CN114410534A - Cloacibacterium normanense TD35菌株及其应用 - Google Patents
Cloacibacterium normanense TD35菌株及其应用 Download PDFInfo
- Publication number
- CN114410534A CN114410534A CN202210100150.4A CN202210100150A CN114410534A CN 114410534 A CN114410534 A CN 114410534A CN 202210100150 A CN202210100150 A CN 202210100150A CN 114410534 A CN114410534 A CN 114410534A
- Authority
- CN
- China
- Prior art keywords
- strain
- normanense
- soil
- clinacobacterium
- cloacibacterium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 claims abstract description 67
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 31
- 108020004465 16S ribosomal RNA Proteins 0.000 claims abstract description 13
- 244000005700 microbiome Species 0.000 claims abstract description 13
- 238000004321 preservation Methods 0.000 claims abstract description 7
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 16
- 101150045948 nosZ gene Proteins 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000001580 bacterial effect Effects 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 238000012163 sequencing technique Methods 0.000 claims description 10
- 239000006228 supernatant Substances 0.000 claims description 8
- 108090000854 Oxidoreductases Proteins 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 108010009004 proteose-peptone Proteins 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 108091093088 Amplicon Proteins 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 239000001272 nitrous oxide Substances 0.000 claims description 3
- 229920001817 Agar Polymers 0.000 claims description 2
- 230000004544 DNA amplification Effects 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims description 2
- 238000003113 dilution method Methods 0.000 claims description 2
- 239000012634 fragment Substances 0.000 claims description 2
- 241000206672 Gelidium Species 0.000 claims 1
- 235000010469 Glycine max Nutrition 0.000 claims 1
- 244000068988 Glycine max Species 0.000 claims 1
- 239000001888 Peptone Substances 0.000 claims 1
- 108010080698 Peptones Proteins 0.000 claims 1
- 235000010419 agar Nutrition 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 239000002609 medium Substances 0.000 claims 1
- 235000019319 peptone Nutrition 0.000 claims 1
- 239000003337 fertilizer Substances 0.000 abstract description 15
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 239000005431 greenhouse gas Substances 0.000 abstract description 3
- 241000678016 Cloacibacterium normanense Species 0.000 description 43
- 241000894006 Bacteria Species 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 229910002651 NO3 Inorganic materials 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000298828 Cloacibacterium Species 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000012895 dilution Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- AIUDWMLXCFRVDR-UHFFFAOYSA-N dimethyl 2-(3-ethyl-3-methylpentyl)propanedioate Chemical compound CCC(C)(CC)CCC(C(=O)OC)C(=O)OC AIUDWMLXCFRVDR-UHFFFAOYSA-N 0.000 description 4
- 230000004720 fertilization Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000010815 organic waste Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 description 3
- 108090000913 Nitrate Reductases Proteins 0.000 description 3
- 108010025915 Nitrite Reductases Proteins 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 101100162202 Aspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1) aflF gene Proteins 0.000 description 2
- 101150099894 GDHA gene Proteins 0.000 description 2
- 101100277701 Halobacterium salinarum gdhX gene Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101100392454 Picrophilus torridus (strain ATCC 700027 / DSM 9790 / JCM 10055 / NBRC 100828) gdh2 gene Proteins 0.000 description 2
- 101100116769 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) gdhA-2 gene Proteins 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 101150078069 cynT gene Proteins 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 108010064177 glutamine synthetase I Proteins 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 101150114630 mtcA2 gene Proteins 0.000 description 2
- 239000000618 nitrogen fertilizer Substances 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- 101150076456 norB gene Proteins 0.000 description 2
- 101150021871 norC gene Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012070 whole genome sequencing analysis Methods 0.000 description 2
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010052375 Glutamate Dehydrogenase (NADP+) Proteins 0.000 description 1
- 101710107273 Nitric oxide reductase subunit B Proteins 0.000 description 1
- 101710107272 Nitric oxide reductase subunit C Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010796 biological waste Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical group [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 108010076678 nitrous oxide reductase Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003895 organic fertilizer Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108700022487 rRNA Genes Proteins 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/08—Organic fertilisers containing added bacterial cultures, mycelia or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/02—Separating microorganisms from their culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0044—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y107/00—Oxidoreductases acting on other nitrogenous compounds as donors (1.7)
- C12Y107/02—Oxidoreductases acting on other nitrogenous compounds as donors (1.7) with a cytochrome as acceptor (1.7.2)
- C12Y107/02004—Nitrous-oxide reductase (1.7.2.4)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Soil Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了Cloacibacterium normanense TD35菌株及其应用,属于环境微生物技术领域。该菌株保藏在位于湖北省武汉市武昌区八一路299号的中国典型培养物保藏中心,保藏编号为CCTCC M 2022028,保藏日期为2022年1月5日,其16S rRNA基因序列如SEQ ID NO:1所示。该菌株不能通过反硝化作用产生N2O,但可高效地还原环境中N2O为N2。本发明的Cloacibacterium normanense TD35菌株或由其制备的生物肥料能够有效减少多种不同土质农田土壤温室气体N2O的排放,减少温室气体带来的环境损害。
Description
技术领域
本发明属于环境微生物技术领域,具体涉及Cloacibacterium normanense TD35菌株及其应用。
背景技术
氧化亚氮(N2O)是一种温室效应很强的气体,自工业革命以来大气中的N2O浓度呈现出快速增长的趋势,对全球气候变暖带来很大的挑战。农田是N2O排放最大的来源,人类从事的农业生产每年会造成6.7Tg N-N2O的排放,约占整年N2O排放总量的60%。为满足在对农作物施肥的同时减少农田土壤N2O排放的需求,不同的研究人员开发出不同的N2O减排措施,Carneiro等(2010)研究发现使用硝化抑制剂DCD使农田土壤N2O排放量降低了80%,Smith等(2010)认为耕作、栽培、施肥、灌水等田间耕作管理因素会显著地影响N2O的排放量,如果合理地改善这些条件可以减少N2O的排放量。同时最近日本学者Itakura的一项研究(2013)表明,往土壤中接种N2O还原菌是可以起到N2O减排的作用,这种方法不仅见效快,而且由于微生物长期在土壤中定殖,减排效果还很持久,为研究者们提供一个新的思路。
然而,N2O还原菌应用于农田减少N2O的实践并未能普及,其中一个重要原因是微生物菌株的效能问题,具有全套反硝化基因的N2O还原菌在某些条件下,可能不仅不能还原N2O,反而还会产生N2O,增加土壤的N2O排放。因此,筛选只能还原N2O的净汇微生物将更具有竞争力。另外,N2O还原菌的土壤环境适应性也是影响其效能的关键因素,对不同类型的土壤都具有良好适应性的菌株将会具有更广泛的适用范围和更持久的效能。
对土壤进行大量微生物接种改造土壤微生物区系,不仅费用高,而且不切实际,但是如果能够利用现有的施肥方式接种N2O还原菌,或许可以成为一个新的N2O减排方式,例如利用生产沼气的厌氧发酵池中产生的富含氮和磷的有机废物(沼渣)培养N2O还原菌,在施肥前这些沼渣富集有大量的N2O还原菌,然后再用作生物肥料施用到农田中,以这种方式向土壤中引入大量的N2O还原菌不仅操作方便且费用低。而且,厌氧发酵技术已经成为食品加工、处理城市有机废物的一项成熟技术,作为一种低碳、可循环经济方式有望处理越来越多的农业部门产生的大量沼渣等有机废物作为有机肥也具有广阔的应用前景。
发明内容
本发明的第一目的是提供Cloacibacterium normanense TD35菌株,保藏在位于湖北省武汉市武昌区八一路299号的中国典型培养物保藏中心,保藏编号为CCTCC M2022028,保藏日期为2022年1月5日,其16S rRNA基因序列如SEQ ID NO:1所示。
优选地,所述Cloacibacterium normanense TD35菌株来源于厌氧发酵沼渣。本发明的发明人通过实验发现Cloacibacterium normanense TD35菌株可以分离于厌氧发酵沼渣,在沼渣中生长并且可有效还原N2O,意味着将生长有Cloacibacterium normanenseTD35菌株的厌氧发酵残渣作为农业土壤的有机肥料在促进农作物增产的同时,也有利于减少农田土壤中N2O的排放。另外,还发现Cloacibacterium normanense TD35菌株含有N2O还原酶基因nosZ,且不含硝酸盐还原酶基因和亚硝酸盐还原酶基因,可以在添加有硝酸盐和亚硝酸盐的1/2TSB培养基中生长但不产生N2O和N2;若外源添加N2O或环境中存在N2O,其可以还原这些N2O生成N2,因此该菌不会造成农田土壤的氮肥损失,也不会产生N2O,但它是一个N2O净汇,可以消除土壤中的N2O。
优选地,所述Cloacibacterium normanense TD35菌株属于兼性厌氧菌株,在有氧和无氧条件下都可以生长。
本发明的另一目的在于提供上述Cloacibacterium normanense TD35菌株的分离方法,包括以下步骤:
(1)对N2O富集培养的沼渣和土壤进行16S rRNA基因扩增子测序和宏基因组测序,其中Cloacibacterium在培养过程中被富集,且宏基因组拼接显示这个属的微生物含有N2O还原酶基因nosZ,但缺少其它反硝化基因,由此选择Cloacibacterium丰度高的样本作为分离氧化亚氮还原菌株的来源;
(2)用梯度稀释法得到来源于富集培养沼渣和土壤的菌悬液,并将两种菌悬液涂布在改良的1/2TSA培养基上,在有氧条件下对土壤微生物进行分离培养,生长出的单菌落经过分离纯化,得到纯的单菌株;
(3)对步骤(2)中每个分离的纯的单菌株进行nosZ基因扩增,其中阳性菌株进行16S rRNA基因全长片段扩增与测序,得到16S rRNA基因序列如SEQ ID NO:1所示的菌株,即Cloacibacterium normanense TD35菌株。
优选地,所述改良的1/2TSA培养基为30mL灭菌的沼渣离心上清液、7.5g酪蛋白胨、2.5g大豆蛋白胨、10g氯化钠溶于1L水中,121℃灭菌20min。
本发明的再一目的在于提供一种生物肥料,其包括所述Cloacibacteriumnormanense TD35菌株。
优选地,所述生物肥料通过在灭菌农业生物废弃物(如灭菌沼渣)中采用有氧或者厌氧的方式培养所述Cloacibacterium normanense TD35菌株得到。
本发明的再一目的在于提供所述Cloacibacterium normanense TD35菌株或者所述生物肥料在减少农田土壤N2O排放中的应用。
优选地,所述农田土壤的土质包括但不限于红壤、潮土和黑土。
与现有技术相比,本发明的有益效果在于:本发明中Cloacibacteriumnormanense TD35菌株制备的生物肥料能够有效减少红壤、潮土和黑土等农田土壤施氮肥后导致的大量温室气体N2O排放,含有上述菌株的生物肥料在促进农田作物生长获得高产的同时,能有效减少农业生产中土壤排放的N2O,从而达到减少环境损害的目的。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更显著:
图1是Cloacibacterium normanense TD35菌株在富集培养的不同样本中丰度变化。
图2是Cloacibacterium normanense TD35菌株在改良的1/2TSA培养基上的菌落形态。
图3是Cloacibacterium normanense TD35菌株的细胞显微形态。
图4是Cloacibacterium normanense TD35菌株与其它同属菌株的系统发育关系。
图5是Cloacibacterium normanense TD35菌株在含有硝酸盐和亚硝酸盐的1/2TSB培养基中生长过程的N2O和N2的动态变化。
图6是Cloacibacterium normanense TD35菌株制成的生物肥料在施用于三种不同施肥土壤后,立即测定N2O减排效果。
图7是Cloacibacterium normanense TD35菌株制成的生物肥料在施用于三种不同施肥土壤,经过30天后再测定N2O减排效果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下实施例中Cloacibacterium normanense TD35菌株保藏在位于湖北省武汉市武昌区八一路299号的中国典型培养物保藏中心,保藏编号为CCTCC M 2022028,保藏日期为2022年1月5日。
以下实施例中Cloacibacterium normanense TD35菌株的分离方法,包括以下步骤:
(1)同时适应沼渣和农田土壤环境的N2O还原菌的富集培养
向装有30mL新鲜采集的猪粪厌氧发酵沼渣的富集培养瓶间歇性添加N2O气体,以达到在沼渣中富集N2O还原菌的目的。富集过程中通过气相色谱检测富集瓶中N2O的浓度及其还原速率。富集一周后将富集的2mL沼渣接种到20g不同类型的灭菌土壤中,在富集培养瓶中添加N2O后培养1周,再将培养过的土壤取3g转接到30mL灭菌沼渣中,再在沼渣中添加N2O富集培养1周。经过这样4轮的土壤——沼渣来回转接,最后在沼渣中筛选得到在这两种基质中都能生长的微生物。将富集培养过程中所有的土壤和沼渣样本收集,并提取总DNA,经过16S rRNA基因扩增子测序和宏基因组测序后,发现在整个转接过程中得到富集的微生物中有Cloacibacterium normanense,该菌在不同的土壤及沼渣中均有较高丰度,并且宏基因组测序拼接的结果显示它具有N2O还原酶基因nosZ,但缺乏硝酸盐还原酶基因和亚硝酸盐还原酶基因等其它反硝化基因。
(2)富集样本的细菌分离
根据测序结果的提示,选择Cloacibacterium normanense作为待分离的目标菌。挑选Cloacibacterium normanense菌丰度最高的沼渣样本和土壤样本各一个样本进行后续的微生物分离工作,将两个样本的不同梯度稀释液涂布在含有少量灭菌的沼渣离心上清液的1/2TSA培养基上,然后在30℃的条件下对微生物进行分离培养。待平板上长出单菌落后,根据菌落的颜色、大小、色泽、质地等性质,尽可能地挑出更多不同的单菌落,然后将这些单菌落在相同的培养基上进行划线纯化,得到纯培养物。
(3)N2O还原基因与N2O还原功能的测定
提取步骤(2)中所有单菌株的基因组DNA,然后对每个菌株进行N2O还原酶基因nosZ的PCR扩增。再将所有的nosZ扩增结果为阳性的菌株进行ERIC-PCR,从中筛选出基因组各不相同的菌株,然后将这些不同菌株培养在30mL添加有硝酸盐和亚硝酸盐的1/2TSB培养基中,并加入5mL N2O,室温下连续摇瓶培养,并用气相色谱仪监测其瓶内N2O浓度变化,分析每个菌株的N2O还原能力的强弱。
根据N2O还原性能,从所有的N2O还原菌中选出具有强N2O还原能力的菌株,对菌株的16S rRNA基因部分序列进行扩增和测序,初步确定菌株的分类地位,16S rRNA基因序列全长如SEQ ID NO:1所示,即为Cloacibacterium normanense TD35菌株。选择属于Cloacibacterium normanense的菌株TD35进行细菌全基因组测序,得到其完整基因组序列,分析发现该菌株含有6个氮代谢相关基因glnA、gdhA、norB、norC、nosZ、cynT,它们的基因序列分别如SEQ ID NO:2-7所示,具体如下:
(1)TD35000575_glnA基因序列如SEQ ID NO:2所示,具体为:
atgtcaacattaagatttaaagcgttagaaacgcttccttttaaaaactttagaaaagataatcacgtagaaataccttcgaaattatcagaattgtattgcgaaaatgttttctcagaagaaacaatgagagaatatttaaccaaagaagcatttcagtctatattagatgctataagaaaaggaacaaaaatccaaagacatattgcagatcaagttgctgtagcaatgaaagattgggctttgtctaaaggagtgactcactacactcactggtttcagccattaacaggtgctaccgcagaaaagcatgattcattttttactccaatagaaggaggaagagcaatcgaaagatttagcggaggaatgcttattcagcaagagccagacgcttcttctttcccgaatggaggaattagaaatactttcgaggcgagaggttataccgcttgggatcctacttctccagcttttattatgggaactacactttgtattccttccatttttatttcttatactggtgaaacattagattacaaagcaccattattaagagctttacatgcagtagacgaagccgcaacagaagtaatgcaatattttgacaaaaatgtaacgaaggtgatccctactttaggctgggaacaggaatactttttagtagactctgcattataccaatcaagaccagacttagtattaacaggtaaaacattattgggacattctcctgcaaaaggtcaacagttagatgatcattatttcggttctattcctactagagtaatgaattttatgaaggagctagaaatagaatgtatgaaattaggaattcctgttactacaagacataatgaggtggctccaaatcaatttgagttggctccaatgtatgaagaagcaaacgtagcagtagaccataattcattattaatggatgtaatggctagagtagctcataaacaccattttcatattttattccacgaaaagccatttgctggagtaaacggaagtgggaaacacaataactggtcactctctacagatactggcgaaaatttattgagcccagggaaaaaccctaagaaaaacttacagtttttgaccttcttcgtaaatactattaaggcggttcatgaatatgcagatttattaagagcaagcattgcttctgcaagtaatgaccacagattaggagcaaacgaagcaccaccagcaattatctctgtattcattggttcacaattatacagtgtgctttctgaattagaaaaagtgactaatggtaaactttctccagaagaaaagaccgaattaaaactaaatgtagtaggtaaaattccagaaattttattagacaatacagatagaaacagaacttcgcctttcgcatttacaggaaataaatttgaaattagagcagtaggttcttctgcaaactgcgcagaatctatgacagttatgaacaccatcgctgcaaaacaattaaaagagttcaaaaaagaagtagatgctttaattgaaaaagggcttaaaaaagatgaagctattttcaatgtgttaagagaatacatcaaacaatcgaaaaacatcatgttcgaaggtgatggatattctgatgactgggcgaaagaagctaagaaaagaggtttatccaaccttaaaacaactccagaagctttagaaagagaaatggacaaaaaattcgtgaaactttacgaagaaatgggcgttttctctcatgtagaagtagaagcaagaaacgaaattaagttagaaaaatattctacggtaattgatattgaagctagagttttggcagacatcgctagaaatcacatcatcccagctgcattaaactatcagaacagattgatagacaatgtaaaagggttaaaagaaatcttcggagaaaaagaattcaaggctttagcaaaagaacaaatgagtttaattacacagatttcagataatgtttcagtaattaaattgggagtagaagaattgttaaaagcaaaagataaagcaaaatcaatttctagctcacagaaacaggcagaagcctattgtaacgaagtgaagccattgtttgataaaattagggaagcatcagacgcattagaaatgatggtagatgatgagctttggccactcacaaaatacagagaattattattcactagataa。
(2)TD35000668_gdhA基因序列如SEQ ID NO:3所示,具体为:
atggaacaaaatactatcgaacaaaaaatacaagagttcgttgcaaaaattgaagcaaaaaacccaaatgagccagaatttctacaagcagtaaaggaggtagcggttacagttattccttttattgccactaaagaagaataccgaggaatgaagcttctagagagaatggcggagcctgaaagagtaatcatcttcagagttccttgggtggatgataaaggtgaaattcaggtgaatagaggtttcagaattcaaatgaactctgcaatcgggccatataaaggaggaatcagattccatcctacggtaaacctatcagtgctaaaatttttagcatttgaacaagttttcaaaaactctttgactactttacctatgggtggtggaaaaggaggttcagatttcgatccacaaggtaaatccaataatgagatcatgagattctgccaatctttcatgacagaaatgtgtaaacacatcggtccagaaaccgatgttcctgcaggagatataggagtaggtgctagagaaattggttaccttttcggtcaatataagagaatcagaaatgagtttactggagttcttactggtaaaggtttagcatacggtggttcattaatcagaccagaagctactggttatggtgtggtttacttctgcgagcagatgcttcatactattggggaagaagttaaaggtaaaacattcactgtttcaggtttcggaaatgtagcttggggagtagtgaaaaaagtaaatgaactgggtggaaaagtgcttaccatttcaggtccagacggatacatctacgataaagacggaatttctggtgaaaagattgattacatgcttgaaatgagagcttctggaaccaacagagcggaagatttcgctaaaaaattcccttctgcagaattccacgcaggaaaacgtccttgggaagtaaaatgtgacgtggcaattccagcagctacacaaaacgaacttcacctagaagatgctcaaaaattggtatctaatggtgtaatctgtgtgactgaagctgcaaacatgccttctacactagatgcaataaactatttcttagataataaagtattattcagcccaggaaaagcttctaacgctggtggtgtagcaacttctggtctagaaatgactcaaaactctatcagattaaactggagttctgaagaagtagacgctagactgaaagaaattatgattggtattcacaatgcttgtagaaaatacggtaaagaagaaaatggatacgtaaactatgtaaaaggtgctaatattgctggtttcgtgaaagtagctgaagcgatgcttgcacaaggtgtagtataa。
(3)TD35001134_norB基因序列如SEQ ID NO:4所示,具体为:
atgaaactgaagaataatatcatcggaagctggtttattatcattgccattttttcgctttttttaggacttgtttttgggattttaggaggattgcaacatctttatcccaatttattgaaagatactttgtctttccaaaaaatgagaccgcttcacacttacctttctatcaactggatttttacagcagccacaggaattatttattattatttaccagaagtttcgggtagaaaaatttattctgaaaaactggcgaaattacaaatcgctttgcaaattttaatattggttttggtaacagttttctttgtcttaggaaaattcggaggaagagaatatttagaattcccgccatatattgtgattttgattgtgagttcttggttgattttcatgtataatttcttcatgaccgtaaaacctaattacaaaacagtccctgtctacatctggagctggagtacgggtttaattttctttttgattactacagtagaagctcaactttggcaattctcattttttaatgacaatatcattcgagatgtaaccattcagtggaaagctatgggttctatggttggttcttggaatatgctggtgtacggaactgctatgtttgctatggaaaaaatctctggagatcaaaaaatcaatcaatctaaaattgcatttttcttttatttccttggcttaacgaatcttatgttcaactggggacaccatacttatatagtacccgcttcaccaacggtgaaacttattgcttacagcattagcatgacggaattgcttattttggcaaatattatttactcttttagaaaaacttatataaaagcgaaccaccaaaaccacaagctttcgtttaagattcttacttatgcagaaatctggattttactcaacttggtactttctatttctatatctatccctgctataaatttctatacgcacggaacacatattacagtggcgcacgcaatgggctctacaattggcatcaatactttactgttattagcttctatcactttaattgtagatgatgtggcgccgcattatttaaattggaaaagatacaattggagtcttttgatcttcaatttatcattggttatattttgggtttgtttagtcggaatgggactacagaaaatttctgaaaatttgcaaaacaagagtttttatgacatgattaacgccttgagcatttatttcaaaattttcaccagttctggcgctgtacttcttttggcactgatagcgctactctatcctttgtttaaatttagttggcaatctgtgacaaagaaaatacagtaa。
(4)TD35001135_norC基因序列如SEQ ID NO:5所示,具体为:
atgaaaaagatatggatttttttgacgctcttttttgcgtttgccacttattcttcttggatttatacaggcgcaacaaactacggaaccgtaatgactacccgacaacaattgggtaaaaaaatatatcaagagtacaattgtcaatcttgccatcagatttttggtttaggaggatatttaggtccagaacttactactgctatttcagataaaactcgtggagaatcctatgtaaaagcttttatagaaaatggaggcggaaccagaatgcctaatttccatttcagtaaagaacaaacagaagcattggtagattatttaaaatatgtagacgcaaatgctttttcttataaaaacaccacaccacatgaaactgaagaataa。
(5)TD35001521_nosZ基因序列如SEQ ID NO:6所示,具体为:
atgaaaattattcagttatttgggatttcggcctttgcttctttagcatttttgggcagttgtaaacctaaaggtacagaaaccgctgtaagtggtgacgccgcagaaaaagtatatgtagctcctggaaaatatgatgaggtatacaattttgtaagtggtggttttaacggacaaatgaacgtttatggtttaccgagcggaagattacttaaggtagttcctattttctctgtaaatccagaaaatgggtatggttacagtgaagaaactaagcctatgttagaaacctcgcacggttttattccttgggatgaccagcatcacttagaattatctcaaacaaatggtgaacaagacggaagatggatttttgcgaatgctaataacactccacgtgtggcaagagtaaaccttaaaaccttcagaactgaggaaattatagaattaccgaactctgctggtaaccactcttctccatttattaccgaaaatacagaatatgtagtggcaggtactcgttttgctgttcctacagatgatatgaacggagacgttcctattaattctttcaaagaaaacttcaaaggagtgatttcttttatcggagttaataaagaaactggtgatatgaatttatcattccagattgaagctccaggtgtaaactttgacctttctcacgctggtaaaggaaaatctcacggttggttcttcttctcttgttataattcagaacaagcgaatactttattagaggttaacgcttctcaaaatgataaagactttatcatggcggtaaactggaaaaaagctgaagaatatctaaaagctggtaaaggtagaaaagtaaaaactcagtatgctcacaataaatttgatgaatctactcaaactgctacctctaaaatggagcaagaagtgactgtactttctgctaaagaattaaaagatatttgctatttcatgccaactcctaaatcacctcacggttgtgacgtagacccaactggcgaatacattgtaggttctggtaaattggcagctcttattcctgtacacagctttaccaaaatgcttaaagcgattgaaaacaaagaatttgcaggtgaatatgatggtattcctatcttaaaatatgaatctactctttatggtgaagttcaaaaaccaggtttaggtccattacacacagaatttgacggaaaaggaaatgcttatacttcattcttcgtttcttctgaagtagtaaaatgggatatcaaaacattaaaagttcttgacagacaaccaactttctactctgtaggtcacttaatggtagtaggtggtgatactaaaaaaccatatggtaaatatctagttgcttataataaaattacaaaagacagattcttacctacaggtccagaattaacccaatctgcacagttgtatgacattagtggagataagatgaaactcttattagacttccctacttttggtgagccacactatgcacaggctgttccagcttctcttattaaagacaatcaggtgaagttctacaatattgcagacaataaacacccttatgcaaccaaaggtgaagcagaatctaaagtggtaagacaaggcaataaggtacacgtttatatgacttctatccgttcgcactttgctccagataatatagaaggaataaaagtaggtgacgaagtttacttccacgtgaccaacttagaacaagactgggatgtaccacacggattcgccatcaaaggtaatcaaaatgcagaattgctcattatgccaggtgaaacttgtacactgaaatgggttcctaaaaaaccaggaatgtggccaatgtattgtacagacttctgttctgcattgcaccaagaaatgcaaggatatgtaagagtttctccagcaggaagcaatgttcctcttacttacagcctaaataataaagcggataacgctaaaagccctgtgaaaacagcagtgacaaaataa。
(6)TD35002083_cynT基因序列如SEQ ID NO:7所示,具体为:
atgtttaagagacacgatttatcagcaggtctcacggtttttctagttgcacttcccttgtgtctgggtgtagcattagcttctggagcaccactttattcaggaattttatcaggtattatcggtggaattgtagtaggtgttttgagcggttcagatttagccgtttctggtcctgctgcaggtttaaccacggttgtagcagcatctatcattagtttaggtgattttcaaacctttttattaaccgttattatagctggcgtattccaaattttgttaggcgttttaaaactgggtgtttttgccagttattttcctagttctgtgattaaaggaatgatggctgctataggaattatattgatttctaaacaaattccattggcattaggttataatcaacccgatttttggaccagtggttttgtacaaatctttacctctaaaaatttcttaggaaacctggtagagtttaattctcatattaccagaggtgcggtttttatttctgtgatttccttagcgattttagttctgatgaagaaaccccagtttcaaaaatacaatatgattcctgctccacttttggtggttgcttttggaattttaatcaattttttaatgaatcaattcggttcttcttatgctttaaagccaaatcaattggttagtattccagaaaatatgttcgcagaaattaagtttcctgaattttctaaaatcttgaataatcaagaaatttggaaagacgggattctcataggaattttggcaacgctagagactttgctatgtatagaagcaatggacaaactagaccgtcacaacagaataacccctgtaaatcgtgaattgattgcacagggaattggtaattttctatgcggacttttaggtgctgttccactcaccgctgtagttgtaagaggttctgccaatatagaagctggcgcaaagactaaagtctcagccttcatgcatggaatatttttattactctctgtactactgattccgtttttgattaacatgattccgtatgcttctttatctgctattttgattattacaggttttggactcacgagagttgagatttataaacatcttttcaaactcggtttaaaacaatttattccttttattgcaaccattatcattatccttgtaacagacttattaataggtgtttctatcggtttattgatttctatttattacatcatcaaagaaaatttcaaagaaaactacgaaatagaaaaaacacattttcaaggtattgaccaatataaattgaaacttcacagcaatgtaacctttattaataaagtaaaaattaaaaatgctttggataaagttcccgcttattctgtattaactattgacggctccgaaatccattttatagactatgatgttttagaaattatctcagatttcaaaaataaagcacatgacagacacattcagcttcaaatgattaatatagaaaccgtagaaactgcagcgatttctcattag。
(4)制备含N2O还原菌的生物肥料
将Cloacibacterium normanense TD35菌株在改良的1/2TSB培养基中摇瓶培养两天后,吸取1mL菌液加入到30mL灭菌的沼渣中,然后在25℃厌氧条件下摇瓶培养两天,获得含有高浓度Cloacibacterium normanense TD35菌株的液态生物肥料。
(5)含N2O还原菌的生物肥料的效果分析
吸取3mL富含Cloacibacterium normanense TD35菌株的液态生物肥料加到30g不同类型的土壤中(江西吉安红壤pH4.8,河北曲周潮土pH8.4,吉林四平黑土pH6.2),土壤在使用前已经活化并且含水量调整到30%。在加入沼渣第1天后和第30天后,再加入3mg硝酸盐溶液模拟人工施肥过程,然后密封培养瓶,抽换气置换成厌氧状态,通过气相色谱仪检测瓶内的N2O的产生与还原,以此评价这种新型生物肥料的N2O减排效果。
实验结果显示,加入这种沼渣第一天后,红壤中不积累N2O,潮土和黑土中产生的N2O比不加沼渣的土壤产生的少,且还原为N2的速度更快(图6)。有氧条件下培养30天后,加有这种沼渣的三种土壤中产生的N2O都要比不加的少(图7),说明含有Cloacibacteriumnormanense TD35菌株的液态生物肥料能极大地减少农田土壤中N2O的排放,且减排效果持久,表明这种生物肥料具有很好应用价值。
以下通过具体实施例进一步解释说明本发明的技术方案。
实施例1
分离Cloacibacterium normanense TD35菌株,具体步骤如下:
(一)各种培养基配制
(1)改良1/2TSA培养基:30mL灭菌的沼渣离心上清液、7.5g酪蛋白胨、2.5g大豆蛋白胨、10g氯化钠和15g琼脂溶于1L水中,121℃灭菌20min。
(2)改良1/2TSB培养基:30mL灭菌的沼渣离心上清液、7.5g酪蛋白胨、2.5g大豆蛋白胨、10g氯化钠溶于1L水中,121℃灭菌20min。
(3)含硝酸盐和亚硝酸盐的改良1/2TSB培养基:1g硝酸钠、0.1g亚硝酸钠、30mL灭菌的沼渣离心上清液、7.5g酪蛋白胨、2.5g大豆蛋白胨、10g氯化钠溶于1L水中,121℃灭菌20min。
(二)样本稀释液的制备
(1)从冰箱中取出样本融化后混匀,吸1mL沼渣(称1.0g土壤)到15mL无菌离心管中,加入3-5粒玻璃珠,再加入9mL无菌蒸馏水,涡旋震荡5min,混合均匀后,静置5min。
(2)吸取1mL 10-1的上清液加入到9mL灭菌蒸馏水中,稀释成10-2稀释液,混合均匀后再吸取1mL上清液加入到9mL灭菌蒸馏水中,稀释成10-3稀释液,然后按此方法,连续稀释到10-4、10-5、10-6等一系列稀释液。
(三)平板接种培养
从这三个稀释度(10-4,10-5,10-6)的稀释液中吸取0.1mL涂布在1/2TSA培养基上,每个稀释度5个重复平板。
(四)分离纯化、保藏
30℃培养,每天(直至7天)检查新出现的菌落,对长出的菌落拍照。根据菌落的形态(大小、性状、表面、结构、颜色)挑选,尽可能得到种类越多的细菌分离物,尽可能保证微生物的多样性。由于Cloacibacterium属的微生物为黄色和橙黄色,多挑一些黄色和橙黄色的菌落。
挑选的菌落在新的平板(同样的培养基成分,1/2TSA)上划线纯化,待长出新的可分离的菌落后,挑取单菌落接种到1.5mL改良的TSB液体培养基中。30℃摇床培养1天,吸取0.7mL菌液加入到0.3mL 50%的灭菌甘油中,-80℃保存,每株保存8管。
(五)对含有nosZ基因的菌株进行形态学和分子生物学鉴定
所有平板上最后分离得到350个单菌株,纯化后提取所有菌株的DNA,利用16SrRNA基因的引物,扩增所有分离物的16S rRNA基因后测序,通过序列分析得到每个分离物的物种分类地位。然后再对所有分离物的DNA进行nosZ功能基因PCR扩增,根据是否存在阳性扩增结果,筛选出105个含有nosZ功能基因的微生物分离物。
结果表明,105个含nosZ的分离物中,其中有47个属于Cloacibacterium。根据ERIC-PCR结果,将47个Cloacibacterium属的细菌分为5类基因组不同的菌株。然后从每一类中挑选一个菌株进行N2O还原能力测定实验,发现Cloacibacterium normanense TD35的还原能力最强,对比它的16S rRNA基因全长序列后发现,它与富集培养过程中样品中最优势的属于Cloacibacterium的ASV2序列完全匹配。
Cloacibacterium normanense TD35菌株在1/2TSA固体培养基上培养3天后,菌落呈半透明米黄色,菌落表面光滑、湿润,有光泽,呈圆点状(图2),光学显微镜下观察该菌株的菌体形态为短杆状,属于革兰氏阴性细菌(图3),全基因组测序结果显示Cloacibacterium normanense TD35菌株含有两个序列完全一致的16S rRNA基因拷贝,它的全长碱基序列如SEQ ID NO:1所示,具体为:
agagtttgatcctggctcaggatgaacgctagcgggaggcctaacacatgcaagccgagcggtagagtttcttcggaaacttgagagcggcgtacgggtgcggaacacgtgtgcaacctacctttatctggaggatagcctttcgaaaggaagattaatactccataatatattgattggcatcaattaatattgaaagctccggcggatagagatgggcacgcgcaagattagctagttggtgaggtaacggctcaccaaggcgatgatctttagggggcctgagagggtgatcccccacactggtactgagacacggaccagactcctacgggaggcagcagtgaggaatattggtcaatgggtgaaagcctgaaccagccatcccgcgtgaaggacgactgccctatgggttgtaaacttcttttgtatagggataaacctaccttcgtgagggtagctgaaggtactatacgaataagcaccggctaactccgtgccagcagccgcggtaatacggagggtgcaagcgttatccggatttattgggtttaaagggtccgtaggcggacttataagtcagtggtgaaagcctgtcgcttaacgatagaactgccattgatactgtaagtcttgagtatatttgaggtagctggaataagtagtgtagcggtgaaatgcatagatattacttagaacaccaattgcgaaggcaggttaccaagatataactgacgctgagggacgaaagcgtggggagcgaacaggattagataccctggtagtccacgccgtaaacgatgctaactcgtttttggggcgcaagcttcagagaccaagcgaaagtgataagttagccacctggggagtacgctcgcaagagtgaaactcaaaggaattgacgggggcccgcacaagcggtggattatgtggtttaattcgatgatacgcgaggaaccttaccaagacttaaatgggaattgacagctttagaaatagagctttcttcggacaattttcaaggtgctgcatggttgtcgtcagctcgtgccgtgaggtgttaggttaagtcctgcaacgagcgcaacccctgtcactagttgccatcattcagttggggactctagtgagactgcctacgcaagtagagaggaaggtggggatgacgtcaaatcatcacggcccttacgtcttgggccacacacgtaatacaatggccggtacagagggcagctacacagcgatgtgatgcaaatctcgaaagccggtctcagttcggattggagtctgcaactcgactctatgaagctggaatcgctagtaatcgcgcatcagccatggcgcggtgaatacgttcccgggccttgtacacaccgcccgtcaagccatggaagctgggggtacctgaagtcggtgaccgtaataggagctgcctagggtaaaactagtaactagggctaagtcgtaacaaggtagccgtaccggaaggtgcggctggaacatct。
应用例1
将Cloacibacterium normanense TD35菌株在改良的1/2TSA培养基上划线活化,在30℃培养2-3天。挑选单菌落,接种到2mL改良的1/2TSB液体培养基扩大培养中,两天后,吸取1mL菌液加入到30mL含硝酸盐和亚硝酸盐的改良1/2TSB培养基,密封培养瓶,并抽换气,24小时后加入5mL N2O气体,整个过程中监测N2O的还原与N2的产生。结果如图4所示,在前24个小时的培养过程中,Cloacibacterium normanense TD35不能产生N2O,也不产生N2,说明它不能还原硝酸盐和亚硝酸盐。24小时后,外源向培养瓶中加入N2O,Cloacibacteriumnormanense TD35显示出其还原N2O的能力。
表1:Cloacibacterium normanense TD35基因组中的氮代谢基因
基因编号 | 基因名称 | 对应酶的名称和分类编号 |
TD35000575 | glnA | glutamine synthetase[EC:6.3.1.2] |
TD35000668 | gdhA | glutamate dehydrogenase(NADP+)[EC:1.4.1.4] |
TD35001134 | norB | nitric oxide reductase subunit B[EC:1.7.2.5] |
TD35001135 | norC | nitric oxide reductase subunit C |
TD35001521 | nosZ | nitrous-oxide reductase[EC:1.7.2.4] |
TD35002083 | cynT | carbonic anhydrase[EC:4.2.1.1] |
从表1可以看出,Cloacibacterium normanense TD35不含硝酸盐还原酶和亚硝酸盐还原酶基因,但含有N2O还原酶基因nosZ,该结果与测定的表型一致。
为了验证富集Cloacibacterium normanense TD35菌株的沼渣在施用到土壤后的N2O减排能力,从短期和长期两个时间尺度考察带菌沼渣的N2O减排效果。获得Cloacibacterium normanense TD35菌株的纯培养后,接种到灭菌的沼渣中,厌氧培养两天。往培养瓶中分别加入30g潮土、黑土、红壤,然后加入3mL培养的含TD35菌株的沼渣,最后加无菌水调节含水量为30%,每个处理做3个重复,使用不加沼渣的三种土作为对照。短期N2O减排效果验证时,加完无菌水后,室温下有氧放置24小时,然后加入1mL 3g/L的NO3 -溶液和30mg玉米秸秆粉模拟农田施肥。加完后,立即将培养瓶置换成氦气厌氧环境,气相色谱仪上机检测培养过程中N2O和N2量的变化。长期N2O减排效果验证时,在调节含水量之后,室温下有氧放置30天,期间保持水分稳定,30天后再进行与上述一样的测定。短期效应和长期效应测定结果分别如图6和7所示,无论是在红壤、潮土还是黑土中,加入了这种生物肥料之后土壤产生的N2O的量会减少,N2O的还原速率也会更快,并且这种减排效果30天后仍然保留。
序列表
<110> 上海交通大学
<120> Cloacibacterium normanense TD35菌株及其应用
<141> 2022-01-27
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1505
<212> DNA
<213> 厌氧发酵沼渣()
<400> 1
agagtttgat cctggctcag gatgaacgct agcgggaggc ctaacacatg caagccgagc 60
ggtagagttt cttcggaaac ttgagagcgg cgtacgggtg cggaacacgt gtgcaaccta 120
cctttatctg gaggatagcc tttcgaaagg aagattaata ctccataata tattgattgg 180
catcaattaa tattgaaagc tccggcggat agagatgggc acgcgcaaga ttagctagtt 240
ggtgaggtaa cggctcacca aggcgatgat ctttaggggg cctgagaggg tgatccccca 300
cactggtact gagacacgga ccagactcct acgggaggca gcagtgagga atattggtca 360
atgggtgaaa gcctgaacca gccatcccgc gtgaaggacg actgccctat gggttgtaaa 420
cttcttttgt atagggataa acctaccttc gtgagggtag ctgaaggtac tatacgaata 480
agcaccggct aactccgtgc cagcagccgc ggtaatacgg agggtgcaag cgttatccgg 540
atttattggg tttaaagggt ccgtaggcgg acttataagt cagtggtgaa agcctgtcgc 600
ttaacgatag aactgccatt gatactgtaa gtcttgagta tatttgaggt agctggaata 660
agtagtgtag cggtgaaatg catagatatt acttagaaca ccaattgcga aggcaggtta 720
ccaagatata actgacgctg agggacgaaa gcgtggggag cgaacaggat tagataccct 780
ggtagtccac gccgtaaacg atgctaactc gtttttgggg cgcaagcttc agagaccaag 840
cgaaagtgat aagttagcca cctggggagt acgctcgcaa gagtgaaact caaaggaatt 900
gacgggggcc cgcacaagcg gtggattatg tggtttaatt cgatgatacg cgaggaacct 960
taccaagact taaatgggaa ttgacagctt tagaaataga gctttcttcg gacaattttc 1020
aaggtgctgc atggttgtcg tcagctcgtg ccgtgaggtg ttaggttaag tcctgcaacg 1080
agcgcaaccc ctgtcactag ttgccatcat tcagttgggg actctagtga gactgcctac 1140
gcaagtagag aggaaggtgg ggatgacgtc aaatcatcac ggcccttacg tcttgggcca 1200
cacacgtaat acaatggccg gtacagaggg cagctacaca gcgatgtgat gcaaatctcg 1260
aaagccggtc tcagttcgga ttggagtctg caactcgact ctatgaagct ggaatcgcta 1320
gtaatcgcgc atcagccatg gcgcggtgaa tacgttcccg ggccttgtac acaccgcccg 1380
tcaagccatg gaagctgggg gtacctgaag tcggtgaccg taataggagc tgcctagggt 1440
aaaactagta actagggcta agtcgtaaca aggtagccgt accggaaggt gcggctggaa 1500
catct 1505
<210> 2
<211> 2196
<212> DNA
<213> 未知()
<400> 2
atgtcaacat taagatttaa agcgttagaa acgcttcctt ttaaaaactt tagaaaagat 60
aatcacgtag aaataccttc gaaattatca gaattgtatt gcgaaaatgt tttctcagaa 120
gaaacaatga gagaatattt aaccaaagaa gcatttcagt ctatattaga tgctataaga 180
aaaggaacaa aaatccaaag acatattgca gatcaagttg ctgtagcaat gaaagattgg 240
gctttgtcta aaggagtgac tcactacact cactggtttc agccattaac aggtgctacc 300
gcagaaaagc atgattcatt ttttactcca atagaaggag gaagagcaat cgaaagattt 360
agcggaggaa tgcttattca gcaagagcca gacgcttctt ctttcccgaa tggaggaatt 420
agaaatactt tcgaggcgag aggttatacc gcttgggatc ctacttctcc agcttttatt 480
atgggaacta cactttgtat tccttccatt tttatttctt atactggtga aacattagat 540
tacaaagcac cattattaag agctttacat gcagtagacg aagccgcaac agaagtaatg 600
caatattttg acaaaaatgt aacgaaggtg atccctactt taggctggga acaggaatac 660
tttttagtag actctgcatt ataccaatca agaccagact tagtattaac aggtaaaaca 720
ttattgggac attctcctgc aaaaggtcaa cagttagatg atcattattt cggttctatt 780
cctactagag taatgaattt tatgaaggag ctagaaatag aatgtatgaa attaggaatt 840
cctgttacta caagacataa tgaggtggct ccaaatcaat ttgagttggc tccaatgtat 900
gaagaagcaa acgtagcagt agaccataat tcattattaa tggatgtaat ggctagagta 960
gctcataaac accattttca tattttattc cacgaaaagc catttgctgg agtaaacgga 1020
agtgggaaac acaataactg gtcactctct acagatactg gcgaaaattt attgagccca 1080
gggaaaaacc ctaagaaaaa cttacagttt ttgaccttct tcgtaaatac tattaaggcg 1140
gttcatgaat atgcagattt attaagagca agcattgctt ctgcaagtaa tgaccacaga 1200
ttaggagcaa acgaagcacc accagcaatt atctctgtat tcattggttc acaattatac 1260
agtgtgcttt ctgaattaga aaaagtgact aatggtaaac tttctccaga agaaaagacc 1320
gaattaaaac taaatgtagt aggtaaaatt ccagaaattt tattagacaa tacagataga 1380
aacagaactt cgcctttcgc atttacagga aataaatttg aaattagagc agtaggttct 1440
tctgcaaact gcgcagaatc tatgacagtt atgaacacca tcgctgcaaa acaattaaaa 1500
gagttcaaaa aagaagtaga tgctttaatt gaaaaagggc ttaaaaaaga tgaagctatt 1560
ttcaatgtgt taagagaata catcaaacaa tcgaaaaaca tcatgttcga aggtgatgga 1620
tattctgatg actgggcgaa agaagctaag aaaagaggtt tatccaacct taaaacaact 1680
ccagaagctt tagaaagaga aatggacaaa aaattcgtga aactttacga agaaatgggc 1740
gttttctctc atgtagaagt agaagcaaga aacgaaatta agttagaaaa atattctacg 1800
gtaattgata ttgaagctag agttttggca gacatcgcta gaaatcacat catcccagct 1860
gcattaaact atcagaacag attgatagac aatgtaaaag ggttaaaaga aatcttcgga 1920
gaaaaagaat tcaaggcttt agcaaaagaa caaatgagtt taattacaca gatttcagat 1980
aatgtttcag taattaaatt gggagtagaa gaattgttaa aagcaaaaga taaagcaaaa 2040
tcaatttcta gctcacagaa acaggcagaa gcctattgta acgaagtgaa gccattgttt 2100
gataaaatta gggaagcatc agacgcatta gaaatgatgg tagatgatga gctttggcca 2160
ctcacaaaat acagagaatt attattcact agataa 2196
<210> 3
<211> 1359
<212> DNA
<213> 未知()
<400> 3
atggaacaaa atactatcga acaaaaaata caagagttcg ttgcaaaaat tgaagcaaaa 60
aacccaaatg agccagaatt tctacaagca gtaaaggagg tagcggttac agttattcct 120
tttattgcca ctaaagaaga ataccgagga atgaagcttc tagagagaat ggcggagcct 180
gaaagagtaa tcatcttcag agttccttgg gtggatgata aaggtgaaat tcaggtgaat 240
agaggtttca gaattcaaat gaactctgca atcgggccat ataaaggagg aatcagattc 300
catcctacgg taaacctatc agtgctaaaa tttttagcat ttgaacaagt tttcaaaaac 360
tctttgacta ctttacctat gggtggtgga aaaggaggtt cagatttcga tccacaaggt 420
aaatccaata atgagatcat gagattctgc caatctttca tgacagaaat gtgtaaacac 480
atcggtccag aaaccgatgt tcctgcagga gatataggag taggtgctag agaaattggt 540
taccttttcg gtcaatataa gagaatcaga aatgagttta ctggagttct tactggtaaa 600
ggtttagcat acggtggttc attaatcaga ccagaagcta ctggttatgg tgtggtttac 660
ttctgcgagc agatgcttca tactattggg gaagaagtta aaggtaaaac attcactgtt 720
tcaggtttcg gaaatgtagc ttggggagta gtgaaaaaag taaatgaact gggtggaaaa 780
gtgcttacca tttcaggtcc agacggatac atctacgata aagacggaat ttctggtgaa 840
aagattgatt acatgcttga aatgagagct tctggaacca acagagcgga agatttcgct 900
aaaaaattcc cttctgcaga attccacgca ggaaaacgtc cttgggaagt aaaatgtgac 960
gtggcaattc cagcagctac acaaaacgaa cttcacctag aagatgctca aaaattggta 1020
tctaatggtg taatctgtgt gactgaagct gcaaacatgc cttctacact agatgcaata 1080
aactatttct tagataataa agtattattc agcccaggaa aagcttctaa cgctggtggt 1140
gtagcaactt ctggtctaga aatgactcaa aactctatca gattaaactg gagttctgaa 1200
gaagtagacg ctagactgaa agaaattatg attggtattc acaatgcttg tagaaaatac 1260
ggtaaagaag aaaatggata cgtaaactat gtaaaaggtg ctaatattgc tggtttcgtg 1320
aaagtagctg aagcgatgct tgcacaaggt gtagtataa 1359
<210> 4
<211> 1335
<212> DNA
<213> 未知()
<400> 4
atgaaactga agaataatat catcggaagc tggtttatta tcattgccat tttttcgctt 60
tttttaggac ttgtttttgg gattttagga ggattgcaac atctttatcc caatttattg 120
aaagatactt tgtctttcca aaaaatgaga ccgcttcaca cttacctttc tatcaactgg 180
atttttacag cagccacagg aattatttat tattatttac cagaagtttc gggtagaaaa 240
atttattctg aaaaactggc gaaattacaa atcgctttgc aaattttaat attggttttg 300
gtaacagttt tctttgtctt aggaaaattc ggaggaagag aatatttaga attcccgcca 360
tatattgtga ttttgattgt gagttcttgg ttgattttca tgtataattt cttcatgacc 420
gtaaaaccta attacaaaac agtccctgtc tacatctgga gctggagtac gggtttaatt 480
ttctttttga ttactacagt agaagctcaa ctttggcaat tctcattttt taatgacaat 540
atcattcgag atgtaaccat tcagtggaaa gctatgggtt ctatggttgg ttcttggaat 600
atgctggtgt acggaactgc tatgtttgct atggaaaaaa tctctggaga tcaaaaaatc 660
aatcaatcta aaattgcatt tttcttttat ttccttggct taacgaatct tatgttcaac 720
tggggacacc atacttatat agtacccgct tcaccaacgg tgaaacttat tgcttacagc 780
attagcatga cggaattgct tattttggca aatattattt actcttttag aaaaacttat 840
ataaaagcga accaccaaaa ccacaagctt tcgtttaaga ttcttactta tgcagaaatc 900
tggattttac tcaacttggt actttctatt tctatatcta tccctgctat aaatttctat 960
acgcacggaa cacatattac agtggcgcac gcaatgggct ctacaattgg catcaatact 1020
ttactgttat tagcttctat cactttaatt gtagatgatg tggcgccgca ttatttaaat 1080
tggaaaagat acaattggag tcttttgatc ttcaatttat cattggttat attttgggtt 1140
tgtttagtcg gaatgggact acagaaaatt tctgaaaatt tgcaaaacaa gagtttttat 1200
gacatgatta acgccttgag catttatttc aaaattttca ccagttctgg cgctgtactt 1260
cttttggcac tgatagcgct actctatcct ttgtttaaat ttagttggca atctgtgaca 1320
aagaaaatac agtaa 1335
<210> 5
<211> 387
<212> DNA
<213> 未知()
<400> 5
atgaaaaaga tatggatttt tttgacgctc ttttttgcgt ttgccactta ttcttcttgg 60
atttatacag gcgcaacaaa ctacggaacc gtaatgacta cccgacaaca attgggtaaa 120
aaaatatatc aagagtacaa ttgtcaatct tgccatcaga tttttggttt aggaggatat 180
ttaggtccag aacttactac tgctatttca gataaaactc gtggagaatc ctatgtaaaa 240
gcttttatag aaaatggagg cggaaccaga atgcctaatt tccatttcag taaagaacaa 300
acagaagcat tggtagatta tttaaaatat gtagacgcaa atgctttttc ttataaaaac 360
accacaccac atgaaactga agaataa 387
<210> 6
<211> 2001
<212> DNA
<213> 未知()
<400> 6
atgaaaatta ttcagttatt tgggatttcg gcctttgctt ctttagcatt tttgggcagt 60
tgtaaaccta aaggtacaga aaccgctgta agtggtgacg ccgcagaaaa agtatatgta 120
gctcctggaa aatatgatga ggtatacaat tttgtaagtg gtggttttaa cggacaaatg 180
aacgtttatg gtttaccgag cggaagatta cttaaggtag ttcctatttt ctctgtaaat 240
ccagaaaatg ggtatggtta cagtgaagaa actaagccta tgttagaaac ctcgcacggt 300
tttattcctt gggatgacca gcatcactta gaattatctc aaacaaatgg tgaacaagac 360
ggaagatgga tttttgcgaa tgctaataac actccacgtg tggcaagagt aaaccttaaa 420
accttcagaa ctgaggaaat tatagaatta ccgaactctg ctggtaacca ctcttctcca 480
tttattaccg aaaatacaga atatgtagtg gcaggtactc gttttgctgt tcctacagat 540
gatatgaacg gagacgttcc tattaattct ttcaaagaaa acttcaaagg agtgatttct 600
tttatcggag ttaataaaga aactggtgat atgaatttat cattccagat tgaagctcca 660
ggtgtaaact ttgacctttc tcacgctggt aaaggaaaat ctcacggttg gttcttcttc 720
tcttgttata attcagaaca agcgaatact ttattagagg ttaacgcttc tcaaaatgat 780
aaagacttta tcatggcggt aaactggaaa aaagctgaag aatatctaaa agctggtaaa 840
ggtagaaaag taaaaactca gtatgctcac aataaatttg atgaatctac tcaaactgct 900
acctctaaaa tggagcaaga agtgactgta ctttctgcta aagaattaaa agatatttgc 960
tatttcatgc caactcctaa atcacctcac ggttgtgacg tagacccaac tggcgaatac 1020
attgtaggtt ctggtaaatt ggcagctctt attcctgtac acagctttac caaaatgctt 1080
aaagcgattg aaaacaaaga atttgcaggt gaatatgatg gtattcctat cttaaaatat 1140
gaatctactc tttatggtga agttcaaaaa ccaggtttag gtccattaca cacagaattt 1200
gacggaaaag gaaatgctta tacttcattc ttcgtttctt ctgaagtagt aaaatgggat 1260
atcaaaacat taaaagttct tgacagacaa ccaactttct actctgtagg tcacttaatg 1320
gtagtaggtg gtgatactaa aaaaccatat ggtaaatatc tagttgctta taataaaatt 1380
acaaaagaca gattcttacc tacaggtcca gaattaaccc aatctgcaca gttgtatgac 1440
attagtggag ataagatgaa actcttatta gacttcccta cttttggtga gccacactat 1500
gcacaggctg ttccagcttc tcttattaaa gacaatcagg tgaagttcta caatattgca 1560
gacaataaac acccttatgc aaccaaaggt gaagcagaat ctaaagtggt aagacaaggc 1620
aataaggtac acgtttatat gacttctatc cgttcgcact ttgctccaga taatatagaa 1680
ggaataaaag taggtgacga agtttacttc cacgtgacca acttagaaca agactgggat 1740
gtaccacacg gattcgccat caaaggtaat caaaatgcag aattgctcat tatgccaggt 1800
gaaacttgta cactgaaatg ggttcctaaa aaaccaggaa tgtggccaat gtattgtaca 1860
gacttctgtt ctgcattgca ccaagaaatg caaggatatg taagagtttc tccagcagga 1920
agcaatgttc ctcttactta cagcctaaat aataaagcgg ataacgctaa aagccctgtg 1980
aaaacagcag tgacaaaata a 2001
<210> 7
<211> 1524
<212> DNA
<213> 未知()
<400> 7
atgtttaaga gacacgattt atcagcaggt ctcacggttt ttctagttgc acttcccttg 60
tgtctgggtg tagcattagc ttctggagca ccactttatt caggaatttt atcaggtatt 120
atcggtggaa ttgtagtagg tgttttgagc ggttcagatt tagccgtttc tggtcctgct 180
gcaggtttaa ccacggttgt agcagcatct atcattagtt taggtgattt tcaaaccttt 240
ttattaaccg ttattatagc tggcgtattc caaattttgt taggcgtttt aaaactgggt 300
gtttttgcca gttattttcc tagttctgtg attaaaggaa tgatggctgc tataggaatt 360
atattgattt ctaaacaaat tccattggca ttaggttata atcaacccga tttttggacc 420
agtggttttg tacaaatctt tacctctaaa aatttcttag gaaacctggt agagtttaat 480
tctcatatta ccagaggtgc ggtttttatt tctgtgattt ccttagcgat tttagttctg 540
atgaagaaac cccagtttca aaaatacaat atgattcctg ctccactttt ggtggttgct 600
tttggaattt taatcaattt tttaatgaat caattcggtt cttcttatgc tttaaagcca 660
aatcaattgg ttagtattcc agaaaatatg ttcgcagaaa ttaagtttcc tgaattttct 720
aaaatcttga ataatcaaga aatttggaaa gacgggattc tcataggaat tttggcaacg 780
ctagagactt tgctatgtat agaagcaatg gacaaactag accgtcacaa cagaataacc 840
cctgtaaatc gtgaattgat tgcacaggga attggtaatt ttctatgcgg acttttaggt 900
gctgttccac tcaccgctgt agttgtaaga ggttctgcca atatagaagc tggcgcaaag 960
actaaagtct cagccttcat gcatggaata tttttattac tctctgtact actgattccg 1020
tttttgatta acatgattcc gtatgcttct ttatctgcta ttttgattat tacaggtttt 1080
ggactcacga gagttgagat ttataaacat cttttcaaac tcggtttaaa acaatttatt 1140
ccttttattg caaccattat cattatcctt gtaacagact tattaatagg tgtttctatc 1200
ggtttattga tttctattta ttacatcatc aaagaaaatt tcaaagaaaa ctacgaaata 1260
gaaaaaacac attttcaagg tattgaccaa tataaattga aacttcacag caatgtaacc 1320
tttattaata aagtaaaaat taaaaatgct ttggataaag ttcccgctta ttctgtatta 1380
actattgacg gctccgaaat ccattttata gactatgatg ttttagaaat tatctcagat 1440
ttcaaaaata aagcacatga cagacacatt cagcttcaaa tgattaatat agaaaccgta 1500
gaaactgcag cgatttctca ttag 1524
Claims (10)
1.Cloacibacterium normanense TD35菌株,保藏在位于湖北省武汉市武昌区八一路299号的中国典型培养物保藏中心,保藏编号为CCTCC M 2022028,保藏日期为2022年1月5日,其16S rRNA基因序列如SEQ ID NO:1所示。
2.根据权利要求1所述的Cloacibacterium normanense TD35菌株,其特征在于,所述Cloacibacterium normanense TD35菌株来源于厌氧发酵沼渣。
3.根据权利要求1或2所述的Cloacibacterium normanense TD35菌株,其特征在于,所述Cloacibacterium normanense TD35菌株含有基因序列如SEQ ID NO:6所示的N2O还原酶基因nosZ,可还原氧化亚氮为氮气。
4.根据权利要求1所述的Cloacibacterium normanense TD35菌株,其特征在于,所述Cloacibacterium normanense TD35菌株属于兼性厌氧菌株,在有氧和无氧条件下都可以生长。
5.权利要求1至4任一项所述Cloacibacterium normanense TD35菌株的分离方法,其特征在于,包括以下步骤:
(1)对N2O富集培养的沼渣和土壤进行16S rRNA基因扩增子测序和宏基因组测序,发现Cloacibacterium在培养过程中被富集,且宏基因组拼接显示这个属的微生物含有N2O还原酶基因nosZ,由此选择Cloacibacterium丰度高的样本作为分离菌株来源;
(2)用梯度稀释法得到来源于富集培养沼渣和土壤的菌悬液,并将两种菌悬液涂布在改良的1/2TSA培养基上,在有氧条件下对土壤微生物进行分离培养,生长出的单菌落分离纯化,得到纯的单菌株;
(3)对步骤(2)中每个分离的纯的单菌株进行nosZ基因扩增,其中阳性菌株进行16SrRNA基因全长片段扩增与测序,得到16S rRNA基因序列如SEQ ID NO:1所示的菌株,即Cloacibacterium normanense TD35菌株。
6.根据权利要求5所述Cloacibacterium normanense TD35菌株的分离方法,其特征在于,所述改良的1/2TSA培养基为30mL灭菌的沼渣离心上清液、7.5g酪蛋白胨、2.5g大豆蛋白胨、10g氯化钠和15g琼脂溶于1L水中,121℃灭菌20min。
7.一种生物肥料,其特征在于,含有权利要求1至4任一项所述Cloacibacteriumnormanense TD35菌株。
8.根据权利要求7所述的生物肥料,其特征在于,通过在灭菌农业生物废弃物中采用有氧或者厌氧的方式培养所述Cloacibacterium normanense TD35菌株得到。
9.权利要求1至4任一项所述Cloacibacterium normanense TD35菌株或者权利要求7或8所述生物肥料在减少农田土壤N2O排放中的应用。
10.根据权利要求9所述的应用,其特征在于,所述农田土壤的土质包括但不限于红壤、潮土和黑土。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210100150.4A CN114410534B (zh) | 2022-01-27 | 2022-01-27 | Cloacibacterium normanense TD35菌株及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210100150.4A CN114410534B (zh) | 2022-01-27 | 2022-01-27 | Cloacibacterium normanense TD35菌株及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114410534A true CN114410534A (zh) | 2022-04-29 |
CN114410534B CN114410534B (zh) | 2024-03-15 |
Family
ID=81278834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210100150.4A Active CN114410534B (zh) | 2022-01-27 | 2022-01-27 | Cloacibacterium normanense TD35菌株及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114410534B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107541544A (zh) * | 2016-06-27 | 2018-01-05 | 卡尤迪生物科技(北京)有限公司 | 用于确定微生物分布谱的方法、系统、试剂盒、用途和组合物 |
US20210196828A1 (en) * | 2019-12-30 | 2021-07-01 | Eligo Bioscience | Bacterial delivery vehicles for in vivo delivery of a dna payload |
-
2022
- 2022-01-27 CN CN202210100150.4A patent/CN114410534B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107541544A (zh) * | 2016-06-27 | 2018-01-05 | 卡尤迪生物科技(北京)有限公司 | 用于确定微生物分布谱的方法、系统、试剂盒、用途和组合物 |
US20210196828A1 (en) * | 2019-12-30 | 2021-07-01 | Eligo Bioscience | Bacterial delivery vehicles for in vivo delivery of a dna payload |
Also Published As
Publication number | Publication date |
---|---|
CN114410534B (zh) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102268391B (zh) | 氢氧化细菌wmq-7及其分离方法和应用 | |
CN107236690A (zh) | 短小芽孢杆菌rp01及其应用 | |
CN108396005A (zh) | 一株水稻内生促生根瘤菌及其用途 | |
Kamako et al. | Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and the utilization of carbohydrate and nitrogen compounds by the isolated algae | |
CN110079471A (zh) | 一株具有促生作用的氢氧化细菌a06及其分离方法和应用 | |
CN106282047A (zh) | 具有生物肥应用潜力的固氮蓝藻的筛选方法 | |
CN109182181B (zh) | 一种降低畜禽粪便堆肥氨挥发的高温微好氧堆肥保氮菌及其应用 | |
CN114990028A (zh) | 一种高产短链脂肪酸的丁酸梭菌及其应用 | |
CN110628674A (zh) | 一株具有改良酸性土壤和解钾功能的短小芽孢杆菌及其菌剂的制备和应用 | |
CN102676431A (zh) | 一种反硝化细菌及其用于水体植物-微生物联合修复方法 | |
CN117778227B (zh) | 烟草谷氨酸杆菌rl-ll12菌株及其在除氮中的应用 | |
CN104593301A (zh) | 一株壁芽孢杆菌g1及其制备方法和应用 | |
CN110184213B (zh) | 水生产碱菌df-27菌株及其应用 | |
CN114410534B (zh) | Cloacibacterium normanense TD35菌株及其应用 | |
CN116064293B (zh) | 一株好氧甲烷氧化菌及其应用 | |
CN116083264B (zh) | 一种卡萨克尼亚氏菌株h41及其应用 | |
CN117757671A (zh) | 一种高效溶磷的欧文氏菌及其筛选、鉴定方法与应用 | |
CN113502242B (zh) | 一种坚强芽孢杆菌及其应用 | |
CN115927087A (zh) | 一种苏云金芽孢杆菌及其应用 | |
CN110261267B (zh) | 一种渔用光合细菌制剂产品的检测方法 | |
CN116042447A (zh) | 一种巨大普里斯特氏菌及其应用 | |
CN105296379A (zh) | 一株假诺卡氏菌及其应用 | |
CN116676212B (zh) | 一株Brevibacillus aydinogluensis PMBT001及其应用 | |
CN112300958B (zh) | 一种氢氧化细菌s-1-4及其筛选方法 | |
CN118773066B (zh) | 一种温室气体减排抑制剂及其在畜禽养殖垫料中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |