CN114402639A - 用于在nr v2x中确定反馈资源的方法和装置 - Google Patents

用于在nr v2x中确定反馈资源的方法和装置 Download PDF

Info

Publication number
CN114402639A
CN114402639A CN202080064130.5A CN202080064130A CN114402639A CN 114402639 A CN114402639 A CN 114402639A CN 202080064130 A CN202080064130 A CN 202080064130A CN 114402639 A CN114402639 A CN 114402639A
Authority
CN
China
Prior art keywords
psfch
pssch
resources
harq
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080064130.5A
Other languages
English (en)
Inventor
黄大成
李承旻
徐翰瞥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN114402639A publication Critical patent/CN114402639A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

提供了第一装置执行无线通信的方法和用于支持该方法的装置。所述方法可以包括以下步骤:从第二装置接收物理副链路共享信道(PSSCH);确定与所述PSSCH关联的物理副链路反馈信道(PSFCH)资源;以及在所述PSFCH资源上向所述第二装置发送混合自动重传请求(HARQ)反馈。这里,可以基于与所述PSSCH关联的子信道、与所述PSSCH关联的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。

Description

用于在NR V2X中确定反馈资源的方法和装置
技术领域
本公开涉及无线通信系统。
背景技术
副链路(SL)通信是在用户设备(UE)之间建立直接链路并且UE直接彼此交换语音和数据而没有演进节点B(eNB)干预的通信方案。正考虑将SL通信作为因数据流量快速增长而造成的eNB开销的解决方案。
V2X(车辆到一切)是指车辆用于与其他车辆、步行者以及装配有基础设施的对象等交换信息的通信技术。V2X可以被分为诸如V2V(车辆到车辆)、V2I(车辆到基础设施)、V2N(车辆到网络)以及V2P(车辆到步行者)这样的四种类型。V2X通信可以通过PC5接口和/或Uu接口提供。
此外,由于越来越多的通信设备需要较大的通信容量,所以需要相对于传统无线电接入技术(RAT)增强的移动宽带通信。因此,考虑到对可靠性和等待时间敏感的UE或服务的通信系统设计也已经在讨论,并且考虑到增强移动宽带通信、大规模MTC以及超可靠低延时通信(URLLC)的下一代无线电接入技术可以被称为新型RAT(无线电接入技术)或NR(新型无线电)。
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。图1的实施方式可以与本公开的各种实施方式组合。
关于V2X通信,在讨论在NR之前使用的RAT时,侧重于基于诸如BSM(基本安全消息)、CAM(合作意识消息)和DENM(分散环境通知消息)这样的V2X消息提供安全服务的方案。V2X消息可以包括位置信息、动态信息、属性信息等。例如,UE可以向另一UE发送周期性消息类型CAM和/或事件触发消息类型DENM。
例如,CAM可以包括诸如方向和速度这样的车辆的动态状态信息、诸如大小这样的车辆的静态数据以及诸如外部照明状态、路线细节等这样的基本车辆信息。例如,UE可以广播CAM,并且CAM的等待时间可以少于100ms。例如,UE可以生成DENM,并且在诸如车辆故障、事故等这样的意外情形下将其发送到另一UE。例如,在UE的发送范围内的所有车辆都能接收CAM和/或DENM。在这种情况下,DENM的优先级可以高于CAM。
此后,关于V2X通信,在NR中提出了各种V2X场景。例如,这各种V2X场景可以包括车辆排队、高级驾驶、扩展传感器、远程驾驶等。
例如,基于车辆排队,车辆可以通过动态地形成组而一起移动。例如,为了基于车辆编队执行排队操作,属于该组的车辆可以从领头车辆接收周期性数据。例如,属于该组的车辆可以通过使用周期性数据来减小或增大车辆之间的间隔。
例如,基于高级驾驶,车辆可以是半自动或全自动的。例如,每个车辆都可以基于从附近车辆和/或附近逻辑实体的本地传感器获得的数据来调节轨迹或操纵。另外,例如,每个车辆可以与附近车辆共享驾驶意图。
例如,基于扩展传感器,可以在车辆、逻辑实体、行人的UE和/或V2X应用服务器之间交换通过本地传感器获得的原始数据、处理后的数据或实时视频数据。因此,例如,与使用自传感器进行检测的环境相比,车辆能识别出进一步改善的环境。
例如,基于远程驾驶,对于危险环境中的不能驾驶的人或远程车辆,远程驾驶员或V2X应用可以操作或控制远程车辆。例如,如果路线是可预测的(例如公共交通),则基于云计算的驾驶可以用于远程车辆的操作或控制。另外,例如,可以考虑对基于云的后端服务平台的访问来进行远程驾驶。
此外,在基于NR的V2X通信中讨论了指定用于诸如车辆排队、高级驾驶、扩展传感器、远程驾驶等这样的各种V2X场景的服务需求的方案。
发明内容
技术目的
此外,在NR V2X中,发送PSSCH的UE可以接收与PSSCH相关的PSFCH。因此,UE需要高效地确定用于PSFCH的资源。
技术方案
在一个实施方式中,提供了一种由第一装置执行无线通信的方法。该方法可以包括以下步骤:从第二装置接收物理副链路共享信道(PSSCH);确定与所述PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于所述PSFCH资源向所述第二装置发送混合自动重传请求(HARQ)反馈。本文中,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID以及第二装置的源ID来确定PSFCH资源。
在一个实施方式中,提供了一种被配置为执行无线通信的第一装置。该第一装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。所述一个或更多个处理器可以执行指令以:从第二装置接收物理副链路共享信道(PSSCH);确定与所述PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于所述PSFCH资源向所述第二装置发送混合自动重传请求(HARQ)反馈。本文中,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID以及第二装置的源ID来确定PSFCH资源。
本公开的效果
用户设备(UE)能高效地执行SL通信。
附图说明
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。
图2示出了根据本公开的实施方式的NR系统的结构。
图3示出了根据本公开的实施方式的NG-RAN与5GC之间的功能划分。
图4示出了根据本公开的实施方式的无线电协议架构。
图5示出了根据本公开的实施方式的NR系统的结构。
图6示出了根据本公开的实施方式的NR帧的时隙的结构。
图7示出了根据本公开的实施方式的BWP的示例。
图8示出了根据本公开的实施方式的SL通信的无线电协议架构。
图9示出了根据本公开的实施方式的执行V2X或SL通信的UE。
图10示出了根据本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。
图11示出了根据本公开的实施方式的三种播放类型。
图12示出了基于本公开的实施方式的用于说明由于在PSFCH接收端处的接收功率的大差异而导致UE不能检测到特定PSFCH信号的问题的示图。
图13示出了基于本公开的实施方式的多个PSFCH被CDM的示例。
图14示出了基于本公开的实施方式的发送UE选择/确定PSFCH资源的过程。
图15示出了基于本公开的实施方式的确定PSFCH资源集合的方法。
图16示出了基于本公开的实施方式的确保单播PSFCH和公共PSFCH之间的一个或更多个RB间隔的方法。
图17示出了基于本公开的实施方式的针对每个单播会话选择/确定不同的单播PSFCH资源的方法。
图18示出了基于本公开的实施方式的接收UE选择/确定PSFCH资源的过程。
图19示出了基于本公开的实施方式的发送UE确定PSFCH资源的过程。
图20示出了基于本公开的实施方式的在多个PSFCH资源之间存在N个RB间隔的情况。
图21示出了基于本公开的实施方式的在多个PSFCH资源之间存在N个RB间隔的情况。
图22示出了基于本公开的实施方式的接收UE确定PSFCH资源的过程。
图23示出了基于本公开的实施方式的第一装置确定用于接收HARQ反馈的资源的方法。
图24示出了基于本公开的实施方式的第二装置确定用于发送HARQ反馈的资源的方法。
图25示出了根据本公开的实施方式的由第一设备执行无线通信的方法。
图26示出了根据本公开的实施方式的由第二设备执行无线通信的方法。
图27示出了根据本公开的实施方式的通信系统1。
图28示出了根据本公开的实施方式的无线装置。
图29示出了根据本公开的实施方式的用于发送信号的信号处理电路。
图30示出了根据本公开的实施方式的无线装置。
图31示出了根据本公开的实施方式的手持装置。
图32示出了根据本公开的实施方式的汽车或自主交通工具。
具体实施方式
在本说明书中,“A或B”可以意指“仅A”、“仅B”或“A和B二者”。换句话说,在本说明书中,“A或B”可以被解释为“A和/或B”。例如,在本说明书中,“A、B或C”可以意指“仅A”、“仅B”、“仅C”或“A、B、C的任何组合”。
在本说明书中使用的斜杠(/)或逗号可以意指“和/或”。例如,“A/B”可以意指“A和/或B”。因此,“A/B”可以意指“仅A”、“仅B”或“A和B二者”。例如,“A、B、C”可以意指“A、B或C”。
在本说明书中,“A和B中的至少一个”可以意指“仅A”、“仅B”或“A和B二者”。另外,在本说明书中,表述“A或B中的至少一个”或“A和/或B中的至少一个”可以被解释为“A和B中的至少一个”。
另外,在本说明书中,“A、B和C中的至少一个”可以意指“仅A”、“仅B”、“仅C”或“A、B和C的任何组合”。另外,“A、B或C中的至少一个”或“A、B和/或C中的至少一个”可以意指“A、B和C中的至少一个”。
另外,在本说明书中使用的括号可以意指“例如”。具体地,当被指示为“控制信息(PDCCH)”时,这可以意指提出“PDCCH”作为“控制信息”的示例。换句话说,本说明书的“控制信息”不限于“PDCCH”,并且可以提出“PDDCH”作为“控制信息”的示例。具体地,当被指示为“控制信息(即,PDCCH)”时,这也可以意指提出“PDCCH”作为“控制信息”的示例。
本说明书中的一副附图中分别描述的技术特征可以被分别实现,或者可以被同时实现。
下面描述的技术可以用在诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等这样的各种无线通信系统中。CDMA可以利用诸如通用陆地无线电接入(UTRA)或CDMA-2000这样的无线电技术实现。TDMA可以利用诸如全球移动通信系统(GSM)/通用分组无线服务(GPRS)/增强数据速率GSM演进(EDGE)这样的无线电技术实现。OFDMA可以利用诸如电子电气工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、演进UTRA(E-UTRA)等这样的无线电技术实现。IEEE 802.16m是IEEE 802.16e的演进版本,并且提供对于基于IEEE 802.16e的系统的后向兼容性。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中使用OFDMA,在上行链路中使用SC-FDMA。LTE-高级(LTE-A)是LTE的演进。
5G NR是与具有高性能、低延时、高可用性等特性的新型全新式移动通信系统相对应的LTE-A后续技术。5G NR可以使用包括小于1GHz的低频带、从1GHz到10GHz的中间频带以及24GHz以上的高频(毫米波)等的所有可用频谱的资源。
为了清楚描述,以下的描述将主要侧重于LTE-A或5G NR。然而,根据本公开的实施方式的技术特征将不仅限于此。
图2示出了按照本公开的实施方式的NR系统的结构。图2的实施方式可以与本公开的各种实施方式组合。
参照图2,下一代无线电接入网络(NG-RAN)可以包括向UE 10提供用户平面和控制平面协议终止的BS 20。例如,BS 20可以包括下一代节点B(gNB)和/或演进型节点B(eNB)。例如,UE 10可以是固定的或移动的,并且可以被称为诸如移动站(MS)、用户终端(UT)、订户站(SS)、移动终端(MT)、无线装置等这样的其他术语。例如,BS可以被称为与UE 10通信的固定站并且可以被称为诸如基站收发器系统(BTS)、接入点(AP)等这样的其它术语。
图2的实施方式例示了仅包括gNB的情况。BS 20可以经由Xn接口相互连接。BS 20可以经由第五代(5G)核心网络(5GC)和NG接口相互连接。更具体地,BS 20可以经由NG-C接口连接到接入和移动性管理功能(AMF)30,并且可以经由NG-U接口连接到用户平面功能(UPF)30。
图3示出了按照本公开的实施方式的NG-RAN与5GC之间的功能划分。
参照图3,gNB可以提供诸如小区间无线电资源管理(小区间RRM)、无线电承载(RB)控制、连接移动性控制、无线电准入控制、测量配置和规定、动态资源分配等这样的功能。AMF可以提供诸如非接入层(NAS)安全性、空闲状态移动性处理等这样的功能。UPF可以提供诸如移动性锚定、协议数据单元(PDU)处理等这样的功能。会话管理功能(SMF)可以提供诸如用户设备(UE)互联网协议(IP)地址分配、PDU会话控制等这样的功能。
UE与网络之间的无线电接口协议层可以基于通信系统中公知的开放系统互联(OSI)模型的下三层被分类为第一层(L1)、第二层(L2)以及第三层(L3)。这里,属于第一层的物理(PHY)层使用物理信道提供信息传输服务,并且位于第三层的无线电资源控制(RRC)层控制UE与网络之间的无线电资源。为此,RRC层在UE与BS层之间交换RRC消息。
图4示出了按照本公开的实施方式的无线电协议架构。图4的实施方式可以与本公开的各种实施方式组合。具体地,图4中的(a)示出了用于用户平面的无线电协议架构,并且图4中的(b)示出了用于控制平面的无线电协议架构。用户平面对应于用于用户数据发送的协议栈,并且控制平面对应于用于控制信号发送的协议栈。
参照图4,物理层通过物理信道向上层提供信息传送服务。物理层通过传输信道连接到作为物理层的上层的介质访问控制(MAC)层。数据通过传输信道在MAC层和物理层之间传送。传输信道根据通过无线电接口如何传输数据及其传输什么特性的数据来分类。
在不同的PHY层(即,发送器的PHY层和接收器的PHY层)之间,通过物理信道传送数据。可以使用正交频分复用(OFDM)方案对物理信道进行调制,并且物理信道使用时间和频率作为无线电资源。
MAC层经由逻辑信道向无线电链路控制(RLC)层提供服务,该RLC层是MAC层的高层。MAC层提供将多个逻辑信道映射到多个传输信道的功能。MAC层还通过将多个逻辑信道映射到单个传输信道提供逻辑信道复用的功能。MAC层通过逻辑信道提供数据传输服务。
RLC层执行无线电链路控制服务数据单元(RLC SDU)的串联、分割和重组。为了确保无线电承载(RB)所需要的不同服务质量(QoS),RLC层提供三个类型的操作模式,即,透明模式(TM)、非确认模式(UM)以及确认模式(AM)。AM RLC通过自动重传请求(ARQ)提供错误纠正。
无线电资源控制(RRC)层仅定义在控制平面中。并且,RRC层执行与无线电承载的配置、重配置以及释放有关的物理信道、传输信道以及逻辑信道的控制的功能。RB是指由第一层(即,PHY层)和第二层(即,MAC层、RLC层以及PDCP层)提供以在UE与网络之间传输数据的逻辑路径。
用户平面中的分组数据汇聚协议(PDCP)的功能包括用户数据的传输、报头压缩和加密。控制平面中的分组数据汇聚协议(PDCP)的功能包括控制平面数据的传输和加密/完整性保护。
仅在用户平面中定义了服务数据适配协议(SDAP)层。SDAP层执行服务质量(QoS)流与数据无线承载(DRB)之间的映射以及DL分组和UL分组二者中的QoS流ID(QFI)标记。
RB的配置是指用于指定无线电协议层和信道属性以提供特定服务以及用于确定相应的详细参数和操作方法的处理。RB随后可以被分类为两个类型,即,信令无线电承载(SRB)和数据无线电承载(DRB)。SRB被用作用于在控制平面中发送RRC消息的路径,DRB被用作用于在用户平面中发送用户数据的路径。
当RRC连接在UE的RRC层和E-UTRAN的RRC层之间建立时,UE处于RRC连接(RRC_CONNECTED)状态,否则UE可以处于RRC空闲(RRC_IDLE)状态。在NR的情况下,附加地定义了RRC不活动(RRC_INACTIVE)状态,并且处于RRC_INACTIVE状态的UE可以保持与核心网的连接而释放其与BS的连接。
从网络向UE发送(或传输)数据的下行链路传输信道包括发送系统信息的广播信道(BCH)和发送其他用户业务或控制消息的下行链路共享信道(SCH)。下行链路多播或广播服务的业务或控制消息可以经由下行链路SCH发送或者可以经由单独的下行链路多播信道(MCH)发送。此外,从UE向网络发送(或传输)数据的上行链路传输信道包括发送初始控制消息的随机接入信道(RACH)和发送其他用户业务或控制消息的上行链路共享信道(SCH)。
属于传输信道的更高层且映射到传输信道的逻辑信道的示例可以包括广播控制信道(BCCH)、寻呼控制信道(PCCH)、公共控制信道(CCCH)、多播控制信道(MCCH)、多播业务信道(MTCH)等。
物理信道由时域中的多个OFDM符号和频域中的多个子载波配置而成。一个子帧由时域中的多个OFDM符号配置而成。资源块由资源分配单元中的多个子载波和多个OFDM符号配置而成。另外,每个子帧可以使用物理下行链路控制信道(PDCCH)即L1/L2控制信道的相应子帧的特定OFDM符号(例如,第一OFDM符号)的特定子载波。传输时间间隔(TTI)是指子帧发送的单位时间。
图5示出了按照本公开的实施方式的NR系统的结构。图5的实施方式可以与本公开的各种实施方式组合。
参照图5,在NR中,无线电帧可以被用于执行上行链路和下行链路传输。无线电帧的长度为10ms,并且可以定义为由两个半帧(HF)构成。半帧可以包括五个1ms子帧(SF)。子帧(SF)可以被分成一个或更多个时隙,并且子帧内的时隙数目可以按照子载波间隔(SCS)来确定。每个时隙根据循环前缀(CP)可以包括12或14个OFDM(A)符号。
在使用正常CP的情况下,每个时隙可以包括14个符号。在使用扩展CP的情况下,每个时隙可以包括12个符号。本文中,符号可以包括OFDM符号(或CP-OFDM符号)和单载波-FDMA(SC-FDMA)符号(或离散傅里叶变换扩展OFDM(DFT-s-OFDM)符号)。
例示下表1表示在采用正常CP的情况下,根据SCS设置(μ)的每个符号的时隙个数(Nslot symb)、每帧的时隙个数(Nframe,μ slot)和每子帧的时隙个数(Nsubframe,μ slot)。
[表1]
SCS(15*2<sup>μ</sup>) N<sup>slot</sup><sub>symb</sub> N<sup>frame,μ</sup><sub>slot</sub> N<sup>subframe,μ</sup><sub>slot</sub>
15KHz(μ=0) 14 10 1
30KHz(μ=1) 14 20 2
60KHz(μ=2) 14 40 4
120KHz(μ=3) 14 80 8
240KHz(μ=4) 14 160 16
表2示出了在使用扩展CP的情况下,根据SCS,每个时隙的符号数目、每帧的时隙数目以及每个子帧的时隙数目的示例。
[表2]
SCS(15*2<sup>μ</sup>) N<sup>slot</sup><sub>symb</sub> N<sup>frame,μ</sup><sub>slot</sub> N<sup>subframe,μ</sup><sub>slot</sub>
60KHz(μ=2) 12 40 4
在NR系统中,被整合到一个UE的多个小区之间的OFDM(A)参数集(例如,SCS、CP长度等)可以被不同地配置。因此,由相同数目的符号构成的时间资源(例如,子帧、时隙或TTI)(为了简单,统称为时间单元(TU))的(绝对时间)持续时间(或区间)在所整合的小区中可以被不同地配置。
在NR中,可以支持用于支持各种5G服务的多个参数集或SCS。例如,在SCS为15kHz的情况下,可以支持传统蜂窝频带的宽范围,并且在SCS为30kHz/60kHz的情况下,可以支持密集的城市、更低的延时、更宽的载波带宽。在SCS为60kHz或更高的情况下,为了克服相位噪声,可以使用大于24.25GHz的带宽。
NR频带可以被定义为两种不同类型的频率范围。两种不同类型的频率范围可以是FR1和FR2。频率范围的值可以改变(或变化),例如,两种不同类型的频率范围可以如在下表3中所示。在NR系统中使用的频率范围当中,FR1可以意指“低于6GHz的范围”,并且FR2可以意指“高于6GHz的范围”,并且也可以被称为毫米波(mmW)。
[表3]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 450MHz–6000MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
如上所述,NR系统中的频率范围的值可以改变(或变化)。例如,如下表4中所示,FR1可以包括410MHz至7125MHz范围内的带宽。更具体地,FR1可以包括6GHz(或5850、5900、5925MHz等)及更高的频带。例如,FR1中所包括的6GHz(或5850、5900、5925MHz等)及更高的频带可以包括未许可频带。未许可频带可以用于各种目的,例如,未许可频带用于车辆特定通信(例如,自动驾驶)。
[表4]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 410MHz–7125MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
图6示出了按照本公开的实施方式的NR帧的时隙的结构。
参照图6,时隙在时域中包括多个符号。例如,在正常CP的情况下,一个时隙可以包括14个符号。例如,在扩展CP的情况下,一个时隙可以包括12个符号。另选地,在正常CP的情况下,一个时隙可以包括7个符号。然而,在扩展CP的情况下,一个时隙可以包括6个符号。
载波包括频域中的多个子载波。资源块(RB)可以被定义为频域中的多个连续子载波(例如,12个子载波)。带宽部分(BWP)可以被定义为频域中的多个连续(物理)资源块((P)RB),并且BWP可以对应于一个参数集(例如,SCS、CP长度等)。载波可以包括最多N个BWP(例如,5个BWP)。数据通信可以经由激活的BWP执行。每个元素可以被称为资源网格中的资源元素(RE),并且一个复数符号可以被映射到每个元素。
此外,UE与另一UE之间的无线电接口或UE与网络之间的无线电接口可以包括L1层、L2层和L3层。在本公开的各种实施方式中,L1层可以意指物理层。另外,例如,L2层可以意指MAC层、RLC层、PDCP层和SDAP层中的至少之一。另外,例如,L3层可以意指RRC层。
下文中,将详细描述带宽部分(BWP)和载波。
BWP可以是给定参数集内的物理资源块(PRB)的连续集合。PRB可以选自针对给定载波上的给定参数集的公共资源块(CRB)的连续部分集合。
当使用带宽适应(BA)时,不需要用户设备(UE)的接收带宽和发送带宽与小区的带宽一样宽(或大),并且可以控制(或调节)UE的接收带宽和发送带宽。例如,UE可以从网络/基站接收用于带宽控制(或调节)的信息/配置。在这种情况下,可以基于接收到的信息/配置来执行带宽控制(或调节)。例如,带宽控制(或调节)可以包括带宽的减小/扩大、带宽的位置改变或带宽的子载波间隔的改变。
例如,可以在活动很少的持续时间内减小带宽,以便节省功率。例如,可以从频域重新定位(或移动)带宽的位置。例如,可以从频域重新定位(或移动)带宽的位置,以便增强调度灵活性。例如,带宽的子载波间隔可以改变。例如,带宽的子载波间隔可以改变,以便授权进行不同的服务。小区的总小区带宽的子集可以被称为带宽部分(BWP)。当基站/网络为UE配置BWP时以及当基站/网络将BWP当中的当前处于激活状态的BWP通知给UE时,可以执行BA。
例如,BWP可以是激活BWP、初始BWP和/或默认BWP中的一个。例如,UE不能监视除了在主小区(PCell)内的激活DL BWP之外的DL BWP中的下行链路无线电链路质量。例如,UE不能从激活DL BWP的外部接收PDCCH、PDSCH或CSI-RS(RRM除外)。例如,UE不能触发针对未激活DL BWP的信道状态信息(CSI)报告。例如,UE不能从非激活DL BWP的外部发送PUCCH或PUSCH。例如,在下行链路的情况下,初始BWP可以被作为针对(由PBCH配置的)RMSI CORESET的连续RB集给出。例如,在上行链路的情况下,可以由SIB针对随机接入过程给出初始BWP。例如,可以由较高层配置默认BWP。例如,默认BWP的初始值可以是初始DL BWP。为了节能,如果UE在预定时间段内无法检测DCI,则UE可以将UE的激活BWP切换成默认BWP。
此外,可以针对SL定义BWP。对于发送和接收,可以使用相同的SL BWP。例如,发送UE可以在特定BWP内发送SL信道或SL信号,并且接收UE可以在同一特定BWP内接收SL信道或SL信号。在许可载波中,SL BWP可以与Uu BWP被分开定义,并且SL BWP可以具有与Uu BWP分开的配置信令。例如,UE可以从基站/网络接收针对SL BWP的配置。可以(预先)针对覆盖范围外的NR V2X UE和RRC_IDLE UE配置SL BWP。对于在RRC_CONNECTED模式下操作的UE,可以在载波内激活至少一个SL BWP。
图7示出了按照本公开的实施方式的BWP的示例。图7的实施方式可以与本公开的各种实施方式组合。假定在图7的实施方式中,BWP的数目为3。
参照图7,公共资源块(CRB)可以是从载波频带的一端到其另一端地进行编号的载波资源块。另外,PRB可以是在每个BWP内被编号的资源块。点A可以指示资源块网格的公共参考点。
可以由点A、相对于点A的偏移(Nstart BWP)和带宽(Nsize BWP)来配置BWP。例如,点A可以是载波的PRB的外部参考点,所有参数集(例如,由网络在对应载波上支持的所有参数集)的子载波0在点A中对齐。例如,偏移可以是给定参数集内的最低子载波与点A之间的PRB距离。例如,带宽可以是给定参数集内的PRB的数目。
下文中,将描述V2X或SL通信。
图8示出了按照本公开的实施方式的S L通信的无线电协议架构。图8的实施方式可以与本公开的各种实施方式组合。更具体地,图8中的(a)示出了用户平面协议栈,并且图8中的(b)示出了控制平面协议栈。
下面,将详细描述副链路同步信号(SLSS)和同步信息。
SLSS可以包括主副链路同步信号(PSSS)和辅助副链路同步信号(SSSS)作为SL特定序列。PSSS可以被称为副链路主同步信号(S-PSS),并且SSSS可以被称为副链路辅同步信号(S-SSS)。例如,长度为127的M序列可以用于S-PSS,并且长度为127的戈尔德(Gold)序列可以用于S-SSS。例如,UE可以将S-PSS用于初始信号检测和同步获取。例如,UE可以将S-PSS和S-SSS用于获取详细的同步并且用于检测同步信号ID。
物理副链路广播信道(PSBCH)可以是用于发送默认(系统)信息的(广播)信道,该默认(系统)信息是在SL信号发送/接收之前由UE必须首先知道的。例如,默认信息可以是与SLSS、双工模式(DM)、时分双工(TDD)上行链路/下行链路(UL/DL)配置相关的信息、与资源池相关的信息、与SLSS相关的应用的类型、子帧偏移、广播信息等。例如,为了评估PSBCH性能,在NR V2X中,PSBCH的有效载荷大小可以为56位,包括24位CRC。
S-PSS、S-SSS和PSBCH可以以支持周期性发送的块格式(例如,SL同步信号(SS)/PSBCH块,下文中,副链路同步信号块(S-SSB))被包括。S-SSB可以具有与载波中的物理副链路控制信道(PSCCH)/物理副链路共享信道(PSSCH)相同的参数集(即,SCS和CP长度),并且传输带宽可以存在于(预先)配置的副链路(SL)BWP内。例如,S-SSB可以具有11个资源块(SB)的带宽。例如,PSBCH可以跨11个RB存在。另外,可以(预先)配置S-SSB的频率位置。因此,UE不必在频率处执行假设检测以发现载波中的S-SSB。
图9示出了按照本公开的实施方式的执行V2X或SL通信的UE。图9的实施方式可以与本公开的各种实施方式组合。
参照图9,在V2X或SL通信中,术语“UE”可以通常是指用户的UE。然而,如果诸如BS这样的网络设备根据UE之间的通信方案来发送/接收信号,则BS也可以被视为一种UE。例如,UE 1可以是第一设备100,并且UE 2可以是第二设备200。
例如,UE 1可以在意指一组资源系列的资源池中选择与特定资源对应的资源单元。另外,UE 1可以通过使用资源单元来发送SL信号。例如,UE 1能够在其中发送信号的资源池可以被配置到作为接收UE的UE 2,并且可以在该资源池中检测UE1的信号。
本文中,如果UE 1在BS的连接范围内,则BS可以将资源池告知UE1。否则,如果UE 1在BS的连接范围外,则另一UE可以将资源池告知UE 1,或者UE 1可以使用预先配置的资源池。
通常,可以以多个资源为单元配置资源池,并且每个UE可以选择一个或多个资源的单元,以在其SL信号发送中使用它。
下文中,将描述SL中的资源分配。
图10示出了按照本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。图10的实施方式可以与本公开的各种实施方式组合。在本公开的各种实施方式中,发送模式可以被称为模式或资源分配模式。下文中,为了便于说明,在LTE中,发送模式可以被称为LTE发送模式。在NR中,发送模式可以被称为NR资源分配模式。
例如,图10中的(a)示出了与LTE发送模式1或LTE发送模式3相关的UE操作。另选地,例如,图10中的(a)示出了与NR资源分配模式1相关的UE操作。例如,可以将LTE发送模式1应用于常规SL通信,并且可以将LTE发送模式3应用于V2X通信。
例如,图10中的(b)示出了与LTE发送模式2或LTE发送模式4相关的UE操作。另选地,例如,图10中的(b)示出了与NR资源分配模式2相关的UE操作。
参照图10中的(a),在LTE发送模式1、LTE发送模式3或NR资源分配模式1下,BS可以调度将供UE用于SL发送的SL资源。例如,BS可以通过PDCCH(更具体地,下行链路控制信息(DCI))对UE 1执行资源调度,并且UE 1可以根据资源调度针对UE 2执行V2X或SL通信。例如,UE 1可以通过物理副链路控制信道(PSCCH)向UE 2发送副链路控制信息(SCI),此后通过物理副链路共享信道(PSSCH)向UE 2发送基于SCI的数据。
参照图10中的(b),在LTE发送模式2、LTE发送模式4或NR资源分配模式2下,UE可以确定由BS/网络配置的SL资源或预先配置的SL资源内的SL发送资源。例如,所配置的SL资源或预先配置的SL资源可以是资源池。例如,UE可以自主地选择或调度用于SL发送的资源。例如,UE可以通过自主地选择所配置的资源池中的资源来执行SL通信。例如,UE可以通过执行感测和资源(重新)选择过程来自主地选择选择窗口内的资源。例如,可以以子信道为单元执行感测。另外,已在资源池中自主选择资源的UE 1可以通过PSCCH将SCI发送到UE 2,此后可以通过PSSCH将基于SCI的数据发送到UE 2。
图11示出了按照本公开的实施方式的三种播放类型。图11的实施方式可以与本公开的各种实施方式组合。具体地,图11中的(a)示出了广播型SL通信,图11中的(b)示出了单播型SL通信,并且图11中的(c)示出了组播型SL通信。在单播型SL通信的情况下,UE可以针对另一UE执行一对一通信。在组播型SL发送的情况下,UE可以针对UE所属的组中的一个或更多个UE执行SL通信。在本公开的各种实施方式中,SL组播通信可以被SL多播通信、SL一对多通信等替换。
下文中,将描述混合自动重传请求(HARQ)过程。
使用错误补偿方案来确保通信可靠性。错误补偿方案的示例可以包括前向纠错(FEC)方案和自动重传请求(ARQ)方案。在FEC方案中,可以通过将额外的纠错码附加到信息位来校正接收端中的错误。FEC方案具有时间延迟小并且在发送端和接收端之间没有另外地交换信息的优点,但同时具有在良好信道环境中系统效率下降的缺点。ARQ方案具有可以提高发送可靠性的优点,但同时具有在不良信道环境中出现时间延迟并且系统效率下降的缺点。
混合自动重传请求(HARQ)方案是FEC方案与ARQ方案的组合。在HARQ方案中,确定物理层所接收的数据中是否包括不可恢复的错误,并且在检测到该错误后请求重传,由此提高性能。
在SL单播和SL组播的情况下,可以支持物理层中的HARQ反馈和HARQ组合。例如,在接收UE在资源分配模式1或2下操作的情况下,接收UE可以从发送UE接收PSSCH,并且接收UE可以通过物理副链路反馈信道(PSFCH)使用副链路反馈控制信息(SFCI)格式将对应于PSSCH的HARQ反馈发送到发送UE。
例如,可以针对单播启用SL HARQ反馈。在这种情况下,在非代码块组(非CBG)中,接收UE可以对以接收UE为目标的PSCCH进行解码,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE可以生成HARQ-ACK。此后,接收UE可以将HARQ-ACK发送到发送UE。相反,在接收UE对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行成功解码,则接收UE可以生成HARQ-NACK,并且接收UE可以向发送UE发送HARQ-NACK。
例如,可以针对组播启用SL HARQ反馈。例如,在非CBG期间,可以针对组播支持两种不同类型的HARQ反馈选项。
(1)组播选项1:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。相反,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE不会向发送UE发送HARQ-ACK。
(2)组播选项2:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。并且,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE可以经由PSFCH向发送UE发送HARQ-ACK。
例如,如果在SL HARQ反馈中使用组播选项1,则执行组播通信的所有UE都可以共享PSFCH资源。例如,属于同一组的UE可以通过使用相同的PSFCH资源来发送HARQ反馈。
例如,如果在SL HARQ反馈中使用组播选项2,则执行组播通信的每个UE都可以将不同的PSFCH资源用于HARQ反馈发送。例如,属于同一组的UE可以通过使用不同的PSFCH资源来发送HARQ反馈。
例如,当针对组播启用SL HARQ反馈时,接收UE可以基于发送-接收(TX-RX)距离和/或RSRP来确定是否向发送UE发送HARQ反馈。
例如,在组播选项1中,在基于TX-RX距离的HARQ反馈的情况下,如果TX-RX距离小于或等于通信范围要求,则接收UE可以将响应于PSSCH的HARQ反馈发送到发送UE。否则,如果TX-RX距离大于通信范围要求,则接收UE可以不将响应于PSSCH的HARQ反馈发送到发送UE。例如,发送UE可以通过与PSSCH相关的SCI将发送UE的位置告知接收UE。例如,与PSSCH相关的SCI可以是第二SCI。例如,接收UE可以基于接收UE的位置和发送UE的位置来估计或获得TX-RX距离。例如,接收UE可以对与PSSCH相关的SCI进行解码,因此可以知道用于PSSCH的通信范围要求。
例如,在资源分配模式1的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。在单播和组播的情况下,如果在SL上必须进行重传,则可以由使用PUCCH的覆盖范围内的UE将其向BS指示。发送UE可以以调度请求(SR)/缓冲状态报告(BSR)的形式而非HARQACK/NACK的形式向发送UE的服务BS发送指示。另外,即使BS未接收到该指示,BS也可以为UE调度SL重传资源。例如,在资源分配模式2的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。
例如,从载波中的UE发送的角度来看,对于用于时隙中SL的PSFCH格式,可以允许PSCCH/PSSCH与PSFCH之间的TDM。例如,可以支持具有单个符号的基于序列的PSFCH格式。本文中,该单个符号可以不是AGC持续时间。例如,基于序列的PSFCH格式可以应用于单播和组播。
例如,在与资源池相关的时隙中,PSFCH资源可以被周期性配置为N个时隙持续时间,或者可以被预先配置。例如,N可以被配置为大于或等于1的一个或更多个值。例如,N可以为1、2或4。例如,可以仅在特定资源池上通过PSFCH发送针对特定资源池中的发送的HARQ反馈。
例如,如果发送UE跨时隙#x至时隙#n向接收UE发送PSSCH,则接收UE可以在时隙#(N+A)中将响应于PSSCH的HARQ反馈发送到发送UE。例如,时隙#(N+A)可以包括PSFCH资源。本文中,例如,A可以是大于或等于K的最小整数。例如,K可以是逻辑时隙的数目。在这种情况下,K可以是资源池中时隙的数目。另选地,例如,K可以是物理时隙的数目。在这种情况下,K可以是资源池内部或外部时隙的数目。
例如,如果接收UE响应于发送UE向接收UE发送的一个PSSCH而在PSFCH资源上发送HARQ反馈,则接收UE可以基于所配置的资源池中的隐式机制来确定PSFCH资源的频域和/或码域。例如,接收UE可以基于与PSCCH/PSSCH/PSFCH相关的时隙索引、与PSCCH/PSSCH相关的子信道或用于标识基于组播选项2的HARQ反馈的组中的每个接收UE的标识符中的至少一个来确定PSFCH资源的频域和/或码域。另外地/另选地,例如,接收UE可以基于SL RSRP、SINR、L1源ID和/或位置信息中的至少一个来确定PSFCH资源的频域和/或码域。
例如,如果通过UE的PSFCH进行的HARQ反馈发送与通过PSFCH进行的HARQ反馈接收交叠,则UE可以基于优先级规则来选择通过PSFCH进行的HARQ反馈发送和通过PSFCH进行的HARQ反馈接收中的任一个。例如,优先级规则至少可以基于相关PSCCH/PSSCH的优先级指示。
例如,如果针对多个UE,UE通过PSFCH进行的HARQ反馈发送交叠,则UE可以基于优先级规则来选择特定的HARQ反馈发送。例如,优先级规则可以基于相关PSCCH/PSSCH的最低优先级指示。
此外,如果组播选项1用于副链路组播发送,则多个接收UE(例如,组中的所有接收UE或一些接收UE)可以共享PSFCH资源以发送HARQ反馈。另一方面,如果组播选项2用于副链路组播发送,则多个接收UE(例如,组中的每个接收UE)可以通过使用单独的PSFCH资源来发送HARQ ACK或HARQ NACK。例如,每个PSFCH资源可以映射到时域资源、频域资源和码域资源。
此外,通过其发送多个PSSCH的资源中的全部或部分可以交叠。例如,通过其发送多个PSSCH的资源可以在频域上完全或部分地彼此交叠。例如,通过其发送多个PSSCH的资源可以在时域上完全或部分地彼此交叠。例如,通过其发送多个PSSCH的资源可以在码域上完全或部分地彼此交叠。如果用于发送多个PSSCH的资源中的全部或部分交叠,则可能需要区分用于每个PSSCH的PSFCH资源。
此外,通过不同资源发送的PSSCH可以对应于不同的发送UE和/或接收UE,并且还可以从不用的UE出现与其对应的PSFCH发送。例如,不同的发送UE可以通过不同的资源发送PSSCH,并且不同的发送UE可以从不同的UE接收对应于PSSCH的PSFCH。在以上情况下,通常,PSFCH的发送功率可以不同。因此,如果在码域中复用多个PSFCH资源(即,码域复用(CDM)),则由于PSFCH接收端处的接收功率的大差异,导致可能出现UE不能检测到特定PSFCH信号的问题(下文中,远近问题)。例如,多个PSFCH资源在码域中复用的情况可以意指通过使用不同的代码发送在时间资源和频率资源上交叠的多个PSFCH资源的情况。
图12示出了基于本公开的实施方式的用于说明由于在PSFCH接收端处的接收功率的大差异而导致UE不能检测到特定PSFCH信号的问题的示图。图12的实施方式可以与本公开的各种实施方式组合。
参照图12,如果UE2向UE1发送的PSFCH和UE4向UE3发送的PSFCH被CDM,即,如果来自UE2的PSFCH和来自UE4的PSFCH是通过使用不同的代码在交叠的时间资源和频率资源上发送的,则就UE3而言,如果UE2发送的PSFCH的接收功率比UE4发送的PSFCH的接收功率大一定水平,则UE3不能检测到UE4发送的PSFCH。
图13示出了基于本公开的实施方式的多个PSFCH被CDM的示例。图13的实施方式可以与本公开的各种实施方式组合。
参照图13,与从UE1发送到UE2的PSSCH对应的PSFCH和与从UE3发送到UE4的PSSCH对应的PSFCH可以被CDM。
此外,如果多个PSFCH资源在频域上相邻,则可能出现干扰问题(下文中,频带间发射(IBE)问题)。IBE可能意味着由UE发送的信号的发送功率在预期频带以外的频带中发射,由此因与在UE不使用的频带中发送的其它信号相干扰而降低接收质量。例如,如果PSFCH资源#1和PSFCH资源#2在频域上相邻,则UE通过PSFCH资源#1接收的HARQ反馈和通过PSFCH资源#2接收的HARQ反馈可能彼此干扰。因此,由于以上IBE问题,UE可能无法接收到HARQ反馈。
此外,用于在多个时隙中发送的PSSCH的PSFCH资源可能出现在同一时隙中。在这种情况下,考虑到等待时间要求和对应服务的性能,对于UE来说,发送与在时间上远离其中存在PSFCH资源的时隙的时隙中发送的PSSCH相对应的PSFCH可能是低效的。例如,如果第一UE通过特定PSSCH资源向第二UE发送用于需要低等待时间的服务的数据,则对于第二UE来说,在时间上远离其中存在特定PSSCH资源的时隙的时隙中向第一UE发送PSFCH可以是没有必要的。在这种情况下,为了满足等待时间要求,接收PSSCH的UE可以省略PSFCH的发送。也就是说,对于UE来说,优先确保与用于在时间上接近其中存在PSFCH资源的时隙的时隙中发送的PSSCH的资源相对应的PSFCH资源可以是高效的。
此外,在下一代系统中的组播的情况下,接收到PSCCH的多个接收UE可以分别发送针对同一PSSCH的HARQ反馈。在这种情况下,可以存在与特定PSSCH对应的多个PSFCH资源,并且每个PSFCH资源可以被区分开。
另一方面,在下一代系统中的组播的情况下,接收到PSSCH的多个接收UE可以共享用于针对相同PSSCH的HARQ反馈的PSFCH资源。如果在发送UE将第一PSSCH发送到多个接收UE之后,发送UE通过第一PSFCH资源从多个接收UE中的至少一个接收到针对第一PSSCH的HARQ反馈,并且在发送UE将第二PSSCH发送到特定接收UE之后,发送UE通过第二PSFCH资源从特定接收UE接收到针对第二PSSCH的HARQ反馈,则发送UE的针对第一PSFCH的接收功率可能相对大于针对第二PSFCH的接收功率。因此,可能出现严重的PSFCH资源之间的IBE问题。
下文中,基于本公开的实施方式,提出了用于高效分配PSFCH资源的方法和支持该方法的设备。在本公开的各种实施方式中,UE的操作顺序可以改变。例如,在图14的实施方式中,S1430可以在S1410之前执行。
图14示出了基于本公开的实施方式的发送UE选择/确定PSFCH资源的过程。图14的实施方式可以与本公开的各种实施方式组合。
参照图14,在步骤S1410中,发送UE可以选择/确定/分配PSFCH资源集合。例如,发送UE可以基于针对PSSCH资源分配的子信道和/或发送PSSCH的时隙和/或与PSSCH发送相关的信息来选择/确定/分配PSFCH资源集合。例如,与PSSCH发送相关的信息可以包括发送UE的ID(例如,源ID)或DMRS序列中的至少一个。在本公开中,子信道可以包括一个或更多个资源块(RB)。
例如,发送UE可以基于用于PSSCH发送的DMRS序列或用于生成DMRS序列的参数值来选择/确定PSFCH资源集合。例如,发送UE可以基于用于与PSSCH相关的PSCCH发送的DMRS序列或用于生成DMRS序列的参数值来选择/确定PSFCH资源集合。例如,发送UE可以基于发送UE的ID(例如,源ID)的模值来选择/确定PSFCH资源集合。据此,即使多个PSSCH在子信道之间交叠,发送UE也可以区分与多个PSSCH相关的PSFCH资源集合。
图15示出了基于本公开的实施方式的确定PSFCH资源集合的方法。图15的实施方式可以与本公开的各种实施方式组合。
参照图15,发送UE可以基于针对PSSCH资源分配的子信道、发送PSSCH的时隙或与PSSCH发送相关的信息中的至少一个来选择/确定PSFCH资源集合。
返回参照图14,在步骤S1420中,发送UE可以基于播送类型和/或HARQ反馈方法/选项来选择/确定/分配PSFCH资源集合中的特定PSFCH资源。例如,播送类型可以是单播或组播。
例如,HARQ反馈方法/选项可以划分为两种类型。根据第一种HARQ反馈方法/选项,发送UE可以在组播中将PSSCH发送到多个接收UE,并且接收UE可以通过公共PSFCH资源将与PSSCH相关的HARQ反馈发送到发送UE。在这种情况下,仅当PSSCH的解码失败的情况下,接收UE才可以通过公共PSFCH资源向发送UE发送NACK。另一方面,如果接收UE成功地解码PSSCH,则接收UE可以不向发送UE发送ACK。
根据第二种HARQ反馈方法/选项,发送UE可以在组播中将PSSCH发送到多个接收UE,并且接收UE可以通过不同的PSFCH资源将与PSSCH相关的HARQ反馈发送到发送UE。在这种情况下,如果PSSCH的解码失败,则接收UE可以通过个体PSFCH资源向发送UE发送NACK。另外,如果接收UE成功地解码PSSCH,则接收UE可以通过个体PSFCH资源向发送UE发送ACK。
在本公开中,为了便于描述,用于单播的PSFCH资源可以被称为单播PSFCH资源,并且与组播中的第一种HARQ反馈方法/选项相关的PSFCH资源可以被称为公共PSFCH资源,并且与组播中的第二种HARQ反馈方法/选项相关的PSFCH资源可以被称为个体PSFCH资源。
基于本公开的实施方式,在单播的情况下以及在多个PSSCH接收UE之间共享PSFCH资源的组播的情况下,发送UE可以选择/确定不同的PSFCH资源。另外,发送UE可以确保单播PSFCH资源和公共PSFCH资源之间的N个RB。例如,N可以是正整数。即,可以在单播PSFCH资源和公共PSFCH资源之间确保一个或更多个RB间隔。例如,基站可以针对每个资源池为发送UE配置用于指定PSFCH资源的RB位置的RB间隔或偏移值。例如,基站可以针对每个资源池为发送UE预先配置用于指定PSFCH资源的RB位置的RB间隔或偏移值。例如,可以针对每个资源池在发送UE中预定义用于指定PSFCH资源的RB位置的RB间隔或偏移值。
图16示出了基于本公开的实施方式的确保单播PSFCH和公共PSFCH之间的一个或更多个RB间隔的方法。图16的实施方式可以与本公开的各种实施方式组合。
参照图16,可以确保单播PSFCH和公共PSFCH之间的N个RB间隔,因此,PSFCH资源之间的IBE问题可以减轻。
基于本公开的实施方式,在单播的情况下,发送UE可以针对每个单播会话选择/确定不同的单播PSFCH资源。例如,如果发送UE与多个不同的接收UE建立单播会话,则发送UE可以针对每个单播会话选择/确定不同的单播PSFCH资源。
图17示出了基于本公开的实施方式的针对每个单播会话选择/确定不同的单播PSFCH资源的方法。图17的实施方式可以与本公开的各种实施方式组合。
参照图17,发送UE可以与第一UE、第二UE和第三UE建立单播会话,并可以将第一PSSCH、第二PSSCH和第三PSSCH分别发送到第一UE、第二UE和第三UE。在这种情况下,发送UE可以针对每个单播会话选择/确定不同的单播PSFCH资源。即,发送UE可以不同地选择/确定用于第一UE的PSFCH资源、用于第二UE的PSFCH资源和用于第三UE的PSFCH资源。
基于本公开的实施方式,如果PSFCH资源在组播中的PSSCH接收UE之间划分,则发送UE可以通过多个PSFCH资源接收HARQ反馈。在PSFCH资源集合中,对应于单播的PSFCH资源和与PSFCH资源在多个PSSCH接收UE之间划分的组播相对应的PSFCH资源之间可以存在N个RB间隔。即,发送UE可以基于播送类型和/或PSFCH资源是否被共享来接收或者具有PSFCH资源集合之间的不同偏移。
返回参照图14,在步骤S1430中,发送UE可以将PSSCH和/或PSCCH发送到接收UE。
在步骤S1440中,发送UE可以通过PSFCH资源集合中的特定PSFCH资源从接收UE接收针对PSSCH和/或PSCCH的HARQ反馈。例如,特定PSFCH资源可以由发送UE基于播送类型和/或HARQ反馈方法/选项来确定。
图18示出了基于本公开的实施方式的接收UE选择/确定PSFCH资源的过程。图18的实施方式可以与本公开的各种实施方式组合。
参照图18,在步骤S1810中,接收UE可以选择/确定/分配PSFCH资源集合。例如,接收UE可以基于针对PSSCH资源分配的子信道和/或发送PSSCH的时隙和/或与PSSCH发送相关的信息来选择/确定/分配PSFCH资源集合。例如,与PSSCH发送相关的信息可以包括发送UE的ID(例如,源ID)或DMRS序列中的至少一个。接收UE选择/确定PSFCH资源集合的方法可以与发送UE选择/确定PSFCH资源集合的方法相同。
在步骤S1820中,接收UE可以基于播送类型和/或HARQ反馈方法/选项来选择/确定/分配PSFCH资源集合中的特定PSFCH资源。接收UE选择/确定PSFCH资源集合中的特定PSFCH资源的方法可以与发送UE选择/确定PSFCH资源集合中的特定PSFCH资源的方法相同。如果PSFCH资源中的每一个在组播中的PSSCH接收UE之间被区分,则每个接收UE可以基于接收UE信息(例如,由较高层提供的标识符或接收UE的ID(例如,源ID))来选择PSFCH资源。
在步骤S1830中,接收UE可以从发送UE接收PSSCH和/或PSCCH。
在步骤S1840中,接收UE可以通过PSFCH资源集合中的特定PSFCH资源向发送UE发送针对PSSCH和/或PSCCH的HARQ反馈。例如,特定PSFCH资源可以由接收UE基于播送类型和/或HARQ反馈方法/选项来确定。
图19示出了基于本公开的实施方式的发送UE确定PSFCH资源的过程。图19的实施方式可以与本公开的各种实施方式组合。
参照图19,在步骤S1910中,发送UE可以确定/选择/分配PSFCH资源。例如,发送UE可以基于与PSCCH发送和/或PSSCH发送相对应的时隙、与PSCCH发送和/或PSSCH发送相对应的子信道、与PSCCH发送和/或PSSCH发送相对应的RB、播送类型、HARQ反馈方法/选项、与PSSCH发送UE相关的信息、与PSSCH发送相关的信息或与PSSCH接收UE相关的信息中的至少一个来选择将用于HARQ反馈的PSFCH资源。例如,发送UE可以基于与PSSCH发送相对应的时隙、与PSSCH发送相对应的子信道、与PSSCH发送UE相关的信息和与PSSCH接收UE相关的信息来选择将用于HARQ反馈的PSFCH。例如,可以基于播送类型和/或HARQ反馈方法/选项来确定与PSSCH接收UE相关的信息。例如,与PSSCH发送UE相关的信息可以是关于发送PSSCH的UE的信息(例如,发送UE的源ID)。例如,与PSSCH接收UE相关的信息可以是关于接收PSSCH的UE的信息(例如,由较高层提供的标识符或接收UE的源ID)。例如,与PSSCH发送相关的信息可以包括用于PSSCH发送的DMRS序列或用于生成DMRS序列的参数或用于与PSSCH相对应的PSCCH发送的DMRS序列或用于生成DMRS序列的参数中的至少一个。
例如,PSFCH资源可以对应于资源块(RB)和/或码域资源的组合。例如,子信道可以包括一个或更多个RB。例如,播送类型可以是单播或组播。例如,HARQ反馈方法/选项可以划分为两种类型。根据第一种HARQ反馈方法/选项,发送UE可以将PSSCH发送到组播中的多个接收UE,并且接收UE可以通过公共PSFCH资源将与PSSCH相关的HARQ反馈发送到发送UE。在这种情况下,仅当PSSCH的解码失败的情况下,接收UE才可以通过公共PSFCH资源向发送UE发送NACK。另一方面,如果接收UE成功地解码PSSCH,则接收UE可以不向发送UE发送ACK。根据第二种HARQ反馈方法/选项,发送UE可以将PSSCH发送到组播中的多个接收UE,并且接收UE可以通过不同的PSFCH资源将与PSSCH相关的HARQ反馈发送到发送UE。
此外,多个发送UE可以分别向多个接收UE发送具有子信道和时隙的不同组合的多个PSSCH。另外,多个接收UE可以向多个发送UE发送与多个PSSCH相对应的多个PSFCH。在这种情况下,由于从多个发送UE的角度来看,多个PSFCH的接收功率可能大大不同,因此可能出现带间发射(IBE)问题。因此,在以上情形下,发送UE可以在考虑到与多个PSSCH相对应的多个PSFCH之间的带间发射(IBE)的情况下确保多个PSFCH资源之间的多个RB间隙。
图20示出了基于本公开的实施方式的在多个PSFCH资源之间存在N个RB间隔的情况。图20的实施方式可以与本公开的各种实施方式组合。
例如,如在图20的实施方式中,在与在同一时隙和不同子信道中发送的多个PSSCH(即,PSSCH#1和PSSCH#2)相关的多个PSFCH资源的情况下,在多个PSFCH资源之间可能存在N个RB间隔。例如,N可以是正整数。
图21示出了基于本公开的实施方式的在多个PSFCH资源之间存在N个RB间隔的情况。图21的实施方式可以与本公开的各种实施方式组合。
例如,如在图21的实施方式中,在与在同一子信道和不同时隙中发送的多个PSSCH(即,PSSCH#1至PSSCH#3)相关的多个PSFCH资源的情况下,在多个PSFCH资源之间可能存在N个RB间隔。例如,N可以是正整数。
具体地,例如,根据两个参数的改变的PSFCH资源可以具有层级结构。例如,这两个参数可以是时隙相关信息和子信道相关信息。
例如,如果与在同一时隙和不同子信道中发送的多个PSSCH相关的多个PSFCH资源之间的RB间隔为N个,并且与在同一子信道和不同时隙中发送的多个PSSCH相关的多个PSFCH资源之间的RB间隔为M个,则N的值可以被表达为M的值和HARQ相关集合中的时隙数目。例如,可以基于M的值和HARQ相关集合中的时隙数目来确定或推导N的值。在本公开中,HARQ相关集合可以是用于与可以在同一时隙中发送的PSFCH相关的PSCCH和/或PSSCH的时隙的集合。如果N的值被表达为M的值和HARQ相关集合中的时隙数目,则在HARQ相关集合中的某些时隙用于PSSCH发送的情况下或者在PSFCH资源用于某些时隙的PSSCH发送的情况下,可以保持多个PSFCH资源之间的大RB间隔。因此,在发送UE通过多个PSFCH资源接收HARQ反馈的情况下,可以大大减轻IBE问题。
另选地,例如,如果与在同一时隙和不同子信道中发送的多个PSSCH相关的多个PSFCH资源之间的RB间隔为N个,并且与在同一子信道和不同时隙中发送的多个PSSCH相关的多个PSFCH资源之间的RB间隔为M个,则M的值可以被表达为N的值和PSSCH发送可用的子信道的数目。例如,可以基于N的值和PSSCH发送可用的子信道的数目来确定或推导M的值。具体地,例如,发送UE可以通过使用RB偏移等来在资源池中使与特定时隙相对应的PSFCH资源集合相对居中。如果M的值被表达为N的值和PSSCH发送可用的子信道的数目,则在特定时隙中与实际发送的PSSCH相关的PSFCH资源的使用频率高的情况下,发送UE可以在PSFCH资源所处的RB集合之上和/或之下设置/配置RB间隙。因此,来自不同资源池或Uu链路的发射可以减轻。
此外,不同的PSSCH发送可能在特定子信道和特定时隙中冲突。例如,如果一个发送UE通过空间复用发送在时间和频率资源上交叠的多个PSSCH,则不同的PSSCH发送可能在特定子信道和/或特定时隙中冲突。例如,如果多个发送UE发送在时间和频率资源上交叠的多个PSSCH(例如,如果发送PSSCH的UE之间的距离大(即,隐藏节点问题)),则不同的PSSCH发送可能在特定子信道和/或特定时隙中冲突。如果接收UE可以区分从发送UE发送的不同PSSCH,则还可能需要分离与多个PSSCH相关的PSFCH资源。例如,多个PSSCH可以由一个发送UE发送。另选地,例如,多个PSSCH可以分别由多个发送UE发送。例如,如果通过其发送与多个PSSCH相关的多个PSCCH的子信道不同和/或如果多个PSCCH的DMRS序列或用于生成DMRS序列的参数不同和/或如果多个PSSCH的DMRS序列或用于生成DMRS序列的参数不同和/或全部或部分源ID不同,则接收UE可以区分彼此共享某些资源的不同PSSCH。通常,由于不同接收UE中的每一个可以接收多个不同PSCCH中的每一个,因此在对应于不同PSSCH的PSFCH资源的情况下,可能需要尽可能多地确保RB间隔。这可以在UE通过PSFCH接收HARQ反馈方面减轻IBE问题,如以上详细描述的。即,在由不同发送UE或由同一发送UE通过特定时隙与子信道的组合发送多个PSSCH的情况下,在对应于多个PSSCH的多个PSFCH资源之间可能存在N个RB。例如,N可以是正整数。
此外,在组播中的HARQ反馈的情况下,接收相同PSSCH的每个接收UE可以分配PSFCH资源。如果接收UE可以在发送PSFCH时执行功率控制并且通过功率控制可以在PSSCH发送UE处保证相近的接收功率,则即使支持相应PSFCH资源之间的CDM,也可以避免或减轻远近问题。另外,即使在相邻的RB中分配PSFCH资源,也可以减轻IBE问题。另一方面,如果接收UE没有正确地对PSFCH执行功率控制,则可能出现上述问题。因此,如果接收UE不能正确地对PSFCH执行功率控制,则可能需要确保PSFCH资源之间的N个RB的间隔。因此,基于用于接收UE的PSFCH的功率控制方法和/或用于每个资源池的配置,可以不同地配置组播中的用于相同PSSCH的多个接收UE的PSFCH资源之间的复用方法。例如,基站可以为UE配置或预先配置每个资源池的配置。例如,基站可以向UE发送每个资源池的配置。
另外,基于本公开的实施方式,PSFCH资源选择/分配方案可以由公式来定义。例如,PSFCH资源可以存在于其中可能存在PSFCH资源的RB和/或码域资源的组合的集合中,并且每个PSFCH资源可以基于RB和/或码域资源的组合具有不同索引。
例如,可以如式1或式2中地定义虚拟PSFCH资源索引。
[式1]
虚拟PSFCH资源索引
=(对应于PSCCH或PSSCH的特定子信道)×(第一步)
+(对应于PSSCH的特定时隙)×(第二步)
+(关于PSSCH发送UE的信息)×(第三步)
+(关于PSSCH接收UE的信息)×(第四步)+index_offset
[式2]
虚拟PSFCH资源索引
=(对应于PSSCH的特定时隙)×(第一步)
+(关于PSSCH发送UE的信息)×(第二步)
+(关于PSSCH接收UE的信息)×(第三步)+index_offset
在式2中,index_offset可以是基于对应于PSCCH或PSSCH的特定子信道而推导/确定的值。例如,index_offset可以是基于与对应于PSCCH或PSSCH的特定子信道相关的信息而改变的值。例如,index_offset可以被配置为使得PSFCH资源在频域中与和PSFCH相关的PSSCH资源重合,或者PSFCH资源在频域中小于与PSFCH相关的PSSCH资源。
虚拟PSFCH资源可以对应于逻辑资源。如果PSFCH资源选择方案对应于逻辑资源,则可能需要将逻辑PSFCH资源映射到物理资源的处理。例如,UE可以通过模函数将虚拟PSFCH资源映射到物理资源。在以上处理中,在频域和/或时域方面,用于PSFCH的物理资源的大小可以小于逻辑资源的大小。例如,如果UE在窄带中执行副链路通信,则在频域和/或时域方面,用于PSFCH的物理资源的大小可以小于逻辑资源的大小。例如,如果物理资源的大小小于逻辑资源的大小,则UE可以分配将在频域和/或时域中彼此交叠的一些PSFCH资源。例如,如果物理资源的大小小于逻辑资源的大小,则UE可以不将PSFCH资源分配给一些虚拟PSFCH资源索引。
可以以所有逻辑资源为单位执行或者可以针对特定级别的组执行到物理资源的映射处理。例如,在级别1-组和级别2-组的情况下,可能不允许组之间的PSFCH资源的交叠,并且从级别3-组开始,根据物理资源的大小,可能允许某些PSFCH资源的交叠。
在本公开中,作为根据与PSSCH接收UE相关的信息的PSFCH资源分配/配置/确定的示例,接收相同PSSCH的UE将使用/发送的PSFCH资源优先进行码分复用(CDM),并且在需要更多PSFCH资源的情况下,可以将PSFCH资源分配给相邻的RB。
在本公开中,作为根据与PSSCH接收UE相关的信息的PSFCH资源分配/配置/确定的另一示例,在特定频率资源域内以频分复用(FDM)形式分配/配置/确定接收相同PSSCH的UE将使用/发送的PSFCH资源,并且如果在以FDM形式分配/配置/确定PSFCH资源之后另外需要PSFCH资源,则可以在特定频率资源域内以CDM形式分配/配置/确定另外的PSFCH资源。在这种情况下,例如,特定频率资源域可以是特定子信道。另外,例如,如果在FDM形式的PSFCH资源的分配/配置/确定和CDM形式的PSFCH资源的分配/配置/确定之后另外需要PSFCH资源,则可以在从特定频率资源域扩展的频率资源域内以FDM形式分配/配置/确定另外的PSFCH资源。在这种情况下,例如,与特定频率资源域相比扩展的频率资源域可以除了特定子信道之外还包括至少一个其它子信道。
在本公开中,作为根据与PSSCH接收UE相关的信息的PSFCH资源分配/配置/确定的另一示例,在特定频率资源域内以FDM形式分配/配置/确定接收相同PSSCH的UE将使用/发送的PSFCH资源,并且如果在以FDM形式分配/配置/确定PSFCH资源之后另外需要PSFCH资源,则可以在特定频率资源域内以CDM形式分配/配置/确定另外的PSFCH资源。在这种情况下,例如,特定频率资源域可以是包括被分配有与PSFCH资源相对应的一个或更多个PSSCH的子信道的频率资源域。在以上方案的情况下,可以基于被分配有与PSFCH资源相对应的一个或更多个PSSCH的子信道的数目和/或与此对应的频率资源域的大小/数目来分配/配置/确定PSFCH资源。
在本公开中,作为对应于PSSCH的特定时隙的示例,可以按从时间晚的时隙到时间早的时隙的升序来设置/配置用于HARQ相关集合中的时隙的索引。即,在HARQ相关集合中的多个时隙当中,接近与HARQ相关集合相关的PSFCH资源的时隙可以具有较低的索引值。
例如,基站可以针对每个资源池为UE配置或预先配置每一步的大小。另选地,基站可以针对每个资源池为UE配置或预先配置特定步的大小。此外,其余步的大小可以由UE根据其它步的大小和/或特定参数可以具有的值的范围隐式地推导。例如,在式1中,与关于PSSCH发送UE的信息相关的第三步和/或与关于PSSCH接收UE的信息相关的第四步可以被设置/配置为比第一步和第二步大的值。在这种情况下,例如,关于PSSCH发送UE的信息可以是PSSCH发送UE通过SCI向PSSCH接收UE发送的L1层源ID,并且关于PSSCH接收UE的信息可以是在单播和/或组播通信中指派的成员ID。该配置方法可以有利于以下的方法:基于特定循环移位值和/或特定基础序列值来确定被分配有PSFCH资源的RB值,并且在增加了循环移位值和/或基础序列值之后,再次基于增加后的循环移位值和增加后的基础序列值来确定RB值。例如,与以上方法相反,第三步和/或第四步可以被设置/配置为比第一步和/或第二步小的值。该配置方法可以有利于以下的方法:基于被分配有PSFCH资源的特定RB值来确定循环移位值和/或基础序列值,并且在增加RB值之后,再次基于增加后的RB值来确定循环移位和/或基础序列值。
例如,当分配/配置/确定PSFCH资源时,基于PSSCH的起始子信道优先地选择/确定PSFCH资源组,并且在选择/确定PSFCH资源组之后,可以基于接收到PSSCH的时隙来在PSFCH资源组内配置/确定PSFCH资源子组。在这种情况下,例如,可以以FDM的形式配置/确定用于接收到PSSCH的不同时隙的PSFCH资源子组。作为以上方案的示例,可以以PSFCH资源子组为单位以FDM的形式分配/配置/确定PSFCH资源(第一方案)。例如,假定每个PSFCH资源子组包括N个RB,则头N个RB可以对应于第一PSSCH接收时隙,并且接下来的N个RB可以对应于第二PSSCH接收时隙。在这种情况下,例如,第二步的值可以被设置/确定为等于PSSCH接收时隙的数目的值或比PSSCH接收时隙的数目大的值。另外,例如,如果在第一方案中另外考虑以CDM的形式分配/配置/确定PSFCH资源的方案,则第二步的值可以被设置/确定为等于PSSCH接收时隙的数目的值或通过将比PSSCH接收时隙的数目大的值乘以每个RB的循环移位的数目而获得的值。作为以上方法的另一示例,可以以RB或RB组为单位以FDM的形式分配/配置/确定PSFCH资源(第二方案)。例如,假定每个PSFCH资源子组包括N个RB,则对应于第一PSSCH接收时隙的PSFCH资源和对应于第二PSSCH接收时隙的PSFCH资源可以按以1个RB为单位依次重复的形式分配/配置/确定。在这种情况下,例如,第二步的值可以被设置/确定为比PSSCH接收时隙的数目小的值。具体地,例如,第二步的值可以被设置/确定为1个RB单元,这是比PSSCH接收时隙的数目小的值。另外,例如,如果在第二方案中另外考虑以CDM的形式分配/配置/确定PSFCH资源的方案,则第二步的值可以被设置/确定为通过将比PSSCH接收时隙的数目小的值乘以每个RB的循环移位的数目而获得的值。
例如,与在多个时隙中发送的PSSCH相对应的PSFCH资源可以被分配给同一时隙。在这种情况下,考虑到与通过PSSCH发送的数据相关的服务的延迟要求和性能,对于接收UE来说,通过使用被分配有PSFCH资源的时隙来发送下述PSFCH是低效的:所述PSFCH对应于在时域中远离被分配有PSFCH资源的时隙的时隙中发送的PSSCH。另选地,例如,如果第一UE通过特定PSSCH资源向第二UE发送用于需要低等待时间的服务的数据,则对于第二UE来说,在时域中远离被分配有特定PSSCH资源的时隙的被分配有PSFCH资源的时隙中向第一UE发送PSFCH可能是没有必要的。在这种情况下,例如,为了满足与通过PSSCH发送的数据相关的服务的等待时间要求,接收UE可以在时域中远离发送PSSCH的时隙的被分配有PSFCH资源的时隙中省略或不执行PSFCH的发送。据此,对于接收UE来说,优先确保下述PSFCH资源可以是高效的:所述PSFCH资源对应于在与被分配有PSFCH资源的时隙在时域中接近的时隙中发送的PSSCH。此外,例如,如果PSFCH资源(例如,频域资源和/或码域资源)不足,则接收UE可以不优先分配与发送PSSCH的特定时隙相对应的PSFCH资源。在这种情况下,例如,特定时隙可以是与被分配有PSFCH资源的时隙接近的时隙或与被分配有PSFCH资源的时隙远离的时隙。另选地,例如,如果PSFCH资源(例如,频域资源和/或码域资源)不足,则接收UE可以同等地减少用于与被分配有PSFCH资源的时隙相关/相对应的多个PSSCH发送中的每一个的PSFCH资源的分配量。据此,接收UE可以高效地操作有限的PSFCH资源。
例如,可以基于PSFCH格式来不同地设置index_offset值。即,对于每种PSFCH格式,PSFCH资源集合可以彼此区分开。例如,PSFCH格式可以包括具有一个符号的基于序列的PSFCH格式、重复具有一个符号的PSFCH格式的具有N个符号(例如,N=2)的PSFCH格式、基于PUCCH格式2的PSFCH格式和/或跨时隙中副链路的所有可用符号的PSFCH格式。在这种情况下,UE可以对每种类型的PSFCH格式不同地应用index_offset值。
例如,可以在一个资源池中配置多个HARQ相关集合。例如,UE可以在一个资源池中配置多个HARQ相关集合。即,在每个UE具有不同的处理时间的情况下,和/或基于服务类型和/或播送类型和/或要求(例如,可靠性和/或等待时间),PSSCH发送时间与PSFCH发送时间之间的(最小或最大)时间可以被不同地配置,并且在这种情况下,可以针对每个PSSCH发送时间与每个PSFCH发送时间之间的每个(最小或最大)时间来配置HARQ相关集合。
例如,基于UE的处理时间,PSSCH发送时间与PSFCH发送时间之间的(最小或最大)时间可以不同,并且在这种情况下,UE可以配置/设置与每个PSSCH发送时间和每个PSFCH发送时间之间的(最小或最大)时间相对应的每个HARQ相关集合。另外地/另选地,例如,基于服务类型,PSSCH发送时间与PSFCH发送时间之间的(最小或最大)时间可以不同,并且在这种情况下,UE可以配置/设置与每个PSSCH发送时间和每个PSFCH发送时间之间的(最小或最大)时间相对应的每个HARQ相关集合。另外地/另选地,基于播送类型,PSSCH发送时间与PSFCH发送时间之间的(最小或最大)时间可以不同,并且在这种情况下,UE可以配置/设置与每个PSSCH发送时间和每个PSFCH发送时间之间的(最小或最大)时间相对应的每个HARQ相关集合。另外地/另选地,基于服务相关要求(例如,可靠性和/或等待时间),PSSCH发送时间与PSFCH发送时间之间的(最小或最大)时间可以不同,并且在这种情况下,UE可以配置/设置与每个PSSCH发送时间和每个PSFCH发送时间之间的(最小或最大)时间相对应的每个HARQ相关集合。
例如,对于在一个资源池中配置的多个HARQ相关集合,一个或更多个部分时隙可以被配置为交叠。具体地,例如,一个或更多个部分时隙可以被包括在多个HARQ相关集合当中的第一HARQ相关集合中,并且还可以被包括在不同于第一HARQ相关集合的第二HARQ相关集合中。另选地,例如,对于在一个资源池中配置的多个HARQ相关集合,任何时隙都可以被配置为不交叠。具体地,例如,多个HARQ相关集合当中的特定HARQ相关集合中所包括的时隙可以不被包括在除了特定HARQ相关集合之外的其余HARQ相关集合中。
例如,可以针对每个HARQ相关集合不同地配置或确定PSFCH资源集合或index_offset值。即,对于每个HARQ相关集合,PSFCH资源集合可以彼此区分开。本文中,例如,对于每个HARQ相关集合,可以不同地配置或确定HARQ码本(或HARQ-ACK码本)的大小和/或PSFCH格式。在这种情况下,例如,如果接收UE基于PSFCH资源来发送针对从发送UE接收的多个PSSCH和/或PSCCH中的每一个的HARQ反馈(例如,ACK、NACK或不连续发送(DTX)),则针对PSSCH和/或PSCCH中的每一个的HARQ反馈的组合可以被包括在所配置/确定的HARQ码本(或HARQ-ACK码本)中。另外,例如,如果接收UE基于PSFCH资源发送针对从发送UE接收的多个传输块(TB)或代码块组(CBG)中的每一个的HARQ反馈(例如,ACK、NACK或DTX),则接收UE可以发送包括多个HARQ反馈相关信息的HARQ码本(或HARQ-ACK码本)。具体地,例如,在PSFCH资源不足的情形下,UE可以优先将PSFCH资源集合分配给与PSSCH发送时间和PSFCH发送时间之间的(最小或最大)时间相对较小的值相对应的HARQ相关集合。
例如,UE可以针对多个HARQ相关集合中所包括的时隙的联合共享PSFCH资源集合。本文中,例如,如果特定时隙共同存在于多个HARQ相关集合中,或者如果特定时隙共同包括在多个HARQ相关集合中,则UE可以基于针对多个HARQ相关集合中的每一个配置/确定的多个HARQ码本(或HARQ-ACK码本)当中的大小大的HARQ码本(或HARQ-ACK码本)的大小来设置或确定特定时隙中的用于针对PSSCH和/或PSCCH发送的HARQ反馈发送的HARQ码本(或HARQ-ACK码本)的大小。例如,如果特定时隙共同存在于多个HARQ相关集合中,或者如果特定时隙共同包括在多个HARQ相关集合中,则UE可以将特定时隙中的用于针对PSSCH和/或PSCCH发送的HARQ反馈发送的HARQ码本(或HARQ-ACK码本)的大小设置或确定成/为与多个HARQ相关集合中的每一个相关的多个HARQ码本(或HARQ-ACK码本)的大小值当中的较大值。另选地,例如,对于多个HARQ相关集合中所包括的时隙的联合,UE可以相同地或共同地设置或确定该联合中所包括的时隙中的用于针对PSSCH和/或PSCCH发送的HARQ反馈发送的HARQ码本(或HARQ-ACK码本)的大小。
例如,在本公开中,如果(虚拟)PSFCH资源索引值指示RB索引,或者如果(虚拟)PSFCH资源索引值被指派/设置/确定为对应于RB索引的值,则可能另外需要单独设置/确定循环移位值和/或基础序列值的处理。例如,可以基于成员ID值来设置/确定循环移位值和/或基础序列值。在这种情况下,例如,成员ID值可以设置为单播和/或组播选项1通信中的特定值。例如,特定值可以为0。
返回参照图19,在步骤S1920中,发送UE可以将PSSCH和/或PSCCH发送到接收UE。
在步骤S1930中,发送UE可以通过PSFCH资源从接收UE接收针对PSSCH和/或PSCCH的HARQ反馈。
图22示出了基于本公开的实施方式的接收UE确定PSFCH资源的过程。图22的实施方式可以与本公开的各种实施方式组合。
参照图22,在步骤S2210中,接收UE可以确定/选择/分配PSFCH资源。例如,接收UE可以基于与PSCCH发送和/或PSSCH发送相对应的时隙、与PSCCH发送和/或PSSCH发送相对应的子信道、与PSCCH发送和/或PSSCH发送相对应的RB、播送类型、HARQ反馈方法/选项、与PSSCH发送UE相关的信息、与PSSCH发送相关的信息或与PSSCH接收UE相关的信息中的至少一个来选择将用于HARQ反馈的PSFCH资源。接收UE确定PSFCH资源的方法可以与发送UE确定PSFCH资源的方法相同。
在步骤S2220中,接收UE可以从发送UE接收PSSCH和/或PSCCH。
在步骤S2230中,接收UE可以通过PSFCH资源向发送UE发送针对PSSCH和/或PSCCH的HARQ反馈。
基于本公开的各种实施方式,UE/基站可以选择/分配PSFCH资源。例如,UE可以基于播送类型和/或HARQ反馈发送方法来确定成员ID,并且UE可以基于成员ID来选择/确定/分配PSFCH资源。因此,可以出现高效支持HARQ操作的效果。
图23示出了基于本公开的实施方式的第一装置确定用于接收HARQ反馈的资源的方法。图23的实施方式可以与本公开的各种实施方式组合。在图23的实施方式中,每个步骤的顺序可以改变。
参照图23,在步骤S2310中,第一装置可以确定用于PSFCH的资源。例如,可以基于与PSCCH发送和/或PSSCH发送相对应的时隙、与PSCCH发送和/或PSSCH发送相对应的子信道、与PSCCH发送和/或PSSCH发送相对应的RB、播送类型、HARQ反馈方法/选项、与PSSCH发送UE相关的信息、与PSSCH发送相关的信息或与PSSCH接收UE相关的信息中的至少一个来确定用于PSFCH的资源。第一装置可以基于本公开中提出的各种实施方式来确定用于PSFCH的资源。
在步骤S2320中,第一装置可以将PSSCH发送到第二装置。在步骤S2330中,第一装置可以通过与PSSCH相关的PSFCH从第二装置接收HARQ反馈。
所提出的方法可以应用于下述的装置。首先,第一装置100的处理器102可以确定用于PSFCH的资源。另外,第一装置100的处理器102可以控制收发器106将PSSCH发送到第二装置200。另外,第一装置100的处理器102可以控制收发器106通过与PSSCH相关的PSFCH从第二装置200接收HARQ反馈。
图24示出了基于本公开的实施方式的第二装置确定用于发送HARQ反馈的资源的方法。图24的实施方式可以与本公开的各种实施方式组合。在图24的实施方式中,每个步骤的顺序可以改变。
参照图24,在步骤S2410中,第二装置可以确定用于PSFCH的资源。例如,可以基于与PSCCH发送和/或PSSCH发送相对应的时隙、与PSCCH发送和/或PSSCH发送相对应的子信道、与PSCCH发送和/或PSSCH发送相对应的RB、播送类型、HARQ反馈方法/选项、与PSSCH发送UE相关的信息、与PSSCH发送相关的信息或与PSSCH接收UE相关的信息中的至少一个来确定用于PSFCH的资源。第二装置可以基于本公开中提出的各种实施方式来确定用于PSFCH的资源。
在步骤S2420中,第二装置可以从第一装置接收PSSCH。在步骤S2430中,第二装置可以通过与PSSCH相关的PSFCH向第一装置发送HARQ反馈。
所提出的方法可以应用于下述的装置。首先,第二装置200的处理器202可以确定用于PSFCH的资源。另外,第二装置200的处理器202可以控制收发器206从第一装置100接收PSSCH。另外,第二装置200的处理器202可以控制收发器206通过与PSSCH相关的PSFCH向第一装置100发送HARQ反馈。
图25示出了基于本公开的实施方式的第一装置执行无线通信的方法。图25的实施方式可以与本公开的各种实施方式组合。
参照图25,在步骤S2510中,第一装置可以从第二装置接收物理副链路共享信道(PSSCH)。在步骤S2520中,第一装置可以确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源。在步骤S2530中,第一装置可以基于PSFCH资源向第二装置发送混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID以及第二装置的源ID来确定PSFCH资源。
例如,基于表5,第一装置可以确定用于与在第i时隙和第j子信道上接收到的PSSCH相对应的PSFCH发送的一个或更多个PRB。
[表5]
Figure BDA0003541240150000331
另外,基于表6,第一装置可以确定可用PSFCH资源的数目。
[表6]
Figure BDA0003541240150000341
另外,第一装置可以基于表7来确定PSFCH资源的索引。另外,第一装置可以在对应于索引的PSFCH资源上发送HARQ反馈。另外,如果索引与特定循环移位相关,则第一装置可以基于对应于索引的PSFCH资源来发送应用了特定循环移位的HARQ反馈。
[表7]
Figure BDA0003541240150000342
例如,可以基于第一装置与第二装置之间的通信的播送类型来确定第一装置的ID。
例如,第一装置的ID可以基于播送类型为单播而被确定为零。
例如,第一装置的ID可以基于播送类型为基于第二选项的组播而被确定为非零值。例如,在基于第二选项的组播中,基于第一装置对PSSCH上的数据的成功解码,HARQ反馈可以是HARQ ACK,并且基于第一装置对PSSCH上的数据的解码失败,HARQ反馈可以是HARQNACK。例如,第一装置的ID可以是通过较高层分配的ID。
例如,第一装置的ID可以基于播送类型为基于第一选项的组播而被确定为零。例如,在基于第一选项的组播中,基于第一装置对PSSCH上的数据的解码失败,HARQ反馈可以是HARQ NACK,并且基于第一装置对PSSCH上的数据的成功解码,可以不发送HARQ反馈。
例如,基于与播送类型相关的第一装置的ID和第二装置的源ID,可以在基于与PSSCH相关的子信道和与PSSCH相关的时隙而确定的至少一个PSFCH资源当中确定PSFCH资源。
另外,例如,第一装置可以确定与应用于PSFCH资源上的HARQ反馈的循环移位相关的信息。例如,可以基于第一装置的ID来确定与应用于PSFCH资源上的HARQ反馈的循环移位相关的信息。例如,可以基于与循环移位相关的信息来在PSFCH资源上将HARQ反馈发送到第二装置。
例如,PSFCH资源可以包括时域资源、频域资源和码域资源中的至少一个。
另外,例如,第一装置可以通过副链路控制信息(SCI)从第二装置接收第二装置的源ID。
所提出的方法可以应用于下述的装置。首先,第一装置100的处理器102可以控制收发器106从第二装置接收物理副链路共享信道(PSSCH)。另外,第一装置100的处理器102可以确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源。另外,第一装置100的处理器102可以控制收发器106基于PSFCH资源向第二装置发送混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID以及第二装置的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种被配置为执行无线通信的第一装置。例如,第一装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行指令以:从第二装置接收物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源向第二装置发送混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID以及第二装置的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第一用户设备(UE)的设备。例如,该设备可以包括:一个或更多个处理器;以及一个或更多个存储器,所述一个或更多个存储器可操作地连接到所述一个或更多个处理器并存储指令。例如,所述一个或更多个处理器可以执行指令以:从第二UE接收物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源向第二UE发送混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一UE与第二UE之间的通信的播送类型、第一UE的ID和第二UE的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种存储指令的非暂态计算机可读存储介质。例如,该指令在被执行时可以致使第一装置:从第二装置接收物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源向第二装置发送混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID和第二装置的源ID来确定PSFCH资源。
图26示出了基于本公开的实施方式的第二装置执行无线通信的方法。图26的实施方式可以与本公开的各种实施方式组合。
参照图26,在步骤S2610中,第二装置可以向第一装置发送物理副链路共享信道(PSSCH)。在步骤S2620中,第二装置可以确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源。在步骤S2630中,第二装置可以基于PSFCH资源从第一装置接收混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID和第二装置的源ID来确定PSFCH资源。
例如,基于表5,第二装置可以确定用于与在第i时隙和第j子信道上发送的PSSCH相对应的PSFCH接收的一个或更多个PRB。另外,基于表6,第二装置可以确定可用PSFCH资源的数目。另外,第二装置可以基于表7来确定PSFCH资源的索引。另外,第二装置可以在对应于索引的PSFCH资源上接收HARQ反馈。另外,如果索引与特定循环移位相关,则第二装置可以基于对应于索引的PSFCH资源来接收应用了特定循环移位的HARQ反馈。
所提出的方法可以应用于下面描述的装置。首先,第二装置200的处理器202可以控制收发器206向第一装置发送物理副链路共享信道(PSSCH)。另外,第二装置200的处理器202可以确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源。另外,第二装置200的处理器202可以控制收发器206基于PSFCH资源从第一装置接收混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID和第二装置的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种被配置为执行无线通信的第二装置。例如,第二装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行指令以:向第一装置发送物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源从第一装置接收混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID和第二装置的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第二用户设备(UE)的设备。例如,该设备可以包括:一个或更多个处理器;以及一个或更多个存储器,所述一个或更多个存储器可操作地连接到所述一个或更多个处理器并存储指令。例如,所述一个或更多个处理器可以执行指令以:向第一UE发送物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源从第一UE接收混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一UE与第二UE之间的通信的播送类型、第一UE的ID和第二UE的源ID来确定PSFCH资源。
基于本公开的实施方式,可以提供一种存储指令的非暂态计算机可读存储介质。例如,该指令在被执行时可以致使第二装置:向第一装置发送物理副链路共享信道(PSSCH);确定与PSSCH相关的物理副链路反馈信道(PSFCH)资源;以及基于PSFCH资源从第一装置接收混合自动重传请求(HARQ)反馈。例如,可以基于与PSSCH相关的子信道、与PSSCH相关的时隙、第一装置与第二装置之间的通信的播送类型、第一装置的ID和第二装置的源ID来确定PSFCH资源。
本公开的各种实施方式可以彼此结合。
下文中,将描述可以应用本公开的各自实施方式的设备。
本文档中描述的本公开的各种描述、功能、过程、提议、方法和/或操作流程可以应用于但不限于需要设备之间的无线通信/连接(例如,5G)的各种领域。
下文中,将参照附图更详细地给出描述。在以下附图/描述中,除非另有描述,否则相同的附图标记可以表示相同或对应的硬件块、软件块或功能块。
图27示出了根据本公开的实施方式的通信系统(1)。
参照图27,应用本公开的各种实施方式的通信系统(1)包括无线装置、基站(BS)和网络。本文中,无线装置表示使用无线电接入技术(RAT)(例如,5G新RAT(NR)或长期演进(LTE))执行通信的装置,并且可以被称为通信/无线电/5G装置。无线装置可以包括而不限于机器人(100a)、车辆(100b-1、100b-2)、扩展现实(XR)装置(100c)、手持装置(100d)、家用电器(100e)、物联网(IoT)装置(100f)和人工智能(AI)装置/服务器(400)。例如,车辆可以包括具有无线通信功能的车辆、自主车辆以及能够执行车辆间通信的车辆。本文中,车辆可以包括无人驾驶飞行器(UAV)(例如,无人机)。XR装置可以包括增强现实(AR)/虚拟现实(VR)/混合现实(MR)装置并且可以以头戴式装置(HMD)、安装在车辆中的平视显示器(HUD)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、车辆、机器人等形式来实现。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可以包括TV、冰箱和洗衣机。IoT装置可以包括传感器和智能仪表。例如,BS和网络可以被实现为无线装置,并且特定的无线装置(200a)可以相对于其它无线装置作为BS/网络节点进行操作。
无线装置100a至100f可以经由BS 200连接到网络300。AI技术可以应用于无线装置100a至100f,并且无线装置100a至100f可以经由网络300连接到AI服务器400。网络300可以使用3G网络、4G(例如,LTE)网络或5G(例如,NR)网络进行配置。尽管无线装置100a至100f可以通过BS 200/网络300相互通信,但是无线装置100a至100f可以执行相互之间的直接通信(例如,副链路通信)而无需通过BS/网络。例如,车辆100b-1和100b-2可以执行直接通信(例如,车辆到车辆(V2V)/车辆到一切(V2X)通信)。IoT装置(例如,传感器)可以执行与其他IoT装置(例如,传感器)或其他无线装置100a至100f的直接通信。
无线通信/连接150a、150b或150c可以建立在无线装置100a至100f/BS 200或BS200/BS 200之间。这里,无线通信/连接可以通过诸如上行链路/下行链路通信150a、副链路通信150b(或D2D通信)或BS间通信(例如,中继、接入回传一体化(IAB))这样的各种RAT(例如,5G NR)建立。无线装置和BS/无线装置可以通过无线通信/连接150a和150b发送/接收去往/来自彼此的无线电信号。例如,无线通信/连接150a和150b可以通过各种物理信道发送/接收信号。为此,用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调和资源映射/解映射)以及资源分配过程的至少一部分可以基于本公开的各种提议执行。
图28示出了根据本公开的实施方式的无线装置。
参照图28,第一无线装置(100)和第二无线装置(200)可以通过各种RAT(例如,LTE和NR)发送无线电信号。本文中,{第一无线装置(100)和第二无线装置(200)}可以对应于图27中的{无线装置(100x)和BS(200)}和/或{无线装置(100x)和无线装置(100x)}。
第一无线装置100可以包括一个或多个处理器102和一个或多个存储器104,并且可以附加地进一步包括一个或多个收发机106和/或一个或多个天线108。(一个或多个)处理器102可以控制(一个或多个)存储器104和/或(一个或多个)收发机106,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器102可以处理(一个或多个)存储器104中的信息以生成第一信息/信号,然后通过(一个或多个)收发机106发送包括第一信息/信号的无线电信号。(一个或多个)处理器102可以通过收发机106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号得到的信息存储在(一个或多个)存储器104中。(一个或多个)存储器104可以连接到(一个或多个)处理器102,并且可以存储与(一个或多个)处理器102的操作有关的各种信息。例如,(一个或多个)存储器104可以存储包括用于执行由(一个或多个)处理器102控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器102和(一个或多个)存储器104可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发机106可以连接到(一个或多个)处理器102,并且通过(一个或多个)天线108发送和/或接收无线电信号。每个收发机106可以包括发送机和/或接收机。(一个或多个)收发机106可以与(一个或多个)射频(RF)单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
第二无线装置200可以包括一个或多个处理器202和一个或多个存储器204,并且可以附加地进一步包括一个或多个收发机206和/或一个或多个天线208。(一个或多个)处理器202可以控制(一个或多个)存储器204和/或(一个或多个)收发机206,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器202可以处理(一个或多个)存储器204中的信息以生成第三信息/信号,并且随后通过(一个或多个)收发器206发送包括第三信息/信号的无线电信号。(一个或多个)处理器202可以通过(一个或多个)收发器106接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号得到的信息存储在(一个或多个)存储器204中。(一个或多个)存储器204可以连接到(一个或多个)处理器202,并且可以存储与(一个或多个)处理器202的操作有关的各种信息。例如,(一个或多个)存储器204可以存储包括用于执行由(一个或多个)处理器202控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器202和(一个或多个)存储器204可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发器206可以连接到(一个或多个)处理器202,并且通过(一个或多个)天线208发送和/或接收无线电信号。每个收发器206可以包括发送机和/或接收机。(一个或多个)收发器206可以与(一个或多个)RF单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
下面,将更具体地描述无线装置100和200的硬件元件。一个或多个协议层可以但不限于由一个或多个处理器102和202实现。例如,一个或多个处理器102和202可以实现一个或多个层(例如,诸如PHY、MAC、RLC、PDCP、RRC和SDAP这样的功能层)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成一个或多个协议数据单元(PDU)和/或一个或多个服务数据单元(SDU)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成消息、控制信息、数据或信息。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成包括PDU、SDU、消息、控制信息、数据或信息的信号(例如,基带信号),并将所生成的信号提供给一个或多个收发器106和206。一个或多个处理器102和202可以从一个或多个收发器106和206接收信号(例如,基带信号),并根据本文档公开的描述、功能、过程、提议、方法和/或操作流程获取PDU、SDU、消息、控制信息、数据或信息。
一个或多个处理器102和202可以被称为控制器、微控制器、微处理器或微计算机。一个或多个处理器102和202可以由硬件、固件、软件或它们的组合实现。例如,一个或多个专用集成电路(ASIC)、一个或多个数字信号处理器(DSP)、一个或多个数字信号处理装置(DSPD)、一个或多个可编程逻辑器件(PLD)或一个或多个现场可编程门阵列(FPGA)可以被包括在一个或多个处理器102和202中。本文档中公开的描述、功能、过程、提议、方法和/或操作流程可以使用固件或软件实现,并且该固件或软件可以被配置为包括模块、过程或功能。被配置为执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的固件或软件可以被包括在一个或多个处理器102和202中或者被存储在一个或多个存储器104和204中,从而由一个或多个处理器102和202驱动。本文档公开的描述、功能、过程、提议、方法和/或操作流程可以使用代码、命令和/或命令集形式的软件或固件实现。
一个或多个存储器104和204可以连接到一个或多个处理器102和202,并且可以存储各种类型的数据、信号、消息、信息、程序、代码、指令和/或命令。一个或多个存储器104和204可以由只读存储器(ROM)、随机存取存储器(RAM)、电可擦除可编程只读存储器(EPROM)、闪存、硬驱动器、寄存器、现金存储器、计算机可读存储介质和/或它们的组合构成。一个或多个存储器104和204可以位于一个或多个处理器102和202内部和/或外部。一个或多个存储器104和204可以通过诸如有线或无线连接这样的各种技术连接到一个或多个处理器102和202。
一个或多个收发器106和206可以向一个或多个其他装置发送本文档的方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。一个或多个收发器106和206可以从一个或多个其他装置接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。例如,一个或多个收发器106和206可以连接到一个或多个处理器102和202,并且可以发送和接收无线电信号。例如,一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以向一个或多个其他装置发送用户数据、控制信息或无线电信号。一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以从一个或多个其他装置接收用户数据、控制信息或无线电信号。一个或多个收发器106和206可以连接到一个或多个天线108和208,并且一个或多个收发器106和206可以被配置为通过一个或多个天线108和208发送和接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。在本文档中,一个或多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或多个收发器106和206可以将接收到的无线电信号/信道等从RF频带信号转换为基带信号,以使用一个或多个处理器102和202处理接收到的用户数据、控制信息、无线电信号/信道等。一个或多个收发器106和206可以将使用一个或多个处理器102和202处理后的用户数据、控制信息、无线电信号/信道等从基带信号转换为RF频带信号。为此,一个或多个收发器106和206可以包括(模拟)振荡器和/或滤波器。
图29示出了根据本公开的实施方式的用于发送信号的信号处理电路。
参照图29,信号处理电路(1000)可以包括加扰器(1010)、调制器(1020)、层映射器(1030)、预编码器(1040)、资源映射器(1050)和信号发生器(1060)。可以执行图29的操作/功能,而不限于图28的处理器(102、202)和/或收发器(106、206)。可以通过图28的处理器(102、202)和/或收发器(106、206)来实现图29的硬件元件。例如,可以通过图28的处理器(102、202)来实现框1010至1060。另选地,可以通过图28的处理器(102、202)来实现框1010至1050,并且可以通过图28的收发器(106、206)来实现框1060。
可以经由图29的信号处理电路(1000)将码字转换成无线电信号。本文中,码字是信息块的编码位序列。信息块可以包括传输块(例如,UL-SCH传输块、DL-SCH传输块)。可以通过各种物理信道(例如,PUSCH和PDSCH)来发送无线电信号。
具体地,码字可以由加扰器1010转换为经过加扰的位序列。用于进行加扰的加扰序列可以基于初始值生成,并且初始值可以包括无线装置的ID信息。经过加扰的位序列可以由调制器1020调制为调制符号序列。调制方案可以包括pi/2-二进制相移键控(pi/2-BPSK)、m-相移键控(m-PSK)以及m-正交幅度调制(m-QAM)。复数调制符号序列可以由层映射器1030映射到一个或多个传输层。每个传输层的调制符号可以由预编码器1040映射(预编码)到(一个或多个)相应的天线端口。预编码器1040的输出z可以通过将层映射器1030的输出y与N*M预编码矩阵W相乘得出。这里,N是天线端口的数目,M是传输层的数目。预编码器1040可以在执行对于复数调制符号的变换预编码(例如,DFT)之后执行预编码。替代地,预编码器1040可以在不执行变换预编码的情况下执行预编码。
资源映射器1050可以将每个天线端口的调制符号映射到时频资源。时频资源可以包括时域中的多个符号(例如,CP-OFDMA符号和DFT-s-OFDMA符号)和频域中的多个子载波。信号发生器1060可以从所映射的调制符号生成无线电信号,并且所生成的无线电信号可以通过每个天线被发送到其他装置。为此,信号发生器1060可以包括逆快速傅里叶变换(IFFT)模块、循环前缀(CP)插入器、数模转换器(DAC)以及上变频器。
可以以与图29的信号处理过程(1010~1060)相反的方式来配置用于在无线装置中接收的信号的信号处理过程。例如,无线装置(例如,图28的100、200)可以通过天线端口/收发器从外部接收无线电信号。可以通过信号恢复器将接收到的无线电信号转换成基带信号。为此,信号恢复器可以包括频率下行链路转换器、模数转换器(ADC)、CP去除器和快速傅立叶变换(FFT)模块。接下来,可以通过资源解映射过程、后编码过程、解调处理器和解扰过程将基带信号恢复成码字。可以通过解码将码字恢复成原始信息块。因此,用于接收信号的信号处理电路(未例示)可以包括信号恢复器、资源解映射器、后编码器、解调器、解扰器和解码器。
图30示出了根据本公开的实施方式的无线装置的另一示例。可以根据用例/服务以各种形式实现无线装置(参照图27)。
参照图30,无线装置(100、200)可以对应于图28的无线装置(100,200),并且可以通过各种元件、部件、单元/部分和/或模块来配置。例如,无线装置(100、200)中的每一个可以包括通信单元(110)、控制单元(120)、存储单元(130)和附加部件(140)。通信单元可以包括通信电路(112)和(一个或多个)收发器(114)。例如,通信电路(112)可以包括图28的一个或更多个处理器(102、202)和/或一个或更多个存储器(104、204)。例如,(一个或多个)收发器(114)可以包括图28的一个或更多个收发器(106、206)和/或一个或更多个天线(108、208)。控制单元(120)电连接到通信单元(110)、存储器(130)和附加部件(140),并且控制无线装置的整体操作。例如,控制单元(120)可以基于存储在存储单元(130)中的程序/代码/命令/信息来控制无线装置的电气/机械操作。控制单元(120)可以通过无线/有线接口经由通信单元(110)将存储在存储单元(130)中的信息发送到外部(例如,其它通信装置),或者将经由通信单元(110)通过无线/有线接口从外部(例如,其它通信装置)接收的信息存储在存储单元(130)中。
可以根据无线装置的类型对附加部件(140)进行各种配置。例如,附加部件(140)可以包括电力单元/电池、输入/输出(I/O)单元、驱动单元和计算单元中的至少一个。无线装置可以采用而不限于以下的形式来实现:机器人(图27的100a)、车辆(图27的100b-1和100b-2)、XR装置(图27的100c)、手持装置(图27的100d)、家用电器(图27的100e)、IoT装置(图27的100f)、数字广播终端、全息图装置、公共安全装置、MTC装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、AI服务器/装置(图27的400)、BS(图27的200)、网络节点等。根据用例/服务,无线装置可以在移动或固定的地方使用。
在图30中,无线装置(100、200)中的各种元件、部件、单元/部分和/或模块全部都可以通过有线接口彼此连接,或者其至少部分可以通过通信单元(110)无线地连接。例如,在无线装置(100、200)中的每一个中,控制单元(120)和通信单元(110)可以通过有线连接,并且控制单元(120)和第一单元(例如,130、140)可以通过通信单元(110)无线连接。无线装置(100、200)内的每个元件、部件、单元/部分和/或模块还可以包括一个或更多个元件。例如,可以通过一个或更多个处理器的集合来构造控制单元(120)。作为示例,可以通过通信控制处理器、应用处理器、电子控制单元(ECU)、图形处理单元和存储器控制处理器的集合来构造控制单元(120)。作为另一示例,可以通过随机存取存储器(RAM)、动态RAM(DRAM)、只读存储器(ROM)、闪存、易失性存储器、非易失性存储器和/或其组合来构造存储器(130)。
下文中,将参照附图详细地描述实现图30的示例。
图31示出了根据本公开的实施方式的手持装置。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)或便携式计算机(例如,笔记本)。手持式装置可以被称为移动站(MS)、用户终端(UT)、移动订户站(MSS)、订户站(SS)、高级移动站(AMS)或无线终端(WT)。
参照图31,手持装置(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、存储单元(130)、电源单元(140a)、接口单元(140b)和I/O单元(140c)。天线单元(108)可以被配置为通信单元(110)的一部分。框110至130/140a至140c分别对应于图30的框110至130/140。
通信单元110可以发送和接收去往和来自其他无线装置或BS的信号(例如,数据信号和控制信号)。控制单元120可以通过控制手持装置100的构成元件来执行各种操作。控制单元120可以包括应用处理器(AP)。存储单元130可以存储驱动手持装置100所需要的数据/参数/程序/代码/命令。存储单元130可以存储输入/输出数据/信息。电源单元140a可以向手持装置100供应功率,并且包括有线/无线充电电路、电池等。接口单元140b可以支持手持装置100到其他外部装置的连接。接口单元140b可以包括用于与外部装置连接的各种端口(例如,音频I/O端口和视频I/O端口)。I/O单元140c可以输入或输出用户输入的视频信息/信号、音频信息/信号、数据和/或信息。I/O单元140c可以包括相机、麦克风、用户输入单元、显示单元140d、扬声器和/或触觉模块。
例如,在数据通信的情况下,I/O单元140c可以获取用户输入的信息/信号(例如,触摸、文本、语音、图像或视频),并且所获取的信息/信号可以被存储在存储单元130中。通信单元110可以将存储器中存储的信息/信号转换为无线电信号,并将所转换的无线电信号直接发送给其他无线装置或发送给BS。通信单元110可以从其他无线装置或BS接收无线电信号,然后将所接收的无线电信号恢复为原始信息/信号。恢复出的信息/信号可以被存储在存储单元130中,并且可以通过I/O单元140输出为各种类型(例如,文本、语音、图像、视频或触觉)。
图32示出了根据本公开的实施方式的车辆或自主车辆。可以通过移动机器人、汽车、火车、有人/无人驾驶飞行器(AV)、轮船等来实现车辆或自主车辆。
参照图32,车辆或自主车辆(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、驱动单元(140a)、电源单元(140b)、传感器单元(140c)和自主驾驶单元(140d)。天线单元(108)可以被配置为通信单元(110)的一部分。框110/130/140a至140d分别对应于图30的框110/130/140。
通信单元110可以发送和接收去往和来自诸如其他车辆、BS(例如,gNB和路侧单元)和服务器这样的外部装置的信号(例如,数据信号和控制信号)。控制单元120可以通过控制车辆或自主驾驶车辆100的元件执行各种操作。控制单元120可以包括电子控制单元(ECU)。驱动单元140a可以促使车辆或自主驾驶车辆100在路上行驶。驱动单元140a可以包括引擎、马达、传动系统、车轮、刹车、转向装置等。电源单元140b可以向车辆或自主驾驶车辆100供应电力,并且可以包括有线/无线充电电路、电池等。传感器单元140c可以获取车辆状态、外部环境信息、用户信息等。传感器单元140c可以包括惯性测量单元(IMU)传感器、碰撞传感器、车轮传感器、速度传感器、坡度传感器、重量传感器、航向传感器、位置模块、车辆前进/后退传感器、电池传感器、燃油传感器、轮胎传感器、转向传感器、温度传感器、湿度传感器、超声波传感器、照明传感器、踏板位置传感器等。自主驾驶单元140d可以实现用于保持车辆行驶的车道的技术、用于自动调节速度的技术(例如,自适应巡航控制)、用于自主沿着确定路径驾驶的技术、用于在设置了目的地的情况下通过自动设置路径驾驶的技术等。
例如,通信单元110可以从外部服务器接收地图数据、交通信息数据等。自主驾驶单元140d可以从所获取的数据生成自主驾驶路径和驾驶计划。控制单元120可以控制驱动单元140a,使得车辆或自主驾驶车辆100可以根据驾驶计划(例如,速度/方向控制)沿着自主驾驶路径移动。在自主驾驶中间,通信单元110可以非周期性/周期性地从外部服务器获取最近的交通信息数据,并且从相邻车辆获取周围的交通信息数据。在自主驾驶中间,传感器单元140c可以获取车辆状态和/或周围环境信息。自主驾驶单元140d可以基于新获取的数据/信息更新自主驾驶路径和驾驶计划。通信单元110可以向外部服务器传输有关车辆位置、自主驾驶路径和/或驾驶计划的信息。外部服务器可以基于从车辆或自主驾驶车辆收集的信息使用AI技术等预测交通信息数据,并将所预测的交通信息数据提供给车辆或自主驾驶车辆。
可以以各种方式组合本说明书中的权利要求。例如,本说明书的方法权利要求中的技术特征可以被组合以在设备中实现或执行,并且设备权利要求中的技术特征可以被组合以在方法中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在设备中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在方法中实现或执行。

Claims (20)

1.一种由第一装置执行无线通信的方法,该方法包括以下步骤:
从第二装置接收物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源向所述第二装置发送混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
2.根据权利要求1所述的方法,其中,基于所述第一装置与所述第二装置之间的通信的播送类型来确定所述第一装置的所述ID。
3.根据权利要求2所述的方法,其中,所述第一装置的所述ID基于所述播送类型为单播而被确定为零。
4.根据权利要求2所述的方法,其中,所述第一装置的所述ID基于所述播送类型为基于第二选项的组播而被确定为非零值。
5.根据权利要求4所述的方法,其中,在基于所述第二选项的所述组播中,基于由所述第一装置对所述PSSCH上的数据的成功解码,所述HARQ反馈是HARQ ACK,并且基于由所述第一装置对所述PSSCH上的数据的解码失败,所述HARQ反馈是HARQ NACK。
6.根据权利要求4所述的方法,其中,所述第一装置的所述ID是通过较高层分配的ID。
7.根据权利要求2所述的方法,其中,所述第一装置的所述ID基于所述播送类型为基于第一选项的组播而被确定为零。
8.根据权利要求7所述的方法,其中,在基于所述第一选项的所述组播中,基于由所述第一装置对所述PSSCH上的数据的解码失败,所述HARQ反馈是HARQ NACK,并且基于由所述第一装置对所述PSSCH上的数据的成功解码,不发送所述HARQ反馈。
9.根据权利要求1所述的方法,其中,基于与所述播送类型相关的所述第一装置的所述ID和所述第二装置的所述源ID,在基于与所述PSSCH相关的所述子信道和与所述PSSCH相关的所述时隙而确定的至少一个PSFCH资源当中确定所述PSFCH资源。
10.根据权利要求1所述的方法,所述方法还包括以下步骤:
确定与应用于所述PSFCH资源上的所述HARQ反馈的循环移位相关的信息。
11.根据权利要求10所述的方法,其中,与应用于所述PSFCH资源上的所述HARQ反馈的所述循环移位相关的信息是基于所述第一装置的所述ID确定的。
12.根据权利要求10所述的方法,其中,基于与所述循环移位相关的所述信息来在所述PSFCH资源上将所述HARQ反馈发送到所述第二装置。
13.根据权利要求1所述的方法,所述方法还包括以下步骤:
通过副链路控制信息SCI从所述第二装置接收所述第二装置的所述源ID。
14.一种被配置为执行无线通信的第一装置,该第一装置包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令,以:
从第二装置接收物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源向所述第二装置发送混合自动重传请求HARQ反馈,其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
15.一种被配置为控制执行无线通信的第一用户设备UE的设备,该设备包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上连接到所述一个或更多个处理器并存储指令,其中,所述一个或更多个处理器执行所述指令,以:
从第二UE接收物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源向所述第二UE发送混合自动重传请求HARQ反馈,其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一UE与所述第二UE之间的通信的播送类型、所述第一UE的ID和所述第二UE的源ID来确定所述PSFCH资源。
16.一种存储指令的非暂态计算机可读存储介质,所述指令在被执行时致使第一装置:
从第二装置接收物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源向所述第二装置发送混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
17.一种由第二装置执行无线通信的方法,该方法包括以下步骤:
向第一装置发送物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源从所述第一装置接收混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
18.一种被配置为执行无线通信的第二装置,该第二装置包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令,以:
向第一装置发送物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源从所述第一装置接收混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
19.一种被配置为控制执行无线通信的第二用户设备UE的设备,该设备包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上连接到所述一个或更多个处理器并存储指令,其中,所述一个或更多个处理器执行所述指令,以:
向第一UE发送物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源从所述第一UE接收混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一UE与所述第二UE之间的通信的播送类型、所述第一UE的ID和所述第二UE的源ID来确定所述PSFCH资源。
20.一种存储指令的非暂态计算机可读存储介质,所述指令在被执行时致使第二装置:
向第一装置发送物理副链路共享信道PSSCH;
确定与所述PSSCH相关的物理副链路反馈信道PSFCH资源;以及
基于所述PSFCH资源从所述第一装置接收混合自动重传请求HARQ反馈,
其中,基于与所述PSSCH相关的子信道、与所述PSSCH相关的时隙、所述第一装置与所述第二装置之间的通信的播送类型、所述第一装置的ID和所述第二装置的源ID来确定所述PSFCH资源。
CN202080064130.5A 2019-07-10 2020-06-22 用于在nr v2x中确定反馈资源的方法和装置 Pending CN114402639A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
KR10-2019-0083454 2019-07-10
KR10-2019-0083374 2019-07-10
KR20190083454 2019-07-10
KR20190083374 2019-07-10
US201962895947P 2019-09-04 2019-09-04
US62/895,947 2019-09-04
US201962937168P 2019-11-18 2019-11-18
US62/937,168 2019-11-18
PCT/KR2020/008063 WO2021006500A1 (ko) 2019-07-10 2020-06-22 Nr v2x에서 피드백 자원을 결정하는 방법 및 장치

Publications (1)

Publication Number Publication Date
CN114402639A true CN114402639A (zh) 2022-04-26

Family

ID=74114626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080064130.5A Pending CN114402639A (zh) 2019-07-10 2020-06-22 用于在nr v2x中确定反馈资源的方法和装置

Country Status (6)

Country Link
US (2) US11496995B2 (zh)
EP (1) EP3982579B1 (zh)
JP (1) JP7286000B2 (zh)
KR (1) KR102569186B1 (zh)
CN (1) CN114402639A (zh)
WO (1) WO2021006500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087884A1 (zh) * 2022-10-25 2024-05-02 华为技术有限公司 侧行链路反馈方法与通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402639A (zh) * 2019-07-10 2022-04-26 Lg电子株式会社 用于在nr v2x中确定反馈资源的方法和装置
CN112311515B (zh) * 2019-08-01 2022-03-29 北京华为数字技术有限公司 一种反馈信息传输方法及装置
US11595160B2 (en) * 2020-04-08 2023-02-28 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication based on feedback
US20220263605A1 (en) * 2021-02-18 2022-08-18 Qualcomm Incorporated Harq procedure for cooperative relay in sidelink networks
US11737095B2 (en) * 2021-06-17 2023-08-22 Qualcomm Incorporated Index modulation-based hybrid automatic repeat request codebook over a sidelink feedback channel
US11991671B2 (en) * 2021-08-31 2024-05-21 Qualcomm Incorporated Feedback designs for multi-user multiple input-multiple output sidelink communication
WO2023178522A1 (en) * 2022-03-22 2023-09-28 Lenovo (Beijing) Limited Methods and apparatuses for physical sidelink feedback channel (psfch) transmission
WO2023211154A1 (ko) * 2022-04-26 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624076B2 (en) * 2014-03-30 2020-04-14 Lg Electronics Inc. Method for transmitting and receiving downlink control information in wireless communication system supporting device-to-device communication and device for the same
JPWO2016163509A1 (ja) * 2015-04-09 2018-02-01 株式会社Nttドコモ 通信端末
EP3834321A1 (en) * 2018-08-09 2021-06-16 Convida Wireless, Llc Broadcast, multicast, and unicast on sidelink for 5g ev2x
US11902026B2 (en) * 2018-12-28 2024-02-13 Panasonic Intellectual Property Corporation Of America Sidelink transmitting apparatus, receiving apparatus and communication methods
JP7322148B2 (ja) * 2019-01-10 2023-08-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ ユーザ装置及び無線通信方法
WO2020163990A1 (en) * 2019-02-12 2020-08-20 Lenovo (Beijing) Limited Feedback request determination
US11424871B2 (en) * 2019-05-02 2022-08-23 Samsung Electronics Co., Ltd. Resource allocation method and apparatus in wireless communication system
EP3979678A4 (en) * 2019-06-03 2022-12-28 Ntt Docomo, Inc. TERMINAL AND COMMUNICATION METHOD
CN114402639A (zh) * 2019-07-10 2022-04-26 Lg电子株式会社 用于在nr v2x中确定反馈资源的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087884A1 (zh) * 2022-10-25 2024-05-02 华为技术有限公司 侧行链路反馈方法与通信装置

Also Published As

Publication number Publication date
KR20220017487A (ko) 2022-02-11
EP3982579B1 (en) 2023-08-02
US11496995B2 (en) 2022-11-08
JP7286000B2 (ja) 2023-06-02
EP3982579A1 (en) 2022-04-13
KR102569186B1 (ko) 2023-08-23
EP3982579A4 (en) 2022-07-20
WO2021006500A1 (ko) 2021-01-14
US20220132471A1 (en) 2022-04-28
US11825452B2 (en) 2023-11-21
US20230069396A1 (en) 2023-03-02
JP2022539599A (ja) 2022-09-12

Similar Documents

Publication Publication Date Title
KR102569186B1 (ko) Nr v2x에서 피드백 자원을 결정하는 방법 및 장치
CN113853761A (zh) 在nr v2x中发送副链路参考信号的方法和装置
CN111727651A (zh) Nr v2x的2步sci发送
CN113994755A (zh) 在nr v2x中调度多个资源的方法和设备
CN113544991B (zh) 用于在nr v2x中发送psfch的方法和设备
CN114616877B (zh) Nr v2x中基于控制信息识别发送资源的方法以及同步
CN114080770B (zh) 用于在nr v2x中确定反馈资源的方法和设备
CN113475147A (zh) 基于dci执行lte sl通信的方法和装置
CN114556979A (zh) 用于在nr v2x中向基站发送harq反馈的方法和设备
CN114586306A (zh) Nr v2x中确定harq反馈优先级的方法和设备
CN113785518A (zh) 用于在nr v2x中确定harq反馈选项的方法及装置
CN113994611A (zh) 用于在nr v2x中确定rsrp的方法及装置
CN113906794A (zh) 用于在nr v2x中发送位置信息的方法和设备
CN115280859A (zh) 在nr v2x中基于侧链路cg资源执行侧链路通信的方法和装置
CN114208083A (zh) 在nr v2x中释放副链路重传资源的方法和设备
CN114402638A (zh) 在nr v2x中发信号通知与tdd时隙配置相关的信息的方法和装置
CN114762434A (zh) 用于在nr v2x中发送传输块的方法和装置
CN114762278A (zh) 在nr v2x中向基站报告harq反馈的方法和装置
CN114762279A (zh) 在nr v2x中用于向基站报告harq反馈的方法和装置
CN114762433A (zh) 基于nr v2x中的控制信息识别发送资源的方法和装置
CN114514763A (zh) 在nr v2x中向基站报告harq反馈的方法和装置
CN113396550A (zh) 在nr v2x中进行基于数据链路的副链路通信的方法和设备
CN113475148A (zh) 用于控制lte副链路通信的dci
CN113748732B (zh) 发送和接收用于副链路通信的控制信息的方法和装置
CN115315978A (zh) 在nr v2x中执行拥塞控制的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination