity and electric efficiency.
The object of the present invention is achieved like this: permanent-magnet brushless DC electric machine, comprise stator, rotor and transducer, and have groove on the stator, rotor is provided with permanent magnet pole, it is characterized in that described stator slot is a straight trough, and number of stator slots with the ratio of rotor number of poles is:
For three phase electric machine be: 12K:(12 ± 2) K;
For five-phase induction motor be: 20K:(20 ± 2) K;
Wherein K is a positive integer.
As a further improvement on the present invention, each winding embedding and only contains an effective edge of a winding in each groove in two adjacent grooves.
The present invention can bring following advantage by number of stator slots and rotor number of poles are designed to certain proportionate relationship:
One, can weaken the teeth groove location torque effectively, realize the straight trough structure.This is because the teeth groove location torque of motor can be described with an evaluation coefficient CT, CT is big more, the teeth groove location torque is big more, CT=2p*Q/NC, Q=2p*m*q wherein p are numbers of pole-pairs, and Q is a number of stator slots, NC is the least common multiple of 2p and Q, m is the number of phases, and q is that every phase winding is in each number of stator slots of occupying extremely down, for common electric machine structure, q is a positive integer, NC=Q, CT=2p is for motor of the present invention, threephase stator groove number is 12K:(12 ± 2 with the ratio of rotor number of poles) K, 2p=12K then, Q=14K or 10K, CT=2K; Perhaps five-phase induction motor, number of stator slots is 20K:(20 ± 2 with the ratio of rotor number of poles) K, calculate CT=2K as can be known.If the number of poles of two kinds of electric machine structures is consistent or approaching, then the latter's CT is more much smaller than the former, thereby the groove moment of motor of the present invention is little, even adopt the straight trough structure, and also can smooth start.The motor of the relative flume structure of motor of straight trough structure has simple in structure, benefits such as copper consumption is few, copper loss is little, efficient height, also be easy to simultaneously adopt machinery to roll off the production line, thereby technology is simple low cost of manufacture.
Two, can adopt non-overlapping winding, winding overhang is wire-saving, and copper loss is low, further reduces manufacturing cost, improves electric efficiency; The motor axial dimension is little, use and easy for installation.
Three, winding coefficient is big, and helping increases motor torque under the situation of same motor size, air-gap field, umber of turn and electric current.
Four, therefore the conductor that has only a phase winding in each stator slot need not phase insulation.
Five, each phase winding does not contact each other, almost is decoupling zero on hot road therefore, if certain phase winding breaks down like this, overheated burning can not burnt other phase windings.
Six, each phase winding also is decoupling zero on magnetic circuit, has mutual inductance between winding hardly, is convenient to control; And when certain phase winding breaks down, can not influence other phase windings because of magnetic coupling.
Seven, suitable design power electronic circuit, each that also can make motor also is decoupling zero on circuit.
According to above analysis, each phase winding of this motor all is decoupling zero on Re Lu, magnetic circuit, circuit, not only be convenient to control, and fault-tolerance is more much higher than the motor of ordinary construction, this is very important to permanent-magnet brushless DC electric machine, if certain phase winding damages, can not cause the thorough damage of motor, motor can also continue to use, and is repaired in convenience until the user again.When motor application during at aerospace field, it is particularly important that this characteristic seems.
The invention will be further described below in conjunction with embodiment and accompanying drawing.
Fig. 1 is the structural representation of motor windings of the present invention.
Fig. 2 is the radial cross-section of motor of the present invention.
Fig. 3 is the structural representation of the embodiment of the invention.
Embodiment one: the three-phase permanent brshless DC motor, and when K=1, the rotor number of poles is 10, number of stator slots is 12.Motor can adopt external stator, inner rotor core, also can adopt external rotor, internal stator structure, and Fig. 1,2,3 is depicted as external rotor, internal stator structure.With reference to Fig. 1,2, evenly offer 12 grooves 10 on stator 5 cylindricals, on the circle 10 permanent magnetism magnetic poles 3 are set evenly in the rotor 2, the polarity of adjacent pole is opposite.Groove 10 adopts the straight trough structure, winding 4 adopts the non-overlapping winding structure, each winding with one heart in the same way embedding in adjacent two grooves, the first series connection of winding 4-1 and winding 4-4, constitute a phase winding, the first series connection of winding 4-2 and winding 4-5, winding 4-3 and the first series connection of winding 4-6 constitute two phase windings in addition respectively, and each winding respectively has an exit 11 to link to each other with control circuit.
Permanent-magnet brushless DC electric machine is controlled commutation by transducer and control circuit, and transducer can adopt Hall element or photoelectric sensor.Adopt the motor of Hall element, Hall element can be placed on the end of winding, and rotor magnetic pole makes it corresponding with the position of Hall element axially suitably extending; Also can set up a rotor sensor, with the coaxial synchronous operation of rotor, Hall element is laid in the relevant position on stator; The simplest method is that Hall element is placed in the groove.In the present embodiment, three Hall elements 1 be placed on respectively adjacent embedding around first grooves of three phase windings in, that is: when motor was rotated counterclockwise, Hall element 1-1,1-2,1-3 were placed on respectively among groove 10-1,10-3, the 10-5.
With reference to Fig. 3, this motor can be used as the drive unit of electric tool, and stator 5 is fixedlyed connected with fixed axis 8, closes in the left and right sides end cap 6, and in outer rim, the end cap centre flexibly connects by bearing 9 and fixed axis 8 with the rotor clamping; Fixed axis 8 hollows, power line 7 is therefrom drawn, and links to each other with control circuit; Control circuit adopts the MC33035 of Motorola chip.The power of motor is 100W, compares the big 10-20NM of this electric motor starting moment with the traditional overlapping winding of equal-wattage and the motor of flume structure.
The course of work of above-mentioned motor is such: energized, rotor begin to rotate, and drive end cap and rotate, and end cap outreaches cutter, drives cutter thus and rotates together.
On the basis of the foregoing description, number of stator slots is set at 12 grooves, the rotor number of poles is set at 14 utmost points, can reach above-mentioned effect equally.
On the basis of embodiment one, adopt five phase winding structures, number of stator slots is set at 20 grooves, the rotor number of poles is set at 22 or 18 utmost points, and all the other structures are basic identical, can be effective too.
Embodiment two: electric vehicle three-phase permanent brshless DC motor, number of stator slots are 24 grooves, and the rotor number of poles is 20 utmost points or 28 utmost points, and power is 180W, and all the other structures and embodiment one are basic identical, can be with reference to Fig. 3, and end cap 6 is as wheel hub at this moment, and fixed axis 8 is axletree.
The course of work of electric vehicle three-phase permanent brshless DC motor is such: energized, and external rotor rotates, and drives wheel hub and rotates, and wheel hub outreaches steel wire and wheel, drives wheel thus and rotates together.
On this basis, use five phase windings instead, number of stator slots is set at 40 grooves, and the rotor number of poles is set at 44 utmost points or 36 utmost points, can reach effect same.
Embodiment three: brushless, permanently low speed three-phase DC motor, power are 500W, adopt internal rotor, outer stator structure, and the groove number of stator is 36 grooves, and the number of poles of rotor is 30 or 42 utmost points.Other structures and embodiment one are basic identical.
Example one is basic identical.
On this basis, use five phase windings instead, number of stator slots is set at 60 grooves, and the rotor number of poles is set at 66 utmost points or 54 utmost points, can reach effect same.
Embodiment four: brushless, permanently low speed three-phase DC motor, power are 1000W, and number of stator slots is 48 grooves, and the rotor number of poles is 40 utmost points or 56 utmost points, and all the other structures and embodiment three are basic identical.
On this basis, use five phase windings instead, number of stator slots is set at 80 grooves, and the rotor number of poles is set at 88 utmost points or 72 utmost points, can reach effect same.
The present invention is not limited to above-mentioned execution mode, can adopt different K values for the motor of different capacity, as long as satisfy the ratio of number of stator slots and rotor number of poles is:
For three phase electric machine be: 12K:(12 ± 2) K;
For five-phase induction motor be: 20K:(20 ± 2) K;
Can both be effective.
Following table is motor of the present invention and conventional motors parameter and performance one group of experimental data relatively:
K=2 K=10
Motor of the present invention The contrast motor Motor of the present invention The contrast motor
Designing requirement Power output W 180 180 25K 25K
Voltage U Direct current 36 Direct current 36 220 220
Rotating speed rad/s 20.9 20.9 10.5 10.5
Output torque Nm 8.59 8.59 2380 2380
Motor form Number of poles 20 16 100 50
The groove number 24 48 120 150
Winding configuration With one heart Overlapping With one heart Overlapping
Flute profile Straight trough An oblique groove square Straight trough An oblique groove square
Parameter Total copper consumption kg 0.47 0.58 5.51 5.72
Phase winding resistance Ω 0.44 0.55 0.0136 0.0138
Actual torque Nm 8.6 8.5 2410 2390
Actual speed rad/s 21 20.3 10.5 10.6
Real output W 180.6 172.6 25.3 25.3
Actual input power W 288 288 27.5 27.5
Efficient % 62.7 59.9 92 92

Claims (9)

1, permanent-magnet brushless DC electric machine comprises stator, rotor and transducer, has groove on the stator, and groove is embedded with winding, and rotor is provided with permanent magnet pole, it is characterized in that described stator slot is a straight trough, the ratio of number of stator slots and rotor number of poles:
For three phase electric machine be: 12K:(12 ± 2) K;
For five-phase induction motor be: 20K:(20 ± 2) K;
Wherein K is a positive integer.
2, permanent-magnet brushless DC electric machine as claimed in claim 1 is characterized in that each winding embedding in two adjacent grooves, and only contains an effective edge of a winding in each groove.
3, permanent-magnet brushless DC electric machine as claimed in claim 2 is characterized in that described transducer is Hall element or photoelectric sensor.
4, permanent-magnet brushless DC electric machine as claimed in claim 3 is characterized in that described transducer is a Hall element.
5, permanent-magnet brushless DC electric machine as claimed in claim 4 is characterized in that described Hall element is placed on the stator.
6, permanent-magnet brushless DC electric machine as claimed in claim 5 is characterized in that described Hall element is placed in the teeth groove.
7, permanent-magnet brushless DC electric machine as claimed in claim 5 is characterized in that described Hall element is placed on the end of winding.
8, permanent-magnet brushless DC electric machine as claimed in claim 7 is characterized in that described rotor magnetic pole axially suitably extending, makes it corresponding with the position of Hall element.
9, permanent-magnet brushless DC electric machine as claimed in claim 7 is characterized in that also being provided with a rotor sensor with the coaxial synchronous operation of rotor, and described rotor sensor is corresponding with described Hall element position.
CNB991134141A 1999-01-14 1999-01-14 Permanent-magnet brushless DC motor Expired - Fee Related CN1144341C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB991134141A CN1144341C (en) 1999-01-14 1999-01-14 Permanent-magnet brushless DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB991134141A CN1144341C (en) 1999-01-14 1999-01-14 Permanent-magnet brushless DC motor

Publications (2)

Publication Number Publication Date
CN1260627A CN1260627A (en) 2000-07-19
CN1144341C true CN1144341C (en) 2004-03-31

Family

ID=5276604

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991134141A Expired - Fee Related CN1144341C (en) 1999-01-14 1999-01-14 Permanent-magnet brushless DC motor

Country Status (1)

Country Link
CN (1) CN1144341C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018002B (en) * 2006-12-28 2013-03-27 李平 Small three-phase high-performance square wave permanent magnetic DC low-speed brushless motor
KR20080075396A (en) * 2007-02-12 2008-08-18 삼성전자주식회사 Brushless direct current electrical motor, compressor and air conditioner having the same
CN101247067A (en) * 2007-02-15 2008-08-20 豪栢国际(香港)有限公司 Non-360 degree driving brushless motor
CN108317088A (en) * 2018-02-01 2018-07-24 程良连 Energy-saving water pump of shielded direct-current synchronous permanent magnet motor

Also Published As

Publication number Publication date
CN1260627A (en) 2000-07-19

Similar Documents

Publication Publication Date Title
US8772994B2 (en) Permanent-magnet (PM) rotors and systems
CN2850122Y (en) Out-of-phase rotary AC electric machine with internal and external two rotors
CN106451984B (en) Electric vehicle, wheel and its switched reluctance machines
CN112186921A (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
CN102088234B (en) Brushless direct-current motor
CN100341231C (en) Reluctance Motor
JPH08214519A (en) Both-saliency motor-generator using permanent magnet
CN101262151B (en) Score slot coil unit for low-speed high torque permanent magnetic brushless electromotor
CN1144341C (en) Permanent-magnet brushless DC motor
CN2377762Y (en) Mechanoelectric integrated permanent-magnet brushless electric machine
Sun et al. Comparative study of fault-tolerant performance of a segmented rotor SRM and a conventional SRM
CN207053272U (en) Three-phase permanent-magnetic synchronous motors surface-mounted rotor structure
CN100405704C (en) Fractional slot winding for slow-run large torque moment permanent-magnet brushless motor
CN1933286A (en) Permanent magnetic brushless DC four-quadrant electric machine
CN104079136A (en) Three-phase switch reluctance machine and sine stator
CN2847656Y (en) Series multipolar switch magnetoresistance motor
CN2357434Y (en) Permanent-magnet DC electric machine
CN1175544C (en) Multiple air gap motor
JPH06205573A (en) Winding changeover type rotating electric machine
CN108808907A (en) The electronic automobile-used switched reluctance machines of one kind and electric machine control system
CN209860683U (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
CN1195347C (en) Double-polarity low-speed permanent-magnet synchronous motor
CN205725214U (en) The double-deck slot type p-m rotor of low fluctuation of motor in electric automobile
CN2492002Y (en) D.C. motor without commutator
CN86105770A (en) The Y-connected switch reluctance machine of four phase four line

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee