CN114421837B - 一种功率因数自适应的不连续脉宽调制算法 - Google Patents

一种功率因数自适应的不连续脉宽调制算法 Download PDF

Info

Publication number
CN114421837B
CN114421837B CN202111009350.0A CN202111009350A CN114421837B CN 114421837 B CN114421837 B CN 114421837B CN 202111009350 A CN202111009350 A CN 202111009350A CN 114421837 B CN114421837 B CN 114421837B
Authority
CN
China
Prior art keywords
voltage
power factor
phase
pulse width
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111009350.0A
Other languages
English (en)
Other versions
CN114421837A (zh
Inventor
王硕
张何
李静
鲍预立
张晓晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Nottingham Ningbo China
Original Assignee
University of Nottingham Ningbo China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Nottingham Ningbo China filed Critical University of Nottingham Ningbo China
Priority to CN202111009350.0A priority Critical patent/CN114421837B/zh
Publication of CN114421837A publication Critical patent/CN114421837A/zh
Application granted granted Critical
Publication of CN114421837B publication Critical patent/CN114421837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种功率因数自适应的不连续脉宽调制算法,通过在传统DPWM控制模式下注入零序电压矢量来克服现有不连续脉宽调制中功率因数不可调的问题,并通过增加限制条件,拓展自适应功率因数角范围0°至60°的范围,使得三相逆变器中的开关损耗降到最小,提高三相逆变器的效率。

Description

一种功率因数自适应的不连续脉宽调制算法
技术领域
本发明涉及三相桥式逆变器的应用领域,尤其是涉及一种功率因数自适应的不连续脉宽调制算法。
背景技术
三相逆变器的功能是将直流电转换为三相交流电,作为在工业领域中广泛应用的一种电能变换装置,特别是在电机驱动领域、发电机并网领域、不间断电源、有源无功补偿等领域有广泛应用。三相逆变器的重要性能指标主要有直流电压利用率、共模电压、总谐波畸变率和开关损耗等,改善这些性能指标的主要方法是优化设计脉冲宽度调制算法,如空间矢量调制、三次谐波正弦脉宽调制、最大最小平均值调制和不连续脉宽调制等。
不连续脉宽调制(简称:DPWM)算法可以降低三相逆变器的开关损耗,提高逆变器系统的效率,且不用改变电路拓扑图结构,常用的DPWM包括不连续脉宽调制最大型(DPWMmax)、不连续脉宽调制最小型(DPWMmin)和不连续脉宽调制0型~不连续脉宽调制3型(DPWM0~DPWM3),其中,DPWMmax和DPWMmin采用的是一相的调制电压波形有一段120°钳位到正负直流母线,DPWM0、DPWM1、DPWM2为一相调制电压的60°钳位到正负直流母线、DPWM3为一相调制电压的30°钳位到正负直流母线,其中DPWM2为常用阻感负载控制方式,采用的是电压和电流相角互差固定滞后的30°的方式。现有DPWM存在如下不足:
(1)传统DPWM,采用功率因数角固定为30°的方式,每相调制波有60°母线电压钳位,采用固定功率因数角的方式,不能使电流峰值一直在60°钳位区域的中心,因此开关损耗还可以进一步降低;
(2)由于DPWM2将功率因数限制为30°之后,如果出现负载系统功率因数小于0.866(cos30°)的情况,例如磁阻同步电机功率因数较低,其最高功率因数约0.77左右,最低功率因数可能低于0.6,如果在负载变化,速度变化的场合,DPWM2是不能满足三相逆变器开关损耗一直最小的条件的。
发明内容
本发明所要解决的技术问题是提供一种能够拓展自适应功率因数角0至范围且使三相逆变器开关损耗最小的功率因数自适应的不连续脉宽调制算法。
本发明所采用的技术方案是,一种功率因数自适应的不连续脉宽调制算法,包括:
步骤1.采集电容两端的电压Udc和三相逆变器中A相电流ia、驱动电机B相电流ib,C相电流ic,根据获得电流值ia、ib、ic经过帕克变换和克拉克变换获得d轴电流分量id、q轴电流分量iq、d轴电压分量ud、q轴电压分量uq,并根据d轴电压分量ud和q轴电压分量uq获得三相电压ua、ub、uc
步骤2.根据d轴电流分量id、q轴电流分量iq、d轴电压分量ud、q轴电压分量uq通过帕德近似法获得功率因数角
步骤3.根据d轴电压分量ud、q轴电压分量uq和电压Udc获得调制度m;并根据功率因数角和调制度m计算偏移角度/>
步骤4.根据d轴电压分量ud、q轴电压分量uq经过帕克反变换和克拉克反变换将获得三相电压ua、ub、uc标幺化,得到三相电压标幺值Ua、Ub、Uc
步骤5.根据三相电压标幺值Ua、Ub、Uc和偏移角度计算得到旋转电压Uax、Ubx、Ucx
步骤6.根据功率因数角偏移角度/>和旋转电压Uax、Ubx、Ucx,重构出带有功率因数角自调整的零序电压矢量Uzc
步骤7.将零序电压矢量Uzc注入三相电压标幺值Ua、Ub、Uc得到含零序电压矢量的三相电压标幺值Uaz、Ubz、Ucz
步骤8.根据Uaz、Ubz、Ucz重构占空比信号da、db、dc
步骤9.将占空比信号da、db、dc施加到三相逆变器中生成新的PWM信号。
本发明的有益效果是:通过在传统DPWM控制模式下注入零序电压矢量来克服现有不连续脉宽调制中功率因数不可调的问题,并通过增加限制条件,拓展自适应功率因数角范围-60°至60°的范围,使得三相逆变器中的开关损耗降到最小,提高三相逆变器的效率。
作为优选,所述步骤2中功率因数角的计算公式:
的取值范围为0至/>
作为优选,所述步骤3中调制度m的计算公式为:
偏移角度计算公式为:
