CN114411081A - 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层 - Google Patents

一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层 Download PDF

Info

Publication number
CN114411081A
CN114411081A CN202111401071.9A CN202111401071A CN114411081A CN 114411081 A CN114411081 A CN 114411081A CN 202111401071 A CN202111401071 A CN 202111401071A CN 114411081 A CN114411081 A CN 114411081A
Authority
CN
China
Prior art keywords
sample
entropy
yttrium
bonding layer
doped aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111401071.9A
Other languages
English (en)
Inventor
牟仁德
虞京一
杨文慧
蔡妍
申造宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202111401071.9A priority Critical patent/CN114411081A/zh
Publication of CN114411081A publication Critical patent/CN114411081A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明总体属于航空发动机热障涂层设计领域,涉及一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层。目前广泛使用的MCrAlY粘结层的长期服役温度不能超过1100℃,更高温度下氧化速率急剧增加,从而导致涂层过早失效。本发明选取质量比在0.02at%的钇、铪单质,以及等原子比的高纯度铝、钴、铬、铁、镍、硅;采用真空电弧熔炼的方式对上述原料熔炼铸锭,通过真空氩气雾化将高熵合金铸锭制备为成分均匀的高熵合金粉体并喷涂,冷却后获得钇铪掺杂铝钴铬铁镍硅高熵粘结层。涂层的硬度更大,高温下热膨胀系数远小于MCrAlY,且变化趋势更为平缓。涂层沉积速率高,且非常致密、粘附性好、几乎不含氧化物。

Description

一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层
技术领域
本发明总体属于航空发动机热障涂层设计领域,涉及一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层。
背景技术
目前,随着航空发动机推力和工作效率的不断提升,燃气进气温度越来越高,涡轮叶片和其它热端部件使用的镍基高温合金的工作温度已逐渐接近极限。应用于涡轮叶片等热端部件表面的热障涂层(Thermal Barrier Coatings,TBCs) 由陶瓷面层和金属粘结层组成,其应用可以显著提高部件工作温度,增强部件的抗高温能力,延长使用寿命。为获得更好的隔热效果,新一代高推重比航空发动机涡轮叶片已采用隔热性能更好的新型陶瓷作为面层,但即便如此粘结层表面温度也将达到1200℃。目前广泛使用的MCrAlY(M=Ni,Co,Ni-Co)粘结层的长期服役温度不能超过1100℃,更高温度下氧化速率急剧增加,同时会形成不具有保护性的尖晶石相氧化物,从而导致涂层过早失效。粘结层的高熵化能够带来扩散迟滞效应,在更高温度下将极大地延缓原子的持续扩散迁移,从而提高涂层的抗氧化性能,延长涂层使用寿命。
发明内容
本发明主要针对热障涂层中粘结层的长期使用温度不低于1200℃的需求,提出了一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,以满足新一代高推重比航空发动机涡轮叶片的隔热防护需求。
本发明正是针对上述现有技术的不足而设计提供了一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其目的是通过在MCrAlY涂层基础上引入铁、硅元素,调整各元素比例,实现合金高熵化,形成单相过饱和固溶体,获得成分均匀,具有独特显微结构高熵粘结层。同时,活性元素钇、铪元素掺杂可提高涂层在更高温度下的抗氧化性能和涂层与基体的附着力,改善单一铝钴铬铁镍硅服役寿命不足的实际问题。
本发明在一个方面,提供了一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,该热障粘结层通过以下方法获得:
S1、原料选取
选取质量比在0.02at%的钇、铪单质,以及等原子比的高纯度铝、钴、铬、铁、镍、硅;
S2、熔炼铸锭
采用真空电弧熔炼的方式对上述原料熔炼铸锭,铸锭需被反复熔炼四次以上,形成成分均匀的高熵合金铸锭;
S3、制备高熵合金粉体
通过真空氩气雾化将高熵合金铸锭制备为成分均匀的高熵合金粉体;
S4、喷涂高熵合金粉体
将高熵合金粉体装入超音速火焰喷涂设备的送粉器中对试样进行喷涂,
S5、冷却
将试样自然冷却至60摄氏度以下,在试样上获得钇铪掺杂铝钴铬铁镍硅高熵粘结层。
有利或可选地,高纯度铝、钴、铬、铁、镍、硅的原子比为16.66at%。
有利或可选地,在S4之前对试样进行预处理,步骤如下:
步骤一、吹砂
对试样的基体表面进行污染物处理,砂粒粒径为120-220目,压缩空气压力为0.4MPa;
步骤二、清洗
将试样置于超声清洗设备中,在自来水中超声清洁,之后在去离子水中浸泡;
步骤三、脱水和干燥
将试样浸泡在有机溶剂中,然后取出放入烘箱中烘干。
有利或可选地,所述试样为高温合金。
有利或可选地,对试样进行预处理时,步骤一中采用干吹砂的方法,砂粒为Al2O3砂粒或ZrO2砂粒。
有利或可选地,对试样进行预处理时,步骤二中超声清洗时间大于等于10 分钟,浸泡时间大于等于10分钟。
有利或可选地,对试样进行预处理时,步骤三中浸泡时间大于等于10分钟。
有利或可选地,对试样进行预处理时,步骤三中的有机溶剂为无水乙醇,纯度为分析纯。
有利或可选地,对试样进行预处理时,步骤三中烘干操作时,在80℃温度下烘干30min。
有益效果:本发明作为一类新型热障粘结层材料,钇铪掺杂铝钴铬铁镍硅热障涂层高熵粘结层在1200℃长期热处理后没有相变发生,具有很高的相稳定性。该材料在相同温度下具有比传统MCrAlY涂层更好的抗氧化性能和抗腐蚀能力。与传统MCrAlY材料的力学性能参数相比较,涂层的硬度比MCrAlY更大,高温下热膨胀系数远小于MCrAlY,且变化趋势更为平缓。同时利用超音速火焰喷涂技术制备钇铪掺杂铝钴铬铁镍硅热障涂层高熵粘结层,可保证涂层成分偏小,涂层沉积速率高,且非常致密、粘附性好、几乎不含氧化物。
已经讨论的特征、功能和优点可在各种示例中独立实现,或者可以在其他示例中进行组合。
具体实施方式
事实上,可描述许多不同的示例并且这些示例不应该被解释为限于本文中阐述的示例。相反,描述这些示例,使得本公开将是彻底和完全的,并且将把本公开的范围充分传达给本领域的技术人员。
实施例1:
(1)熔炼:将等原子比(16.66at%)的高纯度铝、钴、铬、铁、镍、硅以及0.02at%的钇、铪单质采用真空电弧熔炼的方式熔炼成合金铸锭,熔炼温度 1500℃;为保证能够形成成分均匀的高熵合金,铸锭应被反复熔炼四次以上;
(2)制粉:将浇铸成型的高熵合金铸锭通过真空气雾化制备成高熵合金粉体;
(3)吹砂:采用干吹砂的方法,对试样的粘结层表面进行污染物处理,Al2O3砂粒粒径为120~220目,压缩空气压力为0.4MPa;
(4)清洗:将试样放入超声清洗仪中清洗10min,将试样置于去离子水中浸泡10min;
(5)脱水和干燥:将试样浸泡在有机溶剂中10min,然后取出放入烘箱中,在80℃温度下烘干30min,有机溶剂为无水乙醇,纯度为分析纯;
(6)热障涂层制备:将钇铪掺杂铝钴铬铁镍硅装入超音速火焰喷涂设备送粉室,钇铪掺杂铝钴铬铁镍硅粉体中,钇铪的质量比在0.02wt%至0.1wt%之间,铝、钴、铬、铁、镍、硅元素按等原子比添加,在试样上获得钇铪掺杂铝钴铬铁镍硅粘结层,沉积工艺参数:煤油流量13NLPM,氧气流量550L/n;试样的表面温度300-400℃;喷涂次数6-8次。冷却至60℃以下后,从工装夹具上取下涂覆有钇铪掺杂铝钴铬铁镍硅粘结层的试样。
实施例2:
(1)熔炼:将等原子比(16.66at%)的高纯度铝、钴、铬、铁、镍、硅以及0.02at%的钇、铪单质采用真空电弧熔炼的方式熔炼成合金铸锭,熔炼温度 1500℃;为保证能够形成成分均匀的高熵合金,铸锭应被反复熔炼四次以上;
(2)制粉:将浇铸成型的高熵合金铸锭通过真空气雾化制备成高熵合金粉体;
(3)吹砂:采用干吹砂的方法,对试样的粘结层表面进行污染物处理,Al2O3砂粒粒径为120~220目,压缩空气压力为0.4MPa;
(4)清洗:将试样放入超声清洗仪中清洗10min,将试样置于去离子水中浸泡10min;
(5)脱水和干燥:将试样浸泡在有机溶剂中10min,然后取出放入烘箱中,在80℃温度下烘干30min,有机溶剂为无水乙醇,纯度为分析纯;
(6)热障涂层制备:将钇铪掺杂铝钴铬铁镍硅装入超音速火焰喷涂设备送粉室,钇铪掺杂铝钴铬铁镍硅粉体中,钇铪的质量比在0.02wt%至0.1wt%之间,铝、钴、铬、铁、镍、硅元素按等原子比添加,在试样上获得钇铪掺杂铝钴铬铁镍硅粘结层,沉积工艺参数:煤油流量14NLPM,氧气流量500L/n;试样的表面温度300-400℃;喷涂次数6-8次。冷却至60℃以下后,从工装夹具上取下涂覆有钇铪掺杂铝钴铬铁镍硅粘结层的试样。
实施例3:
(1)熔炼:将等原子比(16.66at%)的高纯度铝、钴、铬、铁、镍、硅以及0.02at%的钇、铪单质采用真空电弧熔炼的方式熔炼成合金铸锭,熔炼温度 1500℃;为保证能够形成成分均匀的高熵合金,铸锭应被反复熔炼四次以上;
(2)制粉:将浇铸成型的高熵合金铸锭通过真空气雾化制备成高熵合金粉体;
(3)吹砂:采用干吹砂的方法,对试样的粘结层表面进行污染物处理,Al2O3砂粒粒径为120~220目,压缩空气压力为0.4MPa;
(4)清洗:将试样放入超声清洗仪中清洗10min,将试样置于去离子水中浸泡10min;
(5)脱水和干燥:将试样浸泡在有机溶剂中10min,然后取出放入烘箱中,在80℃温度下烘干30min,有机溶剂为无水乙醇,纯度为分析纯;
(6)热障涂层制备:将钇铪掺杂铝钴铬铁镍硅装入超音速火焰喷涂设备送粉室,钇铪掺杂铝钴铬铁镍硅粉体中,钇铪的质量比在0.02wt%至0.1wt%之间,铝、钴、铬、铁、镍、硅元素按等原子比添加,在试样上获得钇铪掺杂铝钴铬铁镍硅粘结层,沉积工艺参数:煤油流量15NLPM,氧气流量450L/n;试样的表面温度300-400℃;喷涂次数6-8次。冷却至60℃以下后,从工装夹具上取下涂覆有钇铪掺杂铝钴铬铁镍硅粘结层的试样。
通过上述实施例可以看出,本发明技术方案与现有技术相比,其优点是:
(1)涂层设计上,主元素选择等原子比的铝、钴、铬、铁、镍、硅,以及微量钇、铪元素对涂层性能进行改性。当各主元素原子比相同时,体系混合熵最大。高混合熵可提升体系的稳定性,抑制终端相的生成。高熵化设计后,涂层由纳米尺度的面心立方相和体心立方相组成,体现出了传统粘结层不同的显微结构和相组成。单一的过饱和固溶体相还可提升涂层的均匀性。钇铪掺杂铝钴铬铁镍硅热障涂层高熵粘结层在更高的服役温度下,氧化膜致密,生长速度缓慢,涂层具有更低的氧化速率,比传统MCrAlY合金低了约一个数量级。同时本发明中活性元素钇、铪掺杂既能提升高温下氧化膜的附着力,进一步提升涂层抗氧化性能,又能改善单一铝钴铬铁镍硅服役寿命不足的实际问题。
(2)制备方法上,采用超音速火焰喷涂,在大气环境下利用密闭燃烧和扩展喷嘴在加热、加速粉末状涂料将氧气和各种燃料气体(氢气、丙烷、丙烯、氢气或煤油)混合,混合气体与喷粉一起进入燃烧室。腔室气体燃烧产生高温和高压,使气体以超音速通过喷嘴流动。粉末颗粒在绕稍事以及通过喷嘴飞行期间融化或部分融化。HVOF喷涂时气体以高超音速(大于5马赫)运行。HVOF 喷枪出口处射流会发生膨胀,带来的好处是该过程温度适中,但撞击时的粒子速度非常高,颗粒在相对较冷的火焰中停留时间短。高动能和低热能的特性使HVOF涂层性能十分优异,所得的涂层通常非常致密、粘附性好、几乎不含氧化物,适用于喷涂高质量的热障涂层金属粘结层。
已出于例示和描述的目的展示了对不同有利布置的描述,但是该描述并不旨在是排他性的或限于所公开形式的示例。许多修改形式和变化形式对于本领域的普通技术人员而言将是显而易见的。另外,不同的有利示例可描述与其他有利示例相比不同的优点。选择和描述所选择的一个示例或多个示例,以便最佳地说明示例的原理、实际应用,并且使本领域的普通技术人员能够理解本公开有进行了适于所料想特定使用的各种修改的各种示例。

Claims (9)

1.一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其特征在于:该热障粘结层通过以下方法获得:
S1、原料选取
选取质量比在0.02at%的钇、铪单质,以及等原子比的高纯度铝、钴、铬、铁、镍、硅;
S2、熔炼铸锭
采用真空电弧熔炼的方式对上述原料熔炼铸锭,铸锭需被反复熔炼四次以上,形成成分均匀的高熵合金铸锭;
S3、制备高熵合金粉体
通过真空氩气雾化将高熵合金铸锭制备为成分均匀的高熵合金粉体;
S4、喷涂高熵合金粉体
将高熵合金粉体装入超音速火焰喷涂设备的送粉器中对试样进行喷涂,
S5、冷却
将试样自然冷却至60摄氏度以下,在试样上获得钇铪掺杂铝钴铬铁镍硅高熵粘结层。
2.根据权利要求1所述的钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其特征在于:高纯度铝、钴、铬、铁、镍、硅的原子比为16.66at%。
3.根据权利要求1所述的钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其特征在于:在S4之前对试样进行预处理,步骤如下:
步骤一、吹砂
对试样的基体表面进行污染物处理,砂粒粒径为120-220目,压缩空气压力为0.4MPa;
步骤二、清洗
将试样置于超声清洗设备中,在自来水中超声清洁,之后在去离子水中浸泡;
步骤三、脱水和干燥
将试样浸泡在有机溶剂中,然后取出放入烘箱中烘干。
4.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其特征在于:所述试样为高温合金。
5.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵热障粘结层,其特征在于:对试样进行预处理时,步骤一中采用干吹砂的方法,砂粒为Al2O3砂粒或ZrO2砂粒。
6.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵粘结层的制备方法,其特征在于:对试样进行预处理时,步骤二中超声清洗时间大于等于10分钟,浸泡时间大于等于10分钟。
7.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵粘结层的制备方法,其特征在于:对试样进行预处理时,步骤三中浸泡时间大于等于10分钟。
8.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵粘结层的制备方法,其特征在于:对试样进行预处理时,步骤三中的有机溶剂为无水乙醇,纯度为分析纯。
9.根据权利要求3所述的钇铪掺杂铝钴铬铁镍硅高熵粘结层的制备方法,其特征在于:对试样进行预处理时,步骤三中烘干操作时,在80℃温度下烘干30min。
CN202111401071.9A 2021-11-19 2021-11-19 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层 Pending CN114411081A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111401071.9A CN114411081A (zh) 2021-11-19 2021-11-19 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111401071.9A CN114411081A (zh) 2021-11-19 2021-11-19 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层

Publications (1)

Publication Number Publication Date
CN114411081A true CN114411081A (zh) 2022-04-29

Family

ID=81265165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111401071.9A Pending CN114411081A (zh) 2021-11-19 2021-11-19 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层

Country Status (1)

Country Link
CN (1) CN114411081A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251916A1 (en) * 2004-09-28 2006-11-09 Hideyuki Arikawa High temperature component with thermal barrier coating and gas turbine using the same
CN101029392A (zh) * 2006-03-01 2007-09-05 联合工艺公司 高密度阻热涂层
CN102560197A (zh) * 2011-12-15 2012-07-11 北京矿冶研究总院 一种耐高温海洋腐蚀热喷涂用合金粉末及制备方法
CN103924130A (zh) * 2014-04-16 2014-07-16 同济大学 一种铝合金/316l不锈钢涂层复合材料及其制备方法
CN107034429A (zh) * 2017-03-10 2017-08-11 广东省新材料研究所 一种低散热摩托车发动机的制备方法
CN111334797A (zh) * 2020-03-09 2020-06-26 西安交通大学 一种强化学吸附界面热障涂层粘结层材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251916A1 (en) * 2004-09-28 2006-11-09 Hideyuki Arikawa High temperature component with thermal barrier coating and gas turbine using the same
CN101029392A (zh) * 2006-03-01 2007-09-05 联合工艺公司 高密度阻热涂层
CN102560197A (zh) * 2011-12-15 2012-07-11 北京矿冶研究总院 一种耐高温海洋腐蚀热喷涂用合金粉末及制备方法
CN103924130A (zh) * 2014-04-16 2014-07-16 同济大学 一种铝合金/316l不锈钢涂层复合材料及其制备方法
CN107034429A (zh) * 2017-03-10 2017-08-11 广东省新材料研究所 一种低散热摩托车发动机的制备方法
CN111334797A (zh) * 2020-03-09 2020-06-26 西安交通大学 一种强化学吸附界面热障涂层粘结层材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
强文江,吴承建: "《激光制备先进材料及其应用》", 冶金工业出版社, pages: 453 - 192 *

Similar Documents

Publication Publication Date Title
US20200024749A1 (en) Gas turbine engine component coating with self-healing barrier layer
US5277936A (en) Oxide containing MCrAlY-type overlay coatings
KR100537710B1 (ko) 분산 강화된 금속성 결합 코팅을 이용한 열 차단 코팅
EP2053141B1 (en) Alumina-based protective coating for thermal barrier coatings and process for depositing thereof
JP3056548B2 (ja) 翼面への摩擦層の形成方法
WO2007116547A1 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
US11851770B2 (en) Thermal barrier coatings for components in high-temperature mechanical systems
CN103160773A (zh) 通过控制热生长氧化层成分延长发动机热障涂层寿命的方法
CN113151768B (zh) 一种喷气式发动机叶片用热障涂层及其制备方法
JP2006193828A (ja) 遮熱コート材料、遮熱部材、遮熱コーティング部材及びその製造方法
CN113529065B (zh) 一种基于冷喷涂高速沉积增材制造技术制备金属铱涂层的方法及装置
CN105483597A (zh) 一种锆酸镧纤维掺杂锆酸镧的热障涂层的制备方法
CN108715987B (zh) 一种提高热障涂层结合强度的方法
US20070207271A1 (en) Partially-alloyed zirconia powder
CN115011905A (zh) 一种热障涂层及其制备方法和应用
US20080131612A1 (en) Method for making an environment-resistant and thermal barrier coating system on a component
WO2002092874A1 (fr) Element revetu d'un film de revetement barriere thermique et poudre de pulverisation thermique
CN113584416A (zh) 一种用于TiAl合金表面的TiAlCr抗氧化涂层及其制备方法
CN114411081A (zh) 一种钇铪掺杂铝钴铬铁镍硅高熵热障粘结层
CN114959542B (zh) 一种新型稀土钽酸盐/铂铱基合金热障涂层、制备方法及应用
CN103434209B (zh) 一种新型的低热导率和耐高温热障涂层及其制备方法
KR20180024053A (ko) 열차폐 코팅 구조 및 이의 제조방법
CN111875416A (zh) 一种陶瓷基可磨耗封严材料、涂层、复合涂层及制备方法
Lima et al. Thermal and environmental barrier coatings (TBCs/EBCs) for turbine engines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429