CN114426432A - 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法 - Google Patents

一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法 Download PDF

Info

Publication number
CN114426432A
CN114426432A CN202210134199.1A CN202210134199A CN114426432A CN 114426432 A CN114426432 A CN 114426432A CN 202210134199 A CN202210134199 A CN 202210134199A CN 114426432 A CN114426432 A CN 114426432A
Authority
CN
China
Prior art keywords
composite material
fiber
glass fiber
heat insulation
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210134199.1A
Other languages
English (en)
Inventor
李赛赛
常兵
李明晖
陈若愚
高青青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202210134199.1A priority Critical patent/CN114426432A/zh
Publication of CN114426432A publication Critical patent/CN114426432A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63428Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid anhydride polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • C04B38/085Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances of micro- or nanosize
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Insulation (AREA)

Abstract

本发明属于屏蔽材料技术领域,具体涉及一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法,制备方法以玻璃纤维、隔热材料、中子吸收剂、稳泡剂、粘结剂、发泡剂和去离子水为原料,将浆料均匀混合,通过球磨发泡后注模,自然干燥后脱模,然后烘箱中干燥制得玻璃纤维多孔陶瓷生坯,最后经煅烧制得纤维增强辐射屏蔽/隔热一体化复合材料。本发明制备方法设计科学合理,制备的纤维增强辐射屏蔽/隔热一体化复合材料具有机械性能好、屏蔽性能好、保温隔热性能好及耐辐照性能优良等性能,且复合材料的生产工艺具有烧成温度低、周期短、成本低及无污染等优点。

Description

一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法
技术领域
本发明属于屏蔽材料技术领域,具体涉及一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法。
背景技术
核能作为一种可再生的清洁能源,对实现能源的低碳清洁方面有很大作用。随着核技术的发展,核能广泛应用于各类核电站。在核电站运行时,反应堆内诸多系统设备往往处于高温、高压、高湿的特殊工况下。当这些系统设备的温度高于环境温度时,必然会通过与空气直接接触的表面散失大量热量到周围环境中,导致热源损失,最终造成供能功率减少、效率下降。辐射屏蔽材料尤其是中子屏蔽材料可以有效防止核能系统运行时产生的有害辐射对设备的损耗、对环境的污染以及对人体健康的损害;隔热材料是核能系统中辅助材料的重要组成部分,其基于热阻原理控制能源系统运行的热能散失,进而增加能源利用效率并提高核电站的综合经济效益。对上述两种核用材料进行一体化设计得到既能屏蔽中子也能保温隔热的新材料,可对核能系统中的高温设备等同时进行辐射屏蔽和节能隔热处理,应用前景十分广阔。
陶瓷基中子屏蔽复合材料因其抗辐射能力强、耐酸碱、抗氧化性强、成本低、力学性能好及环保性能好等优点,在防辐射领域已成为研究热点。其中多孔陶瓷材料是一种多孔性陶瓷材料,因其具有质轻、耐高温、热导率低、热稳定性好等优良性能而广泛应用于轻质结构部件及隔热材料中。但多孔陶瓷的高孔隙率(重量轻)和机械强度之间的主要矛盾限制了其作为隔热结构材料的应用范围,并且由于多孔陶瓷材料的多孔骨架结构较弱,无法抵抗坯体干燥和烧结过程中收缩造成的应力,往往在坯体的干燥和烧结过程中容易出现开裂现象,对多孔陶瓷的力学性能产生严重的影响,因此必须提高多孔陶瓷的力学性能以满足多孔陶瓷在不同环境下的使用。纤维强化增韧方法已被证明是有效的强化手段,纤维增韧的陶瓷基复合材料能够在较大程度上抑制陶瓷的体积效应及有效偏折裂纹以消耗裂纹能量,从而达到增韧补强的作用。其中玻璃纤维是一种性能优异的无机非金属材料,不仅绝缘性好、耐热性强、抗腐蚀性好而且机械强度高,采用玻璃纤维制备多孔陶瓷可大大提高多孔陶瓷的强度。
经检索,现有相关文献有:
公开号为CN111205067A的专利文献中公开了一种中子及γ射线协同防护的玻璃-陶瓷材料及其制备方法,该方法所制制品耐压强度高、屏蔽性能优异、耐水热侵蚀能力强、耐辐照性能优良和热震稳定性好。但制备工艺复杂,烧结温度高,且保温隔热性能较差。
公开号为CN109300557A的专利文献中公开了一种单侧填屏蔽材料的复合功能金属保温层,主体为具有波纹结构的单层金属反射箔片和叠放结构的多层金属箔片,其中中子屏蔽组分为核级纯B4C烧结块/铝基碳化硼,这种结构可以有效降低金属之间接触的热传导和辐射传热。但该发明以金属基材料为主,通过机械方式组装到一起,成本较高,工艺复杂,且使用寿命有限。
有鉴于此,有必要提供一种低成本、制备工艺简单的纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法,具有强度高、韧性好、屏蔽性能好及保温隔热性能好等优点。
发明内容
本发明的目的在于克服传统技术中存在的上述问题,提供一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法,玻璃纤维的纤维化及较高的长径比可以形成三维网状互锁结构,其中玻璃纤维主要在复合材料裂纹扩展过程中发挥脱粘、拔出和桥接作用(脱粘是指在裂纹的作用下纤维与基体之间的界面脱离,变成纤维与基体单独界面的过程;纤维的拔出是指在应力作用下,纤维从基体上脱离的过程;桥接作用是指在裂纹的扩展过程中,纤维将裂纹的两个扩展面连接在一起时所发挥的作用)。这些过程都会增加裂纹扩展时耗费的能量,提高复合材料在塑性变形和断裂过程中吸收能量的能力,从而增加材料的韧性及强度。采用球磨发泡结合凝胶注模法制备复合材料时,球磨发泡大大提高发泡效率,经过干燥及烧结过程,就可以得到孔隙率大、导热系数低、高强及轻质的复合材料。空心结构的存在赋予二氧化硅空心球高隔热性能,因此二氧化硅空心球的加入大大提高了复合材料的隔热性能。碳化硼具有中子俘获截面高(3837Barn)、吸收能谱宽、抗腐蚀性能好等优良特性,其中碳化硼中的10B具有优异的热中子吸收性能,在核环境中10B与热中子发生(n,a)反应生成7Li和4He,广泛应用于核电站中子射线的防护与屏蔽。以玻璃纤维、二氧化硅空心球及碳化硼为原料通过球磨发泡结合凝胶注模法制备复合材料具有强度高、韧性好、屏蔽性能好及保温隔热性能好等优点。
为实现上述技术目的,达到上述技术效果,本发明是通过以下技术方案实现:
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
1)将玻璃纤维加入硅溶胶中改性,再加入二氧化硅空心球和中子吸收剂,机械均匀搅拌使得二氧化硅空心球及中子吸收剂均匀分散在玻璃纤维上,然后在100~120℃温度下充分干燥,得到预处理的玻璃纤维;
2)将预处理的玻璃纤维与稳泡剂、粘结剂、发泡剂加入到去离子水中并混合,得到混合浆料,采用球磨发泡法将混合浆料发泡10~20min后注入模具中;模具经自然干燥12~24h后脱模,然后在100~120℃烘箱中干燥12~24h,得到复合材料生坯;
3)将复合材料生坯放入马弗炉中,在空气环境下,以一定的升温速率升至650~850℃,保温3~5h,然后随炉冷却至室温,即制得纤维增强辐射屏蔽/隔热一体化复合材料。
进一步地,步骤1)中,二氧化硅空心球、玻璃纤维、中子吸收剂的质量比为10:30~40:10~20。
进一步地,步骤1)中,二氧化硅空心球作为隔热材料,二氧化硅空心球是均匀球形,直径为1μm,空心结构的存在使得材料具有高隔热性能。
进一步地,步骤1)中,玻璃纤维使用行星球磨机对其进行分散处理,分散后的玻璃纤维直径为5-10μm之间,长度为30-150μm之间,分散后玻璃纤维的长径比为5~30:1。
进一步地,步骤1)中,中子吸收剂为碳化硼,纯度大于99.9%,粒径≤0.5μm。
进一步地,步骤2)中,预处理的玻璃纤维、羧甲基纤维素钠、十二烷基硫酸钠、去离子水的质量比为60:0.05~0.2:0.4~0.6:0.5~0.7:30~50。
进一步地,步骤2)中,稳泡剂为羧甲基纤维素钠,并且提前配置成浓度为1wt%水溶液。
进一步地,步骤2)中,粘结剂为Isobam-104,通过水解的-COOH及自身所带有的-NH2与原料表面的带电基团通过范德华力结合达到凝胶固化的效果,粒径≤20μm。
进一步地,步骤2)中,发泡剂为十二烷基硫酸钠(SDS)、3,4,5-三羟基苯甲酸丙酯(PG)及十二烷基硫酸三乙醇胺(TLS)中的一种,发泡剂的粒径≤10μm。
进一步地,步骤3)中,升温速率为2℃/min。
一种纤维增强辐射屏蔽/隔热一体化复合材料,由上述的制备方法制备得到。
本发明的有益效果是:
1、本发明采用玻璃纤维、二氧化硅空心球及碳化硼等为原料制备出屏蔽/隔热一体化复合材料,复合材料不仅中子屏蔽性能优良且隔热性能优良;
2、本发明复合材料的制备工艺简单,制备的多孔陶瓷孔隙率高、形状复杂且对环境污染小,玻璃纤维为基体极大的增强复合材料的强度,二氧化硅空心球的存在提高复合材料的气孔率及隔热性能。
3、本发明复合材料的成本低且烧结温度低。因此,通过玻璃纤维制备的多孔陶瓷复合材料改善了多孔陶瓷的力学性能、断裂韧性和高温机械性能。
当然,实施本发明的任一产品并不一定需要同时达到以上的所有优点。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
1)将玻璃纤维加入硅溶胶中改性,再加入二氧化硅空心球和中子吸收剂,机械均匀搅拌使得二氧化硅空心球及中子吸收剂均匀分散在玻璃纤维上,然后在100~120℃温度下充分干燥,得到预处理的玻璃纤维;
2)将预处理的玻璃纤维与稳泡剂、粘结剂、发泡剂加入到去离子水中并混合,得到混合浆料,采用球磨发泡法将混合浆料发泡10~20min后注入模具中;模具经自然干燥12~24h后脱模,然后在100~120℃烘箱中干燥12~24h,得到复合材料生坯;
3)将复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至650~850℃,保温3~5h,然后随炉冷却至室温,即制得纤维增强辐射屏蔽/隔热一体化复合材料。
本发明中,二氧化硅空心球、玻璃纤维、中子吸收剂的质量比为10:30~40:10~20。
本发明中,二氧化硅空心球是均匀球形,直径为1μm,空心结构的存在使得材料具有高隔热性能。
本发明中,玻璃纤维使用行星球磨机对其进行分散处理,分散后的玻璃纤维直径为5-10μm之间,长度为30-150μm之间,分散后玻璃纤维的长径比为5~30:1。
本发明中,中子吸收剂为碳化硼,纯度大于99.9%,粒径≤0.5μm。
本发明中,预处理的玻璃纤维、羧甲基纤维素钠、十二烷基硫酸钠、去离子水的质量比为60:0.05~0.2:0.4~0.6:0.5~0.7:30~50。
本发明中,稳泡剂为羧甲基纤维素钠,并且提前配置成浓度为1wt%水溶液。
本发明中,粘结剂为Isobam-104,通过水解的-COOH及自身所带有的-NH2与原料表面的带电基团通过范德华力结合达到凝胶固化的效果,粒径≤20μm。
本发明中,发泡剂为十二烷基硫酸钠(SDS)、3,4,5-三羟基苯甲酸丙酯(PG)及十二烷基硫酸三乙醇胺(TLS)中的一种,发泡剂的粒径≤10μm。
本发明设计基本原理是,以玻璃纤维、氧化铝空心球及碳化硼为原料采用球磨发泡法及凝胶注模法制备屏蔽/隔热多孔陶瓷复合材料,玻璃纤维的纤维化及较大的长径比可以形成三维网状互锁结构,其中玻璃纤维主要在多孔陶瓷裂纹扩展过程中发挥脱粘、拔出和桥接作用。这些过程都会增加裂纹扩展时耗费的能量,提高多孔陶瓷在塑性变形和断裂过程中吸收能量的能力,从而增加材料的韧性及强度,同时需要对玻璃纤维进行分散处理,未经过分散的玻璃纤维在制备多孔陶瓷时易团聚,且未分散的玻璃纤维具有较大的长径比,过大的长径比易导致多孔陶瓷制备过程中出现分层现象,因此需要对玻璃纤维进行分散处理。空心结构的存在赋予二氧化硅空心球独特的优点,如低导热系数和低密度,均匀球形的二氧化硅空心球附着在玻璃纤维陶瓷骨架上,导热系数低的二氧化硅空心球阻碍了纤维之间的传热,从而降低了玻璃纤维多孔陶瓷的导热系数。碳化硼具有中子俘获截面高、吸收能谱宽、抗辐射能力强等特点,通过预处理使其均匀分散在玻璃纤维表面,碳化硼的加入大大提高复合材料的屏蔽性能。采用球磨发泡结合凝胶注模法制备玻璃纤维多孔陶瓷时,球磨发泡大大提高发泡效率,经过干燥及烧结的过程,就可以得到孔隙率较大、导热系数低、高强及轻质的多孔陶瓷材料。本发明采用一种新型无毒,添加量少的异丁烯和马来酸酐水溶性共聚物Isobam-104为分散剂和黏结剂,无需添加大量的单体、引发剂等有机物,凝胶固化过程可在室温下自发进行,无需进行化学与热诱导,这大大简化了工艺。发泡剂为十二烷基硫酸钠(SDS)、3,4,5-三羟基苯甲酸丙酯(PG)及十二烷基硫酸三乙醇胺(TLS)中的一种,具有去污、乳化和优异的发泡能力,在水溶液中的稳定性好且成本低。
本发明的相关具体实施例如下:
实施例1
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
步骤一、将40份质量玻璃纤维加入硅溶胶中改性,再加入10份质量的二氧化硅空心球及10份质量的碳化硼,机械均匀搅拌使得二氧化硅空心球及碳化硼均匀分散在玻璃纤维上,然后110℃干燥;
步骤二、将预处理后玻璃纤维、二氧化硅空心球及碳化硼与0.1份质量的羧甲基纤维素钠、0.5份质量的Isobam-104、0.6份质量的十二烷基硫酸钠和38.8份质量的去离子水混合,采用球磨发泡法将混合浆料球磨10min后注入模具中;
步骤三、经自然干燥24h后脱模,然后在110℃烘箱中干燥24h制得复合材料生坯;将所制备的复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至750℃,保温3h,然后随炉冷却至室温,即制得玻璃纤维增韧的屏蔽/隔热一体化复合材料。
实施例2
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
步骤一、将35份质量玻璃纤维加入硅溶胶中改性,再加入10份质量的二氧化硅空心球及15份质量的碳化硼,机械均匀搅拌使得二氧化硅空心球及碳化硼均匀分散在玻璃纤维上,然后110℃干燥;
步骤二、将预处理后玻璃纤维、二氧化硅空心球及碳化硼与0.1份质量的羧甲基纤维素钠、0.5份质量的Isobam-104、0.6份质量的十二烷基硫酸钠和38.8份质量的去离子水混合,采用球磨发泡法将混合浆料球磨15min后注入模具中;
步骤三、经自然干燥24h后脱模,然后在110℃烘箱中干燥24h制得复合材料生坯;将所制备的复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至750℃,保温3h,然后随炉冷却至室温,即制得玻璃纤维增韧的屏蔽/隔热一体化复合材料。
实施例3
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
步骤一、将30份质量玻璃纤维加入硅溶胶中改性,再加入10份质量的二氧化硅空心球及20份质量的碳化硼,机械均匀搅拌使得二氧化硅空心球及碳化硼均匀分散在玻璃纤维上,然后110℃干燥;
步骤二、将预处理后玻璃纤维、二氧化硅空心球及碳化硼与0.1份质量的羧甲基纤维素钠、0.5份质量的Isobam-104、0.6份质量的十二烷基硫酸钠和38.8份质量的去离子水混合,采用球磨发泡法将混合浆料球磨20min后注入模具中;
步骤三、经自然干燥24h后脱模,然后在110℃烘箱中干燥24h制得复合材料生坯;将所制备的复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至750℃,保温3h,然后随炉冷却至室温,即制得玻璃纤维增韧的屏蔽/隔热一体化复合材料。
实施例4
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
步骤一、将35份质量玻璃纤维加入硅溶胶中改性,再加入10份质量的二氧化硅空心球及15份质量的碳化硼,机械均匀搅拌使得二氧化硅空心球及碳化硼均匀分散在玻璃纤维上,然后110℃干燥;
步骤二、将预处理后玻璃纤维、二氧化硅空心球及碳化硼与0.1份质量的羧甲基纤维素钠、0.5份质量的Isobam-104、0.6份质量的十二烷基硫酸钠和38.8份质量的去离子水混合,采用球磨发泡法将混合浆料球磨20min后注入模具中;
步骤三、经自然干燥24h后脱模,然后在110℃烘箱中干燥24h制得复合材料生坯;将所制备的复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至650℃,保温3h,然后随炉冷却至室温,即制得玻璃纤维增韧的屏蔽/隔热一体化复合材料。
实施例5
一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,包括如下制备步骤:
步骤一、将35份质量玻璃纤维加入硅溶胶中改性,再加入10份质量的二氧化硅空心球及15份质量的碳化硼,机械均匀搅拌使得二氧化硅空心球及碳化硼均匀分散在玻璃纤维上,然后110℃干燥;
步骤二、将预处理后玻璃纤维、二氧化硅空心球及碳化硼与0.1份质量的羧甲基纤维素钠、0.5份质量的Isobam-104、0.6份质量的十二烷基硫酸钠和38.8份质量的去离子水混合,采用球磨发泡法将混合浆料球磨20min后注入模具中;
步骤三、经自然干燥24h后脱模,然后在110℃烘箱中干燥24h制得复合材料生坯;将所制备的复合材料生坯放入马弗炉中,在空气环境下,以2℃/min的升温速率升至850℃,保温3h,然后随炉冷却至室温,即制得玻璃纤维增韧的屏蔽/隔热一体化复合材料。
实施例1-实施例5所制备的复合材料,性能测试数据如表1所示:
表1
Figure BDA0003503611840000101
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

1.一种纤维增强辐射屏蔽/隔热一体化复合材料的制备方法,其特征在于,包括如下制备步骤:
1)将玻璃纤维加入硅溶胶中改性,再加入二氧化硅空心球和中子吸收剂,机械均匀搅拌使得二氧化硅空心球及中子吸收剂均匀分散在玻璃纤维上,然后在100~120℃温度下充分干燥,得到预处理的玻璃纤维;
2)将预处理的玻璃纤维与稳泡剂、粘结剂、发泡剂加入到去离子水中并混合,得到混合浆料,采用球磨发泡法将混合浆料发泡10~20min后注入模具中;模具经自然干燥12~24h后脱模,然后在100~120℃烘箱中干燥12~24h,得到复合材料生坯;
3)将复合材料生坯放入马弗炉中,在空气环境下,以一定的升温速率升至650~850℃,保温3~5h,然后随炉冷却至室温,即制得纤维增强辐射屏蔽/隔热一体化复合材料。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,二氧化硅空心球、玻璃纤维、中子吸收剂的质量比为10:30~40:10~20。
3.根据权利要求1所述的制备方法,其特征在于:步骤1)中,玻璃纤维使用行星球磨机对其进行分散处理,分散后的玻璃纤维直径为5-10μm之间,长度为30-150μm之间,分散后玻璃纤维的长径比为5~30:1。
4.根据权利要求1所述的制备方法,其特征在于:步骤1)中,中子吸收剂为碳化硼,纯度大于99.9%,粒径≤0.5μm。
5.根据权利要求1所述的制备方法,其特征在于:步骤2)中,预处理的玻璃纤维、羧甲基纤维素钠、十二烷基硫酸钠、去离子水的质量比为60:0.05~0.2:0.4~0.6:0.5~0.7:30~50。
6.根据权利要求1所述的制备方法,其特征在于:步骤2)中,稳泡剂为羧甲基纤维素钠,并且提前配置成浓度为1wt%水溶液。
7.根据权利要求1所述的制备方法,其特征在于:步骤2)中,粘结剂为Isobam-104,通过水解的-COOH及自身所带有的-NH2与原料表面的带电基团通过范德华力结合达到凝胶固化的效果,粒径≤20μm。
8.根据权利要求1所述的制备方法,其特征在于:步骤2)中,发泡剂为十二烷基硫酸钠、3,4,5-三羟基苯甲酸丙酯及十二烷基硫酸三乙醇胺中的一种,发泡剂的粒径≤10μm。
9.根据权利要求1所述的制备方法,其特征在于:步骤3)中,升温速率为2℃/min。
10.一种纤维增强辐射屏蔽/隔热一体化复合材料,由权利要求1-9任一项所述的制备方法制备得到。
CN202210134199.1A 2022-02-14 2022-02-14 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法 Pending CN114426432A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210134199.1A CN114426432A (zh) 2022-02-14 2022-02-14 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210134199.1A CN114426432A (zh) 2022-02-14 2022-02-14 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114426432A true CN114426432A (zh) 2022-05-03

Family

ID=81312439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210134199.1A Pending CN114426432A (zh) 2022-02-14 2022-02-14 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114426432A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410014A (zh) * 2022-12-29 2023-07-11 中建材玻璃新材料研究院集团有限公司 一种低温烧结的短切玻璃纤维增强石英陶瓷的制备方法
CN116959765A (zh) * 2023-07-21 2023-10-27 安徽华铠工程科技有限公司 一种有机-无机杂化增强的中子和γ射线复合屏蔽结构材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195437A (ja) * 2010-02-26 2011-10-06 Mino Ceramic Co Ltd セラミックス多孔質断熱材及びその製造方法
CN103435335A (zh) * 2013-08-13 2013-12-11 山东博润工业技术股份有限公司 氧化铝陶瓷材料的制备方法
CN104628415A (zh) * 2015-01-28 2015-05-20 清华大学 一种轻质低导热陶瓷及其制备方法
CN111205067A (zh) * 2020-01-15 2020-05-29 武汉科技大学 一种中子及γ射线协同防护的玻璃-陶瓷材料及其制备方法
CN112266269A (zh) * 2020-09-15 2021-01-26 航天特种材料及工艺技术研究所 一种隔热材料的原位制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195437A (ja) * 2010-02-26 2011-10-06 Mino Ceramic Co Ltd セラミックス多孔質断熱材及びその製造方法
CN103435335A (zh) * 2013-08-13 2013-12-11 山东博润工业技术股份有限公司 氧化铝陶瓷材料的制备方法
CN104628415A (zh) * 2015-01-28 2015-05-20 清华大学 一种轻质低导热陶瓷及其制备方法
CN111205067A (zh) * 2020-01-15 2020-05-29 武汉科技大学 一种中子及γ射线协同防护的玻璃-陶瓷材料及其制备方法
CN112266269A (zh) * 2020-09-15 2021-01-26 航天特种材料及工艺技术研究所 一种隔热材料的原位制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANGONG DENG等: "Preparation and characterization of porous mullite ceramics via foam-gelcasting", 《CERAMICS INTERNATIONAL》 *
李应权, 中国建材工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410014A (zh) * 2022-12-29 2023-07-11 中建材玻璃新材料研究院集团有限公司 一种低温烧结的短切玻璃纤维增强石英陶瓷的制备方法
CN116410014B (zh) * 2022-12-29 2024-06-11 中建材玻璃新材料研究院集团有限公司 一种低温烧结的短切玻璃纤维增强石英陶瓷的制备方法
CN116959765A (zh) * 2023-07-21 2023-10-27 安徽华铠工程科技有限公司 一种有机-无机杂化增强的中子和γ射线复合屏蔽结构材料

Similar Documents

Publication Publication Date Title
CN114426432A (zh) 一种纤维增强辐射屏蔽/隔热一体化复合材料及其制备方法
CN109133975B (zh) 一种轻质高强发泡陶瓷板及其制备方法
CN110922095B (zh) 一种复合二氧化硅气凝胶毡的制备方法
CN109650882B (zh) 一种纤维内衬用复合涂料及其制备方法
CN110981349A (zh) 一种轻质高强渣土基保温材料及其制备方法
CN111978090B (zh) 一种铝硅质轻质耐火浇注料及其制备方法
CN111647251A (zh) 一种建筑用环保耐火材料及其制备方法
CN108129132B (zh) 烧结煤废膨胀珍珠岩保温装饰一体化板及其制备方法
CN103317789A (zh) 厚抹灰防火砂浆酚醛树脂板及酚醛专用防火砂浆
CN113896563B (zh) 一种利用硼泥制备高强度发泡陶瓷材料的方法及发泡陶瓷材料
CN114671634A (zh) 一种含固废的轻质-保温-高强地质聚合物及其制备方法
CN113800894A (zh) 一种轻质高强度耐火浇注料
CN103553699B (zh) 一种瘠性煤矸石工业废料制备泡沫保温材料的方法
CN112194472A (zh) 一种气化炉及电站锅炉修补用耐磨胶及生产工艺
CN109133880B (zh) 一种刚玉莫来石轻质砖的制备方法
CN114988908B (zh) 高温多孔介质燃烧用刚玉-六铝酸钙多孔陶瓷及制备方法
CN105271780A (zh) 一种镍渣粉煤灰泡沫玻璃及其制备方法
CN109836048A (zh) 一种中空玻璃微球复合无机固体浮力材料及制备方法
CN111943700A (zh) 一种具有弥散气孔的高强轻质绝热板及其制备方法
CN110818349A (zh) 硅质改性eps保温板
CN111848100A (zh) 一种超低能耗陶瓷棉空心保温砖及其制备方法
CN103159222B (zh) 一种氚增殖用正硅酸锂小球密实化的方法
CN113956045B (zh) 一种纤维复合碳化硼泡沫陶瓷材料的制备方法
CN112321958B (zh) 一种气化炉及电站锅炉节能用聚轻保温可塑砼及其生产工艺
CN111763062B (zh) 一种无机纤维保温板及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220503

RJ01 Rejection of invention patent application after publication