偏移角度取值范围为/>至/>
作为优选,所述步骤4中三相电压ua、ub、uc标幺化得到三相电压标幺值Ua、Ub、Uc包括:
作为优选,所述步骤5旋转电压Uax、Ubx、Ucx取值包括:
作为优选,所述步骤6中旋转电压Uax、Ubx、Ucx的计算公式包括:
步骤61.判断功率因数角是否为/>若否,则进入步骤62;若是,则相应的偏移角度/>的范围为/>且重构的零序电压矢量Uzc为:
其中,sgn()为符号函数,若Ua>0,则sgn(Ua)=1;若Ua≤0,则sgn(Ua)=-1;max()为取较大值函数,即如果|Ubx|>|Ucx|,则max(|Ubx|,Ucx|)=|Ubx|;如果|Ubx|≤|Ucx|,则max(|Ubx|,|Ucx|)=|Ucx|;
步骤62.判断功率因数是否为/>若否,则返回步骤2;若是,则进入步骤63;
步骤63.判断调制度m的范围是否为0到0.866,若否,则进入步骤64;若是,则对应的偏移角度范围为/>且重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5 or Uz<-0.5则
|Ux|=middle(|Ua|,|Ub|,|Uc|)
其中middle()为取中间值函数,即若|Ub|>|Uc|>|Ua|,则middle(|Ua|,|Ub|,|Uc|)=|Uc|,|Ux|=|Uc|;
步骤64.判断调制度m的范围是否为0.866到1,若否,则范围步骤2;若是,则重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5 or Uz<-0.5则
|Ux|=middle(|Ua|,|Ub|,|Uc)
作为优选,所述步骤7中含零序电压矢量的三相电压标幺值Uaz、Ubz、Ucz的计算公式为:
作为优选,所述步骤8占空比信号da、db、dc的重构公式为:
附图说明
图1为三相桥式逆变器系统结构图;
图2为本发明流程图;
图3为功率因数角为36°下的A相占空比;
图4为功率因数角为43°下的A相占空比;
图5为功率因数角为53°下的A相占空比;
图6为功率因数角为36°下的注入零序电压分量标幺值;
图7为功率因数角为43°下的注入零序电压分量标幺值;
图8为功率因数角为53°下的注入零序电压分量标幺值;
如图所示:1、电源单元;2、三相桥式逆变器;3、驱动电机;4、调速控制单元;5、不连续脉宽调制单元;6、母线电容。
具体实施方式
以下参照附图并结合具体实施方式来进一步描述发明,以令本领域技术人员参照说明书文字能够据以实施,本发明保护范围并不受限于该具体实施方式。
本领域技术人员应理解的是,在本发明的公开中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
本发明以电机为例,但是应用领域不仅限于电机驱动,还包括发电机并网领域、不间断电源、有源无功补偿等领域。
如图2所示,本具体实施例应用于三相桥式逆变器系统,三相桥式逆变器系统为现有常规系统,如图1所示,三相桥式逆变器系统包括依次连接的电源单元1、母线电容6、三相桥式逆变器2和驱动电机3,还包括调速控制单元4和不连续脉宽调制单元5,其中:
三相桥式逆变器2用于给驱动电机提供输出电压实现变频调速作用,由三相桥臂并联而成,每相桥臂由两个IGBT开关管串联,且每个IGBT开关管均接有反并联二极管,如图1所示,IGBT开关管S1与S4、S3与S6、S5与S2两两串联构成一相桥臂,IGBT开关管S1、S3、S5为上桥臂,并分别对应反并联二极管D1、D3、D4,IGBT开关管S4、S6、S2为下桥臂,并分别对应反并联二极管D4、D6、D2
调速控制单元4与驱动电机3电连接,且调速控制单元4还与驱动电机3的A相、B相电连接;
不连续脉宽调制单元5与调速控制单元4连接,该不连续脉宽调制单元5的输出端与IGBT开关管S1-S6连接。
不连续脉宽调制单元中5涉及一种功率因数自适应的不连续脉宽调制算法,包括:
步骤1.通过采样电阻或电流霍尔传感器采集母线电容两端的电压Udc和三相逆变器中A相的电流ia、B相电流ib,C相电流ic,以及通过旋转变压器采集驱动电机转子旋转角度θ和转速值ωe;此处,三相逆变器的ia、ib、ic与驱动电机的A相、B相、C相的电流等值;
通过给定的驱动电机转速ωe *与ωe的差值经过计算得到驱动电机的电磁转矩值Te *
电磁转矩值Te *经过最优转矩控制输出d轴电流参考值id *和d轴电流参考值iq *
电流ia、ib经过基于驱动电机转子旋转角度θ(不限于电机角度信号,也可以是电网锁相环输出的位置信号)的帕克坐标变换和克拉克坐标变换得到d轴电流分量id、q轴电流分量iq
差值id *-id经过计算得到d轴电压分量ud,差值iq *-iq经过计算得到q轴电压分量uq
以及根据d轴电压分量ud和q轴电压分量uq经过驱动电机转子旋转角度θ的帕克坐标反变换和克拉克坐标反变换得到获得三相电压ua、ub、uc
所述步骤1中的各项数据的采集和计算均属于现有技术;
步骤2.根据d轴电流分量id、q轴电流分量iq、d轴电压分量ud、q轴电压分量uq通过帕德近似法实时计算功率因数角
的取值范围为0至/>本本发明仅考虑功率因数0.5到1范围内的感应负载;
步骤3.根据d轴电压分量ud、q轴电压分量uq和电压Udc获得调制度m:
并根据功率因数角和调制度m计算偏移角度/>
偏移角度取值范围为/>至/>
步骤4.将获得三相电压ua、ub、uc标幺化,得到三相电压标幺值Ua、Ub、Uc
步骤5.根据三相电压标幺值Ua、Ub、Uc和偏移角度计算得到旋转电压Uax、Ubx、Ucx
步骤6.根据功率因数角偏移角度/>和旋转电压Uax、Ubx、Ucx,重构出带有功率因数角自调整的零序电压矢量Uzc,具体包括:
步骤61.判断功率因数角是否为/>若否,则进入步骤62;若是,则相应的偏移角度/>的范围为/>且重构的零序电压矢量Uzc为:
其中,sgn()为符号函数,若Ua>0,则sgn(Ua)=1;若Ua≤0,则sgn(Ua)=-1;max()为取较大值函数,即如果|Ubx|>|Ucx|,则max(|Ubx|,Ucx|)=|Ubx|;如果|Ubx|≤|Ucx|,则max(|Ubx|,|Ucx|)=|Ucx|;
步骤62.判断功率因数是否为/>若否,则返回步骤2;若是,则进入步骤63;
步骤63.判断调制度m的范围是否为0到0.866,若否,则进入步骤64;若是,则对应的偏移角度范围为/>且重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5 or Uz<-0.5则
|Ux|=middle(|Ua|,|Ub|,|Uc|)
其中middle()为取中间值函数,即若|Ub|>|Uc|>|Ua|,则middle(|Ua|,|Ub|,|Uc|)=|Uc|,此时,|Ux|=|Uc|;
步骤64.判断调制度m的范围是否为0.866到1,若否,则范围步骤2;若是,则重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5 or Uz<-0.5则
|Ux|=middle(|Ua|,|Ub|,|Uc|)
步骤7.将零序电压矢量Uzc注入三相电压标幺值Ua、Ub、Uc得到含零序电压矢量的三相电压标幺值Uaz、Ubz、Ucz
步骤8.根据Uaz、Ubz、Ucz重构占空比信号da、db、dc
步骤9.将占空比信号da、db、dc施加到三相逆变器中生成新的PWM信号;本具体实施例采用三角波发生器生成固定开关频率的三角波信号,范围为0-1,然后将重构的占空比信号da、db、dc与固定开关频率的三角波信号对比生成与S1-S6对应的PWM1、PWM2、PWM3、PWM4、PWM5、PWM6驱动三相桥式逆变器工作。
另外,所述驱动电机为永磁同步电机或异步电机或直流无刷电机或磁阻同步电机或永磁体辅助型磁阻同步电机,本具体实施例采用磁阻同步电机。

Claims (8)

1.一种功率因数自适应的不连续脉宽调制算法,其特征在于,包括:
步骤1.采集电容两端的电压Udc和三相逆变器中A相电流ia、B相电流ib,C相电流ic,根据获得电流值ia、ib、ic采用帕克变换和克拉克变换获得d轴电流分量id、q轴电流分量iq、d轴电压分量ud、q轴电压分量uq,并根据d轴电压分量ud和q轴电压分量uq采用帕克反变换和克拉克反变换获得三相电压ua、ub、uc
步骤2.根据d轴电流分量id、q轴电流分量iq、d轴电压分量ud、q轴电压分量uq通过帕德近似法获得功率因数角
步骤3.根据d轴电压分量ud、q轴电压分量uq和电压Udc获得调制度m;并根据功率因数角和调制度m计算偏移角度/>
步骤4.将获得三相电压ua、ub、uc标幺化,得到三相电压标幺值Ua、Ub、Uc
步骤5.基于偏移角度采用三项坐标变换方式,对三相电压标幺值Ua、Ub、Uc进行变换,得到旋转电压Uax、Ubx、Ucx
步骤6.根据功率因数角的取值情况和偏移角度/>的取值情况,结合旋转电压Uax、Ubx、Ucx的取值特点和三相电压标幺值Ua、Ub、Uc的取值特点,重构出带有功率因数角自调整的零序电压矢量Uzc
步骤7.将零序电压矢量Uzc注入三相电压标幺值Ua、Ub、Uc得到含零序电压矢量的三相电压标幺值Uaz、Ubz、Ucz
步骤8.根据Uaz、Ubz、Ucz重构占空比信号da、db、dc
步骤9.将占空比信号da、db、dc施加到三相逆变器中生成新的PWM信号。
2.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤2中功率因数角的计算公式:
的取值范围为0至/>
3.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤3中调制度m的计算公式为:
偏移角度计算公式为:
偏移角度取值范围为/>至/>
4.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤4中三相电压ua、ub、uc标幺化得到三相电压标幺值Ua、Ub、Uc包括:
5.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤5中,对三相电压标幺值Ua、Ub、Uc进行变换的变换公式包括:
6.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤6中旋转电压Uax、Ubx、Ucx的计算方法包括:
步骤61.判断功率因数角是否为/>若否,则进入步骤62;若是,则相应的偏移角度/>的范围为/>且重构的零序电压矢量Uzc为:
其中,sgn()为符号函数,若Ua>0,则sgn(Ua)=1;若Ua≤0,则sgn(Ua)=-1;max()为取较大值函数,即如果|Ubx|>|Ucx|,则max(|Ubx|,|Ucx|)=|Ubx|;如果|Ubx|≤|Ucx|,则max(|Ubx|,|Ucx|)=|Ucx|;
步骤62.判断功率因数是否为/>若否,则返回步骤2;若是,则进入步骤63;
步骤63.判断调制度m的范围是否为0到0.866,若否,则进入步骤64;若是,则对应的偏移角度范围为/>且重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5或Uz<-0.5,则
|Ux|=middle(|Ua|,|Ub|,|Uc|)
其中middle()为取中间值函数,即若|Ub|>|Uc|>|Ua|,则middle(|Ua|,|Ub|,|Uc|)=|Uc|,|Ux|=|Uc|;
步骤64.判断调制度m的范围是否为0.866到1,若否,则范围步骤2;若是,则重构的注入的零序电压矢量Uzc为:
如果-0.5≤Uz≤0.5则Uzc=Uz
如果Uz>0.5或Uz<-0.5,则
|Ux|=middle(|Ua|,|Ub|,|Uc|)
7.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤7中含零序电压矢量的三相电压标幺值Uaz、Ubz、Ucz的计算公式为:
8.根据权利要求1所述的一种功率因数自适应的不连续脉宽调制算法,其特征在于,所述步骤8占空比信号da、db、dc的重构公式为:
CN202111009350.0A 2021-08-31 2021-08-31 一种功率因数自适应的不连续脉宽调制算法 Active CN114421837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111009350.0A CN114421837B (zh) 2021-08-31 2021-08-31 一种功率因数自适应的不连续脉宽调制算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111009350.0A CN114421837B (zh) 2021-08-31 2021-08-31 一种功率因数自适应的不连续脉宽调制算法

Publications (2)

Publication Number Publication Date
CN114421837A CN114421837A (zh) 2022-04-29
CN114421837B true CN114421837B (zh) 2023-12-22

Family

ID=81260338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111009350.0A Active CN114421837B (zh) 2021-08-31 2021-08-31 一种功率因数自适应的不连续脉宽调制算法

Country Status (1)

Country Link
CN (1) CN114421837B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116865548B (zh) * 2023-02-22 2024-07-19 中国矿业大学 一种变功率因数下开关损耗优化的z源逆变器控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182781A1 (fr) * 2012-06-08 2013-12-12 IFP Energies Nouvelles Procede de commande d'un onduleur triphasé par modulation vectorielle aléatoire discontinue evolutive
CN106100402A (zh) * 2016-07-07 2016-11-09 西安理工大学 一种t型三电平逆变器及其中点平衡控制方法
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN107834883A (zh) * 2017-10-27 2018-03-23 南京理工大学 一种基于调制波区间划分的中点电压控制装置及方法
CN109921672A (zh) * 2019-02-27 2019-06-21 上海宝准电源科技有限公司 基于双载波和合成调制波的三相逆变器最小开关损耗方法
US10498216B1 (en) * 2018-05-31 2019-12-03 Lsis Co., Ltd. Device for controlling inverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182781A1 (fr) * 2012-06-08 2013-12-12 IFP Energies Nouvelles Procede de commande d'un onduleur triphasé par modulation vectorielle aléatoire discontinue evolutive
US9654028B1 (en) * 2016-03-24 2017-05-16 Eaton Corporation System and method for maximizing efficiency of three-phase inverter-based power systems
CN106100402A (zh) * 2016-07-07 2016-11-09 西安理工大学 一种t型三电平逆变器及其中点平衡控制方法
CN107834883A (zh) * 2017-10-27 2018-03-23 南京理工大学 一种基于调制波区间划分的中点电压控制装置及方法
US10498216B1 (en) * 2018-05-31 2019-12-03 Lsis Co., Ltd. Device for controlling inverter
CN109921672A (zh) * 2019-02-27 2019-06-21 上海宝准电源科技有限公司 基于双载波和合成调制波的三相逆变器最小开关损耗方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Space-Vector-Based Generalized Discontinuous Pulsewidth Modulation for Three-Level Inverters Operating at Lower Modulation Indices;Subhadeep Bhattacharya等;IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS;第第5卷卷(第第2期期);第912-924页 *
Zero-Crossing Distortion and Neutral- Point Voltage Imbalance Analysis of VIENNA Rectifier with Carrier-Based Discontinuous PWM Control;Sihao Yin等;IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society;第1493-1498页 *
三相电压源逆变器最小损耗PWM算法性能优化;杜会卿等;中国电机工程学报;第36卷(第11期);第3005-3016页 *
基于双调制波的中点电压平衡算法;王琛琛等;电工技术学报;第27卷(第3期);第164-170页 *

Also Published As

Publication number Publication date
CN114421837A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
Khoucha et al. Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications
EP2164156B1 (en) Inverter control apparatus and motor drive system
CN101917158B (zh) 一种用于电压源逆变器的死区补偿方法
EP2333948A2 (en) Inverter control device and motor drive system
CN102195550A (zh) 优化多相设备中第三次谐波电流引入的方法、系统和装置
CN110112979B (zh) 基于标幺化的永磁同步电机无权重系数预测转矩控制方法
CN102195552A (zh) 近似多相电机中基波与三次谐波峰值合计电压的方法、系统和装置
CN110120763B (zh) 一种永磁同步电机无权重系数预测转矩控制方法
CN109495049B (zh) 永磁游标电机单位功率因数直接转矩控制方法
CN112953359A (zh) 双三相永磁同步电机电流谐波最小脉宽调制方法及系统
CN110492810A (zh) 一种基于飞跨电容的永磁电机单位功率因数弱磁控制方法
CN114421837B (zh) 一种功率因数自适应的不连续脉宽调制算法
Shriwastava et al. Comparative analysis of FOC based three level DCMLI driven PMSM drive
CN109494799B (zh) 基于开绕组结构的永磁同步发电机直接并网系统及其控制方法
CN113890445B (zh) 两相组交流永磁电机三电平变流系统优化调制方法
CN113098304B (zh) 三相维也纳整流器的控制电路及其混合载波调制方法
CN108923720B (zh) 一种无电解电容变频驱动控制方法及系统
CN112491288B (zh) 不平衡中点电位下三相维也纳整流器的控制电路及不连续脉宽调制方法
Deng et al. An enhanced virtual vector-based model predictive control for PMSM drives to reduce common-mode voltage considering dead time effect
CN110768605B (zh) 一种svpwm调制方法、装置及系统
CN117394725A (zh) 一种用于驱动双y移30°六相永磁同步电机的零序分量注入dpwm调制方法
Xu et al. Paralleled inverters to drive double dual-three-phase induction motors with common-mode voltage mitigation for traction application
CN116404926A (zh) 一种开绕组永磁同步电机低谐波优化同步调制方法与装置
CN110460276A (zh) 一种抑制零序电流的少稀土永磁电机驱动系统
CN114400715A (zh) 一种提高抗负载扰动性能的虚拟同步整流器控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant