CN114406403A - 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法 - Google Patents

一种稳定高氮钢双丝cmt焊接熔滴过渡的方法 Download PDF

Info

Publication number
CN114406403A
CN114406403A CN202111564942.9A CN202111564942A CN114406403A CN 114406403 A CN114406403 A CN 114406403A CN 202111564942 A CN202111564942 A CN 202111564942A CN 114406403 A CN114406403 A CN 114406403A
Authority
CN
China
Prior art keywords
wire
welding
current
setting
cmt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111564942.9A
Other languages
English (en)
Other versions
CN114406403B (zh
Inventor
王克鸿
丁家亮
张浩然
张旭敏
贺申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202111564942.9A priority Critical patent/CN114406403B/zh
Publication of CN114406403A publication Critical patent/CN114406403A/zh
Application granted granted Critical
Publication of CN114406403B publication Critical patent/CN114406403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明为一种稳定高氮钢双丝CMT焊接熔滴过渡的方法,具体通过分别调节双丝送丝速度、焊接速度、峰值电流和峰值时间、基值电流和基值时间、短路电流和短路时间、电流上升速率、加速送丝速度,对焊接电流波形进行调整,调控前后丝波形相位差和能量输入。改变了以往一元化的焊接参数调控方式,转为多个参数同时调控,最大程度减小了高氮钢双丝CMT焊接时熔滴飞溅问题,最终实现稳定高氮钢双丝CMT焊接熔滴过渡的目的。

Description

一种稳定高氮钢双丝CMT焊接熔滴过渡的方法
技术领域
本发明属于电弧焊接技术领域,具体涉及一种稳定高氮钢双丝CMT焊接熔滴过渡的方法。
背景技术
高氮低镍奥氏体不锈钢作为一种新型Cr-Mn-N系不锈钢材料,具有良好的强度、耐腐蚀性和抗冲击性,并且塑性和传统Cr-Ni奥氏体不锈钢相当。高氮钢内部通过氮元素部分或全部替代镍元素固溶促进奥氏体铁素体两相向单相奥氏体转变,过量的氮则以氮化物的形式析出。因此在镍元素短缺的环境下,低成本的高氮钢研究应用需求增大。在实际生产应用中,焊接工艺是高氮钢结构制造的必不可少的关键环节。
然而,焊接工艺属于热加工工艺,对于CMT来说,还涉及到母材及焊丝的加热、熔化、凝固、冷却等复杂变化。高氮钢中位于奥氏体基体中过饱和的氮在加热熔化后,由于在钢液中的溶解度急剧下降,会聚集形成气泡逸出熔池或者来不及逸出而产生气孔缺陷,在焊接过程中则体现为大量的熔滴飞溅。
CMT(冷金属过渡技术)是一种全新的MIG/MAG焊接工艺。CMT是数字控制方式下的短电弧和焊丝的换向送丝监控。其中的换向送丝系统由前、后两套协同工作的焊丝输送机构组成,从而使焊丝的输送过程呈间断的送丝。后送丝机构按照恒定的送丝速度向前送丝,前送丝机构则按照控制系统的指令以一定的频率控制着脉冲式的焊丝输送。CMT技术第一次将送丝与焊接过程控制直接地联系起来。当数字化的过程控制监测到一个短路信号,就会反馈给送丝机,送丝机作出回应回抽焊丝,从而使得焊丝与熔滴分离。在全数字化的控制下,这种过渡方式完全区别于传统的熔滴过渡方式。
对于双丝CMT焊接技术,其焊接效率更高,焊接速度更快,能量分配也更高。但带来的问题为双丝之间存在电弧干扰,相位差较小时其电弧干扰问题尤其严重,使前丝和后丝的电弧飘动变大,进而影响熔滴过渡,如图1所示。
CMT焊接时电压与电流相关,电流参数调节对CMT焊接起着决定性的作用。电流波形是电流参数的直接反映,双丝峰值阶段开始时间差值为其相位差的体现,通过比对前丝和后丝的电流波形,分析其相位差影响从而调整电流参数,对高氮钢双丝CMT焊接有着重要意义。
发明内容
本发明目的在于提供一种稳定高氮钢双丝CMT焊接熔滴过渡的方法。
有鉴于上述分析,本发明提供了一种稳定高氮钢双丝CMT焊接熔滴过渡的方法,具体包括以下步骤:
步骤1、双丝送丝速度:将前丝送丝速度设置为v1,后丝送丝速度为v1’,焊接速度为v,维持焊接稳定进行;
步骤2、峰值阶段:将前丝峰值电流设置为i1,后丝峰值电流设置为i1’,持续时间t1,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为t;
步骤3、基值阶段:将前丝基值电流设置为i2,后丝基值电流设置为i2’,持续时间t2,维持电弧稳定燃烧;
步骤4、短路阶段:将前丝短路电流设置为i3,后丝短路电流设置为i3’,持续时间t3,焊丝回抽;
步骤5、电流上升阶段:将前丝电流上升速率设置为v2,后丝电流上升速率设置为v2’,电流上升过渡时间为t4,电流持续上升;
步骤6、加速送丝阶段:将前丝加速送丝速度设置为v3,后丝加速送丝速度设置为v3’,焊丝加速送丝。
步骤7、前丝单个CMT周期能量输入为w1,后丝单个CMT周期能量输入为w1’,单个CMT周期总能量输入为w2,总线能量输入为w3。
步骤8、重复步骤1~步骤7,直至焊接完成。
进一步的,步骤1中,前丝送丝速度v1为3~7m/s,后丝送丝速度v1’为3~7m/s,v1大于或等于v2,焊接速度v为5mm/s。
进一步的,v1大于v1’时,i1为125~160A,i1’为100~150A,i2为60~100A,i2’为40~60A,i3为60~100A,i3’为40~60A。
进一步的,v1等于v1’时,i1为125~150A,i1’为125~150A,i2为40~60A,i2’为40~60A,i3为40~60A,i3’为40~60A。
进一步的,t为4~10ms,t1为4~6ms,t2为4~6ms,t3为3~5ms,t4为0.1~2ms。
进一步的,v2为200~400A/ms,v2’为200~400A/ms,v3为30~40m/min,v3’为30~40m/min。
进一步的,w1为20~30J,w1’为17~25J,w2为40~50J,w3为4~5KJ/cm。
本发明相比现有技术,具有显著优点如下:
本发明从双丝CMT电流波形相位差入手,通过改变电流波形对电流和能量输入进行调整,从而极大的稳定了高氮钢双丝CMT焊接熔滴过渡,减小熔滴飞溅。改变了以往一元化的焊接参数调控方式,转为多个参数同时调控,最大程度减小了高氮钢双丝CMT焊接时熔滴飞溅问题,具有重大的科研价值和广阔的实际应用前景。
附图说明
图1是双丝CMT焊接时电弧和熔滴示意图。
图2是本发明实施例1的双丝电流波形示意图。
图3是本发明实施例1的熔滴过渡示意图。
图4是本发明实施例2的双丝电流波形示意图。
图5是本发明实施例2的熔滴过渡示意图。
图6是本发明对比例1的双丝电流波形示意图。
图7是本发明对比例1的熔滴过渡示意图。
图8是本发明对比例2的双丝电流波形示意图。
图9是本发明对比例2的熔滴过渡示意图。
具体实施方式
本发明技术方法不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
图1是双丝CMT焊接时,电弧和熔滴受双丝间电弧干扰而产生偏移的示意图。
图2与图3是当高氮钢双丝CMT焊接前后丝送丝速度相同时本发明的具体应用,图4与图5是当高氮钢双丝CMT焊接前丝送丝速度大于后丝时本发明的另一个具体应用。图6与图7、图8图9是不采用本发明调整焊接电流参数时的两个对比例。
实施例1
高氮钢双丝CMT焊接中,电弧稳定性和熔滴过渡是极难控制的,实现电弧稳定和降低熔滴飞溅是高氮钢双丝CMT焊接的核心技术。如图2与图3所示,为本发明所提供的一种稳定高氮钢双丝CMT焊接熔滴过渡的方法的一个优选实施例。
第一步、双丝送丝速度:将前丝送丝速度设置为5m/s,后丝送丝速度设置为为5m/s,焊接速度为5mm/s,维持焊接稳定进行;
第二步、峰值阶段:将前丝峰值电流设置为150A,后丝峰值电流设置为150A,持续时间5ms,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为9ms;
第三步、基值阶段:将前丝基值电流设置为40A,后丝基值电流设置为40A,持续时间为5ms,维持电弧稳定燃烧;
第四步、短路阶段:将前丝短路电流设置为40A,后丝短路电流设置为40A,持续时间为5mm,焊丝回抽;
第五步、电流上升阶段:将前丝电流上升速率设置为300A/ms,后丝电流上升速率设置为300A/ms,电流上升过渡时间为0.8ms,电流持续上升;
第六步、加速送丝阶段:将前丝加速送丝速度设置为31m/min,后丝加速送丝速度设置为31m/min,焊丝加速送丝。
第七步、前丝单个CMT周期能量输入为20.04J,后丝单个CMT周期能量输入为21.19J,单个CMT周期总能量输入为41.23J,总线能量输入为4.1KJ/cm。
第八步、重复第一步~第七步,直至焊接完成。
图2为电流波形图,图3为熔滴过渡示意图,熔滴过渡稳定,焊缝成形良好。
实施例2
高氮钢双丝CMT焊接中,电弧稳定性和熔滴过渡是极难控制的,实现电弧稳定和降低熔滴飞溅是高氮钢双丝CMT焊接的核心技术。如图2与图3所示,为本发明所提供的一种稳定高氮钢双丝CMT焊接熔滴过渡的方法的一个优选实施例。
第一步、双丝送丝速度:将前丝送丝速度设置为5m/s,后丝送丝速度设置为为3m/s,焊接速度为5mm/s,维持焊接稳定进行;
第二步、峰值阶段:将前丝峰值电流设置为160A,后丝峰值电流设置为100A,持续时间5ms,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为4ms;
第三步、基值阶段:将前丝基值电流设置为100A,后丝基值电流设置为40A,持续时间为5ms,维持电弧稳定燃烧;
第四步、短路阶段:将前丝短路电流设置为100A,后丝短路电流设置为40A,持续时间为5mm,焊丝回抽;
第五步、电流上升阶段:将前丝电流上升速率设置为300A/ms,后丝电流上升速率设置为300A/ms,电流上升过渡时间为0.8ms,电流持续上升;
第六步、加速送丝阶段:将前丝加速送丝速度设置为35m/min,后丝加速送丝速度设置为35m/min,焊丝加速送丝。
第七步、前丝单个CMT周期能量输入为29.80J,后丝单个CMT周期能量输入为17.71J,单个CMT周期总能量输入为47.51J,总线能量输入为4.7KJ/cm。
第八步、重复第一步~第七步,直至焊接完成。
图4为电流波形图,图5为熔滴过渡示意图,熔滴过渡稳定,焊缝成形良好。
对比例1
高氮钢双丝CMT焊接中,电弧稳定性和熔滴过渡是极难控制的,以下为本发明的一个对比例,。
第一步、双丝送丝速度:将前丝送丝速度设置为5m/s,后丝送丝速度设置为为5m/s,焊接速度为5mm/s,维持焊接稳定进行;
第二步、峰值阶段:将前丝峰值电流设置为225A,后丝峰值电流设置为225A,持续时间5ms,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为1ms;
第三步、基值阶段:将前丝基值电流设置为60A,后丝基值电流设置为60A,持续时间为5ms,维持电弧稳定燃烧;
第四步、短路阶段:将前丝短路电流设置为40A,后丝短路电流设置为40A,持续时间为5mm,焊丝回抽;
第五步、电流上升阶段:将前丝电流上升速率设置为200A/ms,后丝电流上升速率设置为200A/ms,电流上升过渡时间为0.8ms,电流持续上升;
第六步、加速送丝阶段:将前丝加速送丝速度设置为35m/min,后丝加速送丝速度设置为35m/min,焊丝加速送丝。
第七步、前丝单个CMT周期能量输入为36.02J,后丝单个CMT周期能量输入为27.01J,单个CMT周期总能量输入为63.03J,总线能量输入为6.3KJ/cm。
第八步、重复第一步~第七步,直至焊接完成。
图6为电流波形图,图7为熔滴过渡示意图,熔滴过渡极不稳定,飞溅严重。
对比例2
高氮钢双丝CMT焊接中,电弧稳定性和熔滴过渡是极难控制的,以下为本发明的一个对比例,。
第一步、双丝送丝速度:将前丝送丝速度设置为5m/s,后丝送丝速度设置为为3m/s,焊接速度为5mm/s,维持焊接稳定进行;
第二步、峰值阶段:将前丝峰值电流设置为150A,后丝峰值电流设置为70A,持续时间5ms,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为2ms;
第三步、基值阶段:将前丝基值电流设置为80A,后丝基值电流设置为20A,持续时间为5ms,维持电弧稳定燃烧;
第四步、短路阶段:将前丝短路电流设置为60A,后丝短路电流设置为40A,持续时间为5mm,焊丝回抽;
第五步、电流上升阶段:将前丝电流上升速率设置为300A/ms,后丝电流上升速率设置为300A/ms,电流上升过渡时间为0.2ms,电流持续上升;
第六步、加速送丝阶段:将前丝加速送丝速度设置为35m/min,后丝加速送丝速度设置为35m/min,焊丝加速送丝。
第七步、前丝单个CMT周期能量输入为20.11J,后丝单个CMT周期能量输入为12.03J,单个CMT周期总能量输入为32.14J,总线能量输入为3.2KJ/cm。
第八步、重复第一步~第七步,直至焊接完成。
图8为电流波形图,图9为熔滴过渡示意图,熔滴过渡虽然稳定,但热输入较低,焊缝无法成形。

Claims (7)

1.一种稳定高氮钢双丝CMT焊接熔滴过渡的方法,其特征在于,具体包括以下步骤:
步骤1、双丝送丝速度:将前丝送丝速度设置为v1,后丝送丝速度为v1’,焊接速度为v,维持焊接稳定进行;
步骤2、峰值阶段:将前丝峰值电流设置为i1,后丝峰值电流设置为i1’,持续时间t1,使得丝材迅速熔化,熔滴迅速长大,前丝峰值阶段比后丝峰值阶段提前时间为t;
步骤3、基值阶段:将前丝基值电流设置为i2,后丝基值电流设置为i2’,持续时间t2,维持电弧稳定燃烧;
步骤4、短路阶段:将前丝短路电流设置为i3,后丝短路电流设置为i3’,持续时间t3,焊丝回抽;
步骤5、电流上升阶段:将前丝电流上升速率设置为v2,后丝电流上升速率设置为v2’,电流上升过渡时间为t4,电流持续上升;
步骤6、加速送丝阶段:将前丝加速送丝速度设置为v3,后丝加速送丝速度设置为v3’,焊丝加速送丝;
步骤7、前丝单个CMT周期能量输入为w1,后丝单个CMT周期能量输入为w1’,单个CMT周期总能量输入为w2,总线能量输入为w3;
步骤8、重复步骤1~步骤7,直至焊接完成。
2.如权利要求1所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,步骤1中,所述前丝送丝速度v1为3~7m/s,所述后丝送丝速度v1’为3~7m/s,v1大于或等于v2,所述焊接速度v为5mm/s。
3.如权利要求2所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,所述v1大于v1’时,所述i1为125~160A,所述i1’为100~150A,所述i2为60~100A,所述i2’为40~60A,所述i3为60~100A,所述i3’为40~60A。
4.如权利要求2所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,所述v1等于v1’时,所述i1为125~150A,所述i1’为125~150A,所述i2为40~60A,所述i2’为40~60A,所述i3为40~60A,所述i3’为40~60A。
5.如权利要求1所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,所述t为4~10ms,所述t1为4~6ms,所述t2为4~6ms,所述t3为3~5ms,所述t4为0.1~2ms。
6.如权利要求1所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,所述v2为200~400A/ms,所述v2’为200~400A/ms,所述v3为30~40m/min,所述v3’为30~40m/min。
7.如权利要求1所述的稳定高氮钢双丝CMT熔滴过渡方法,其特征在于,所述w1为20~30J,所述w1’为17~25J,所述w2为40~50J,所述w3为4~5KJ/cm。
CN202111564942.9A 2021-12-20 2021-12-20 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法 Active CN114406403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111564942.9A CN114406403B (zh) 2021-12-20 2021-12-20 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111564942.9A CN114406403B (zh) 2021-12-20 2021-12-20 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法

Publications (2)

Publication Number Publication Date
CN114406403A true CN114406403A (zh) 2022-04-29
CN114406403B CN114406403B (zh) 2023-10-13

Family

ID=81266727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111564942.9A Active CN114406403B (zh) 2021-12-20 2021-12-20 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法

Country Status (1)

Country Link
CN (1) CN114406403B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302052A (zh) * 2022-08-29 2022-11-08 南京理工大学 一种稳定高氮钢焊丝熔化极气保焊熔滴过渡的方法
CN115446331A (zh) * 2022-09-21 2022-12-09 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN116117279A (zh) * 2022-12-30 2023-05-16 深圳市麦格米特焊接技术有限公司 熔化电极气体保护焊系统及其控制方法、控制器、介质
CN116213888A (zh) * 2022-12-30 2023-06-06 深圳市麦格米特焊接技术有限公司 熔化电极气体保护焊系统及其控制方法、控制器、介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026188A1 (en) * 2005-05-24 2009-01-29 Fronius International Gmbh Cold-Metal-Transfer Welding Process and Welding Installation
CN101524781A (zh) * 2009-04-01 2009-09-09 北京工业大学 一种交流电弧焊接系统及方法
CN201493592U (zh) * 2009-04-01 2010-06-02 北京工业大学 一种交流电弧焊接系统
CN202021414U (zh) * 2011-03-16 2011-11-02 江西江州联合造船有限责任公司 双丝双电源co2焊接焊枪
CN108057942A (zh) * 2017-12-21 2018-05-22 北京工业大学 一种短路过渡焊接方法及系统
CN110091035A (zh) * 2019-06-03 2019-08-06 河北科技大学 一种高熵合金增材制造装置及增材制造方法
CN112548269A (zh) * 2020-11-26 2021-03-26 西安交通大学 一种同步多机器人双丝结构件电弧增材装备及其控制方法
CN112935482A (zh) * 2021-01-27 2021-06-11 华南理工大学 基于电流波形激励熔滴过渡的双丝脉冲mig焊电源系统
CN113182647A (zh) * 2021-03-23 2021-07-30 石家庄铁道大学 一种用于异种金属连接的双丝熔化极气体保护焊焊接方法
CN115464238A (zh) * 2022-08-26 2022-12-13 山东奥太电气有限公司 一种基于交流波形控制的焊接控制方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026188A1 (en) * 2005-05-24 2009-01-29 Fronius International Gmbh Cold-Metal-Transfer Welding Process and Welding Installation
CN101524781A (zh) * 2009-04-01 2009-09-09 北京工业大学 一种交流电弧焊接系统及方法
CN201493592U (zh) * 2009-04-01 2010-06-02 北京工业大学 一种交流电弧焊接系统
CN202021414U (zh) * 2011-03-16 2011-11-02 江西江州联合造船有限责任公司 双丝双电源co2焊接焊枪
CN108057942A (zh) * 2017-12-21 2018-05-22 北京工业大学 一种短路过渡焊接方法及系统
CN110091035A (zh) * 2019-06-03 2019-08-06 河北科技大学 一种高熵合金增材制造装置及增材制造方法
CN112548269A (zh) * 2020-11-26 2021-03-26 西安交通大学 一种同步多机器人双丝结构件电弧增材装备及其控制方法
CN112935482A (zh) * 2021-01-27 2021-06-11 华南理工大学 基于电流波形激励熔滴过渡的双丝脉冲mig焊电源系统
CN113182647A (zh) * 2021-03-23 2021-07-30 石家庄铁道大学 一种用于异种金属连接的双丝熔化极气体保护焊焊接方法
CN115464238A (zh) * 2022-08-26 2022-12-13 山东奥太电气有限公司 一种基于交流波形控制的焊接控制方法及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302052A (zh) * 2022-08-29 2022-11-08 南京理工大学 一种稳定高氮钢焊丝熔化极气保焊熔滴过渡的方法
CN115302052B (zh) * 2022-08-29 2024-04-05 南京理工大学 一种稳定高氮钢焊丝熔化极气保焊熔滴过渡的方法
CN115446331A (zh) * 2022-09-21 2022-12-09 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN115446331B (zh) * 2022-09-21 2024-03-05 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN116117279A (zh) * 2022-12-30 2023-05-16 深圳市麦格米特焊接技术有限公司 熔化电极气体保护焊系统及其控制方法、控制器、介质
CN116213888A (zh) * 2022-12-30 2023-06-06 深圳市麦格米特焊接技术有限公司 熔化电极气体保护焊系统及其控制方法、控制器、介质

Also Published As

Publication number Publication date
CN114406403B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN114406403A (zh) 一种稳定高氮钢双丝cmt焊接熔滴过渡的方法
CN101862886B (zh) 热丝熔化极气体保护焊接方法及其实现装置
CN109926705B (zh) 一种用于机器人的等离子弧双电源双热丝增材制造方法及装置
CN103203529B (zh) 非熔化极电弧与双丝熔化极电弧交叉耦合的焊接方法
CN1819887B (zh) 电弧焊控制方法和电弧焊机
CN102652045B (zh) 电弧焊接方法和电弧焊接装置
CN103753024A (zh) 激光-双丝间接旁路电弧复合的焊接方法
US11813704B2 (en) Pulsed arc welding control method and pulsed arc welding device
CN102626814B (zh) 焊接装置以及二氧化碳气体弧焊方法
CN103521885A (zh) 双丝间接电弧交替旁路的焊接方法
CN104334305A (zh) 用于表面张力过渡短路焊接的改善的方法
CN109807417A (zh) 一种激光主动切割焊丝控制熔滴温度的方法
CN108555421A (zh) 一种基于脉冲协调双钨极氩弧焊的熔滴过渡控制装置及其控制方法
CN109715335A (zh) 电弧焊接控制方法
CN103341681B (zh) 多态双丝电弧焊接装置及焊接方法
CN114160922B (zh) 提高铝合金gtaw waam精度及效率的系统及方法
CN105904109A (zh) 等离子-tig电弧耦合复合焊接装置及方法
CN106914708A (zh) 激光双丝间接电弧复合焊接装置及送丝速度预测计算方法
CN108883486A (zh) 电弧焊接控制方法
CN112620892B (zh) 一种增材制造金属间化合物的熔滴过渡控制方法
CN101530943A (zh) 一种旁路分流双面电弧焊装置及焊接方法
CN100584504C (zh) 铝及铝合金熔化极气体保护焊的亚射流过渡自适应控制法
CN109014498A (zh) 一种钛合金厚板焊接方法
CN102756197B (zh) 短路期间的焊接电流控制方法
CN105598557A (zh) 一种基于脉冲电流的药芯焊丝水下湿法焊接方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant