CN114406226A - 一种微合金低碳钢中厚板的连续铸轧方法 - Google Patents

一种微合金低碳钢中厚板的连续铸轧方法 Download PDF

Info

Publication number
CN114406226A
CN114406226A CN202210058868.1A CN202210058868A CN114406226A CN 114406226 A CN114406226 A CN 114406226A CN 202210058868 A CN202210058868 A CN 202210058868A CN 114406226 A CN114406226 A CN 114406226A
Authority
CN
China
Prior art keywords
equal
less
percent
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210058868.1A
Other languages
English (en)
Inventor
宋思宇
刘自扬
李睿鑫
孔进丽
欧金雄
王寅
陈任忠
张蒙蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202210058868.1A priority Critical patent/CN114406226A/zh
Publication of CN114406226A publication Critical patent/CN114406226A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

本发明公开了一种微合金低碳钢中厚板的连续铸轧方法,涉及钢铁生产技术领域,过对炼钢、轧钢车间布局进行改造,将连铸生产线和轧钢生产线进行连接,连铸车间生产出的坯料经4小时保温堆冷后吊运到步进式加热炉装钢辊道,经输送辊道运送到轧钢车间并装入加热炉,入炉时坯料表面温度在650℃至700℃之间;坯料加热过程:在炉时间≥60min,均热时间≥10min,温度均匀性≤15℃,出炉温度1120℃~1250℃。通过对炼钢、轧钢车间布局进行优化,即将连铸生产线和轧钢生产线进行连接,同时对坯料的加热方式进行改进,提高入炉温度,减少坯料二次加热过程对燃料的消耗,钢坯各个部位的温度均匀性更好,同时提高了轧钢生产的灵活性,提高了生产效率。

Description

一种微合金低碳钢中厚板的连续铸轧方法
技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种微合金低碳钢中厚板的连续铸轧方法。
背景技术
钢铁冶金行业的生产主要依赖于燃料的巨大消耗,为了顺应绿色环保的发展理念,清洁、低碳的生产是大势所趋。
目前中厚板的主要生产方式为:首先将熔炼好的钢水注入连铸机的结晶器,通过控制钢水的凝固速度和拉速,生产出符合技术要求和设计尺寸的钢坯,连铸出来的我钢坯需要放入堆冷坑中缓慢冷却。当钢坯缓慢冷却温度降低至200℃以下时,根据轧钢计划的安排,再将钢坯装入步进式加热炉中,均匀加热至1100℃至1250℃后出炉,进入轧制工序。在这个生产流程中钢坯经历了从连铸出来的高温状态降低到200℃以下再重新升温的过程,这个过程伴随着热量的消耗和能源的极大浪费,增加了生产成本。
同时,受生产工艺的影响,每块钢坯的加热温度不一致,再加上受轧钢节奏的影响,钢坯在二次加热的过程中升温速率、保温时间波动较大,致使钢坯受热不均匀,在一定程度上对轧制板形、产品表面质量等造成影响。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种微合金低碳钢中厚板的连续铸轧方法,过对炼钢、轧钢车间布局进行改造,将连铸生产线和轧钢生产线进行连接,
连铸车间生产出的坯料经4小时保温堆冷后吊运到步进式加热炉装钢辊道,经输送辊道运送到轧钢车间并装入加热炉,入炉时坯料表面温度在650℃至700℃之间;
坯料加热过程:在炉时间≥60min,均热时间≥10min,温度均匀性≤15℃,出炉温度1120℃~1250℃。
本发明进一步限定的技术方案是:
前所述的一种微合金低碳钢中厚板的连续铸轧方法,生产的坯料规格:厚度150mm,宽度≤3200mm,长度≤17600mm。
前所述的一种微合金低碳钢中厚板的连续铸轧方法,微合金低碳钢化学成分及质量百分比如下:C≤0.20%,Si≤0.55%,Mn:1.2%~1.6%,P≤0.025%,S≤0.01%,Nb≤0.05%,V≤0.05%,Ti≤0.03%,Cr≤0.3%,Ni≤0.3%,Cu≤0.3%,Mo≤0.08%,其余为Fe和不可避免的杂质。
前所述的一种微合金低碳钢中厚板的连续铸轧方法,微合金低碳钢化学成分及质量百分比如下:C:0.16%~0.20%,Si:0.1%~0.25%,Mn:1.4%~1.6%,P≤0.025%,S≤0.005%,Nb≤0.03%,V≤0.02%,Ti≤0.01%,Cr≤0.15%,Ni≤0.1%,Cu≤0.1%,Mo≤0.05%,其余为Fe和不可避免的杂质。
前所述的一种微合金低碳钢中厚板的连续铸轧方法,装炉前检查钢坯的表面质量,如有毛刺需清扫干净;钢坯装入加热炉前需检验不允许有裂纹、大面积不平整缺陷。
前所述的一种微合金低碳钢中厚板的连续铸轧方法,轧制需使用往复式中厚板轧机生产,轧制过程中对轧件进行保温。
本发明的有益效果是:本发明首先通过对炼钢、轧钢车间布局进行改造,将连铸生产线和轧钢生产线进行连接,同时在工艺设计上减少堆冷时间并增加保温措施的方案,提前组织生产计划,即将生产出来的钢坯堆冷4小时,并用保温罩加以保温,保温结束后钢坯表面温度降至650℃至700℃。当达到保温时间后将钢坯吊运到步进式加热炉装钢辊道上,装炉加热,在炉内加热到工艺要求的温度后保温,根据轧钢节奏出炉。采用此方法生产时,钢坯加热到工艺要求的温度时所用时间短,在炉内的保温时间长,钢坯的整体温度均匀性更好。另外,由于加热到目标温度时温度升高的幅度小,加热过程中可适当降低升温速率,在一定程度上避免了钢坯表面因加热速率快导致的产品表面缺陷。在能源消耗方面,相较于传统方法生产,采用该工艺生产时加热炉吨钢煤气消耗量可节省约14%。
具体实施方式
本实施例提供的一种微合金低碳钢中厚板的连续铸轧方法,钢板化学成分及质量百分比如下:C:0.18%,Si:0.25%,Mn:1.55%,P:0.014%,S:0.003%,Nb:0.027%,V:0.004%,Ti:0.004%,Cr:0.05%,Ni:0.02%,Cu:0:03%,Mo:0:001%,其余为Fe和不可避免的杂质。
所生产的连铸坯规格为:厚度150mm,宽度2745mm,长度8710mm;成品规格为10mm×2690mm×8m。经剪切后共生产15块钢板,剪切过程在第一块钢板尾部取性能检测试样。
连铸机生产出的坯料经堆冷4小时后吊运到步进式加热炉装钢辊道,经辊道输送到加热炉装钢炉门位置,同时对坯料表面质量进行检查,吹扫多余的毛刺,确认表面无裂纹、表面粗糙等缺陷。
随着加热炉步内进梁的运动,炉内钢坯依次向出口方向移动,当加热炉入口处空余位置满足装入钢坯的条件时,打开装钢炉门,装钢机启动,将坯料送入步进式加热炉中,装炉时坯料温度为667℃。装入加热炉后钢坯随着步进梁移动,并根据轧钢节奏调整加热炉步进梁移动速度,钢坯在炉内依次通过预热段、加热段、保温段3个区域。
坯料在炉时间共72min,均热时间27min,温度均匀性9℃,出钢温度1183℃。钢坯出炉后经传输辊道输送至除鳞箱,对钢坯上下表面的氧化皮进行去除,除鳞结束后通过辊道输送到轧机入口处,进入轧制工序。
轧制过程采用3500往复式炉卷轧机,轧制11道次,在第7、8、9、10道次采用卷轧方式轧制,以保证轧件的终轧温度。
轧制结束后采用层流冷却的方式降低轧件温度,使产品性能满足设计要求,同时用飞剪机将轧件分成4段,通过热矫直机矫直后上冷床,输送到剪切区域。
轧件进入精整区域后对钢板尺寸进行切割,同时切取性能检测试样,剪切完成的钢板进行喷涂标识,表面检验合格后入库,切取的试样送理化室检测。
经理化检测,此轧件生产的钢板满足技术要求,钢板进入发货流程,供客户使用。
本发明通过对炼钢、轧钢车间布局进行优化,即将连铸生产线和轧钢生产线进行连接,同时对坯料的加热方式进行改进,提高入炉温度,减少坯料二次加热过程对燃料的消耗,钢坯各个部位的温度均匀性更好,同时提高了轧钢生产的灵活性,提高了生产效率。相较于传统方法生产,采用该工艺生产时加热炉吨钢煤气消耗量可节省约14%,吨钢节省燃气费用约6.5元,一条产线年产量按160万吨计算,每年可节省成本1040万元。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

1.一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:过对炼钢、轧钢车间布局进行改造,将连铸生产线和轧钢生产线进行连接,
连铸车间生产出的坯料经4小时保温堆冷后吊运到步进式加热炉装钢辊道,经输送辊道运送到轧钢车间并装入加热炉,入炉时坯料表面温度在650℃至700℃之间;
坯料加热过程:在炉时间≥60min,均热时间≥10min,温度均匀性≤15℃,出炉温度1120℃~1250℃。
2.根据权利要求1所述的一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:生产的坯料规格:厚度150mm,宽度≤3200mm,长度≤17600mm。
3.根据权利要求1所述的一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:微合金低碳钢化学成分及质量百分比如下:C≤0.20%,Si≤0.55%,Mn:1.2%~1.6%,P≤0.025%,S≤0.01%,Nb≤0.05%,V≤0.05%,Ti≤0.03%,Cr≤0.3%,Ni≤0.3%,Cu≤0.3%,Mo≤0.08%,其余为Fe和不可避免的杂质。
4.根据权利要求3所述的一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:微合金低碳钢化学成分及质量百分比如下:C:0.16%~0.20%,Si:0.1%~0.25%,Mn:1.4%~1.6%,P≤0.025%,S≤0.005%,Nb≤0.03%,V≤0.02%,Ti≤0.01%,Cr≤0.15%,Ni≤0.1%,Cu≤0.1%,Mo≤0.05%,其余为Fe和不可避免的杂质。
5.根据权利要求1所述的一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:装炉前检查钢坯的表面质量,如有毛刺需清扫干净;钢坯装入加热炉前需检验不允许有裂纹、大面积不平整缺陷。
6.根据权利要求1所述的一种微合金低碳钢中厚板的连续铸轧方法,其特征在于:轧制需使用往复式中厚板轧机生产,轧制过程中对轧件进行保温。
CN202210058868.1A 2022-01-19 2022-01-19 一种微合金低碳钢中厚板的连续铸轧方法 Pending CN114406226A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210058868.1A CN114406226A (zh) 2022-01-19 2022-01-19 一种微合金低碳钢中厚板的连续铸轧方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210058868.1A CN114406226A (zh) 2022-01-19 2022-01-19 一种微合金低碳钢中厚板的连续铸轧方法

Publications (1)

Publication Number Publication Date
CN114406226A true CN114406226A (zh) 2022-04-29

Family

ID=81272625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210058868.1A Pending CN114406226A (zh) 2022-01-19 2022-01-19 一种微合金低碳钢中厚板的连续铸轧方法

Country Status (1)

Country Link
CN (1) CN114406226A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446114A (zh) * 2022-09-23 2022-12-09 南京钢铁股份有限公司 一种提高a36级船用中厚板轧制效率的方法
CN115446115A (zh) * 2022-09-23 2022-12-09 南京钢铁股份有限公司 一种提高b级船用中厚板轧制效率的方法
CN115537636A (zh) * 2022-09-23 2022-12-30 南京钢铁股份有限公司 一种提高a32级船用中厚板轧制效率的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446114A (zh) * 2022-09-23 2022-12-09 南京钢铁股份有限公司 一种提高a36级船用中厚板轧制效率的方法
CN115446115A (zh) * 2022-09-23 2022-12-09 南京钢铁股份有限公司 一种提高b级船用中厚板轧制效率的方法
CN115537636A (zh) * 2022-09-23 2022-12-30 南京钢铁股份有限公司 一种提高a32级船用中厚板轧制效率的方法

Similar Documents

Publication Publication Date Title
CN114406226A (zh) 一种微合金低碳钢中厚板的连续铸轧方法
CN104525560B (zh) 普碳钢/含Nb钢20‑30mm中厚板麻面的有效控制方法
CN101386124B (zh) 一种中厚板的生产工艺及其专用生产线
CN114406000A (zh) 一种普通低碳钢中厚板的连续铸轧方法
CN102796956B (zh) 一种冷成型用高强薄带钢及其制造方法
CN111676355B (zh) 一种奥氏体不锈钢板材在线固溶处理工艺
US20220025473A1 (en) On-line Solution Heat Treatment Process for Austenitic Stainless Steel Plates
CN112792126B (zh) 一种大压缩比轴承钢的热轧方法
CN111673059B (zh) 高碳高合金连铸坯的转炉前处理和冷装加热方法
CN113403462B (zh) 一种屈服强度700~1000MPa级青皮钢的制备方法
CN113042532B (zh) 一种含Bi高磁感取向硅钢热轧带钢边部质量控制方法
CN103667895A (zh) 一种冷成型用高强薄带钢及其制造方法
CN103173685A (zh) 一种高强度锯片钢卷的生产方法
CN105624382A (zh) 一种V、Ti微合金钢的热轧方法
CN103276286B (zh) 一种6~10mm的X80管线钢带生产方法
CN107649522A (zh) 热轧钢卷表面质量控制方法
CN105834212A (zh) 热轧卷板生产工艺及热轧卷板
CN100423857C (zh) 高强度包装钢带的生产设备及其生产方法
CN111420989A (zh) 生产中厚钢板的方法及系统
CN104998917B (zh) 一种消除热轧钢板表面花斑缺陷的方法
CN113355496B (zh) 一种不锈钢热轧卷轧制余热在线固溶退火工艺
CN113319147B (zh) 一种改善车削性能的sy740圆棒及其制备方法
CN111974812B (zh) 一种特厚钢板的生产方法
CN115637373A (zh) 预应力混凝土钢棒用热轧盘条的制备方法
CN114798738A (zh) 一种控制连铸坯热装直轧裂纹的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication