WO2024087884A1 - 侧行链路反馈方法与通信装置 - Google Patents

侧行链路反馈方法与通信装置 Download PDF

Info

Publication number
WO2024087884A1
WO2024087884A1 PCT/CN2023/116710 CN2023116710W WO2024087884A1 WO 2024087884 A1 WO2024087884 A1 WO 2024087884A1 CN 2023116710 W CN2023116710 W CN 2023116710W WO 2024087884 A1 WO2024087884 A1 WO 2024087884A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
psfchs
psfch
pssch
timing
Prior art date
Application number
PCT/CN2023/116710
Other languages
English (en)
French (fr)
Inventor
吴昊
彭文杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024087884A1 publication Critical patent/WO2024087884A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a side link feedback method and a communication device.
  • SL communication supports direct transmission between terminals.
  • 3GPP 3rd generation partnership project
  • SL-U SL-unlicensed
  • VR virtual reality
  • SL-U communication In the unlicensed frequency band, SL-U communication needs to meet the channel listening (listen-before-talk, LBT). Specifically, when the receiving device provides feedback to the transmitting device, it needs to determine whether the physical sidelink feedback channel (PSFCH) resources are idle. If so, the receiving device uses the resources for feedback; if not, the receiving device does not use the resources for feedback.
  • PSFCH physical sidelink feedback channel
  • the 3GPP protocol stipulates that a receiving device can use multiple PSFCH resources to send hybrid automatic repeat request (HARQ) information to the sending device, which is used to provide feedback on the demodulation status of the data sent by the sending device.
  • HARQ hybrid automatic repeat request
  • this mechanism can easily cause the sending device to prematurely trigger an unreasonable radio link failure (RLF) detection mechanism when it fails to receive or detect the HARQ information sent by the receiving device at the corresponding PSFCH resource location, which may affect the communication between the two.
  • RLF radio link failure
  • the present application provides a sidelink feedback method and a communication device, which can avoid premature erroneous triggering of a radio failure detection mechanism due to excessive number of feedback information reception failures.
  • a communication device/terminal refers to a communication device/terminal that uses SL-U technology for communication.
  • a sidelink feedback method comprising: a second communication device sends a physical sidelink shared channel PSSCH to a first communication device; the second communication device determines the number of discontinuous transmissions DTX within at least two timing cycles, one DTX indicates a failure to receive a feedback message, one feedback message is carried on a PSFCH, one PSSCH corresponds to at least two PSFCHs, a first timing cycle of at least two timing cycles includes at least one PSFCH of at least two PSFCHs, and the number of DTXs within the first timing cycle is less than the number of PSFCHs included in the first timing cycle; the second communication device determines whether the wireless link between the first communication device and the second communication device is in a failure state based on the number of DTXs within at least two timing cycles.
  • the second communication device can maintain the operation of multiple timing cycles, and can successfully receive or detect the feedback information at the resource position of a certain PSFCH (the PSFCH may be ranked very late in multiple PSFCHs), and the number of DTXs will not exceed the quantity threshold.
  • the present application can control the number of DTXs within each timing cycle to avoid triggering the RLF detection mechanism prematurely due to an excessive number of DTXs, thereby supporting smooth communication between the first communication device and the second communication device.
  • the second communication device determines whether the wireless link between the first communication device and the second communication device is in a failure state based on the number of DTXs within at least two timing cycles, including: when the number of DTXs within at least two timing cycles is equal to a quantity threshold, the second communication device terminates timing; and the second communication device determines that the wireless link is in a failure state.
  • the present application supports the second communication device to accurately send abnormal wireless link status and improve SL communication efficiency.
  • the second communication device determines whether the wireless link between the first communication device and the second communication device is in a failure state based on the number of DTXs within at least two timing cycles, including: when receiving the first feedback information corresponding to the PSSCH, the second communication device terminates the timing; the second communication device determines that the wireless link between the first communication device and the second communication device is in a normal state.
  • the method further includes: the second communication device sends first indication information to the first communication device, which is used to indicate the resource location of each PSFCH of at least two PSFCHs.
  • the first communication device can send feedback information to the second communication device at the resource position of the PSFCH indicated by the second communication device, so that the second communication device can detect the feedback information at the corresponding resource position of the PSFCH.
  • the time interval between the time domain positions of any two adjacent PSFCHs among the at least two PSFCHs is greater than or equal to a time interval threshold.
  • the method further includes: the second communication device sends second indication information to the first communication device, which includes a time interval threshold; the time interval between the time domain positions of any two adjacent PSFCHs in at least two PSFCHs is greater than or equal to the time interval threshold.
  • the method further includes: the second communication device sends third indication information to the first communication device, which is used to indicate a maximum time interval between a PSSCH and a PSFCH corresponding to the PSSCH.
  • a side link feedback method including: a first communication device receives a PSSCH from a second communication device; the first communication device sends feedback information to the second communication device on each of at least two PSFCHs corresponding to the PSSCH, and the time interval between the time domain positions of any two adjacent PSFCHs in the at least two PSFCHs is greater than or equal to a time interval threshold.
  • the method before each of the at least two PSFCHs corresponding to the PSSCH sends feedback information, the method further includes: the first communication device configures the resource position of each of the at least two PSFCHs according to the time interval threshold.
  • the method before each of at least two PSFCHs corresponding to the PSSCH sends feedback information, the method also includes: the first communication device receives first indication information from the second communication device, which is used to indicate the resource location of each of the at least two PSFCHs.
  • the method further includes: the first communication device receives second indication information from the second communication device, which is used to indicate a maximum time interval between a PSSCH and a PSFCH corresponding to the PSSCH.
  • a communication device comprising: a transceiver unit, configured to send a PSSCH to a first communication device; a processing unit, configured to determine the number of discontinuous transmissions DTX within at least two timing cycles, wherein one DTX indicates a failure to receive a feedback information, one feedback information is carried on one PSFCH, one PSSCH corresponds to at least two PSFCHs, the first timing cycle of at least two timing cycles includes at least one PSFCH of at least two PSFCHs, and the number of DTXs within the first timing cycle is less than the number of PSFCHs included in the first timing cycle; the processing unit is further configured to determine whether the wireless link between the first communication device and the communication device is in a failure state based on the number of DTXs within at least two timing cycles.
  • the processing unit is further used to: terminate timing when the number of DTXs in at least two timing cycles is equal to a number threshold; and determine whether the wireless link between the first communication device and the communication device is in a failed state.
  • the processing unit is further used to: terminate timing when first feedback information corresponding to the PSSCH is received; and determine that the wireless link between the first communication device and the communication device is in a normal state.
  • the transceiver unit is further used to send first indication information to the first communication device, which is used to indicate the resource location of each PSFCH in at least two PSFCHs.
  • the time interval between the time domain positions of any two adjacent PSFCHs in at least two PSFCHs is greater than or equal to a time interval threshold.
  • the transceiver unit is further used to send second indication information to the first communication device, which includes a time interval threshold; the time interval between the time domain positions of any two adjacent PSFCHs in at least two PSFCHs is greater than or equal to the time interval threshold.
  • the transceiver unit is further configured to send third indication information to the first communication device, which is used to indicate that the PSSCH The maximum time interval between PSFCHs corresponding to PSSCHs.
  • a communication device comprising: a transceiver unit for receiving a PSSCH from a second communication device; the transceiver unit is also used to send feedback information to the second communication device on each of at least two PSFCHs corresponding to the PSSCH, and the time interval between the time domain positions of any two adjacent PSFCHs in the at least two PSFCHs is greater than or equal to a time interval threshold.
  • the device further includes a processing unit, which is used to configure the resource position of each PSFCH of at least two PSFCHs according to the time interval threshold.
  • the transceiver unit is further used to receive first indication information from the second communication device, which is used to indicate the resource location of each PSFCH in at least two PSFCHs.
  • the transceiver unit is further used to receive second indication information from the second communication device, which is used to indicate the maximum time interval between the PSSCH and the PSFCH corresponding to the PSSCH.
  • a communication device comprising a processor, which is used to enable the communication device to perform any method in the first aspect and any possible implementation of the first aspect by executing a computer program or instruction, or through a logic circuit; or to enable the communication device to perform any method in the second aspect and any possible implementation of the second aspect.
  • the communication device further includes a memory for storing the computer program or instruction.
  • the communication device further includes a communication interface, which is used to input and/or output signals.
  • a communication device comprising a logic circuit and an input/output interface, the input/output interface being used to input and/or output signals, the logic circuit being used to execute the method described in the first aspect and any one of the possible implementations of the first aspect; or, being used to execute the method described in the second aspect and any one of the possible implementations of the second aspect.
  • a computer-readable storage medium comprising a computer program or instructions, which, when executed on a computer, causes the method described in the first aspect and any one of the possible implementations of the first aspect to be executed; or causes the method described in the second aspect and any one of the possible implementations of the second aspect to be executed.
  • a computer program product comprising instructions, which, when executed on a computer, cause any method in the first aspect and any possible implementation of the first aspect to be executed; or cause any method in the second aspect and any possible implementation of the second aspect to be executed.
  • a computer program which, when running on a computer, enables the execution of any method in the first aspect and any possible implementation of the first aspect; or enables the execution of any method in the second aspect and any possible implementation of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram showing the configuration of the transmission timing of the PSFCH.
  • FIG3 is a schematic diagram of an interactive flow of a sidelink feedback method 300 according to an embodiment of the present application.
  • FIG4 is a schematic diagram of the corresponding relationship between the timing cycle, the number of PSFCHs and the number of DTXs in an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • FIG8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • Satellite communication systems include satellite base stations and terminal devices. Satellite base stations provide communication services for terminal devices. Satellite base stations can also communicate with ground base stations. Satellites can be used as base stations or as terminal devices. Among them, satellites can refer to non-terrestrial base stations or non-terrestrial devices such as drones, hot air balloons, low-orbit satellites, medium-orbit satellites, and high-orbit satellites.
  • the technical solution of the embodiment of the present application is applicable to both homogeneous and heterogeneous network scenarios, and there is no restriction on the transmission point. It can be multi-point coordinated transmission between macro base stations, micro base stations, and macro base stations. It is applicable to FDD/TDD systems.
  • the technical solution of the embodiment of the present application is not only applicable to low-frequency scenarios (sub 6G), but also to high-frequency scenarios (above 6GHz), terahertz, optical communications, etc.
  • the technical solution of the embodiment of the present application can be applied not only to the communication between network devices and terminals, but also to the communication between network devices and network devices, the communication between terminals, the Internet of Vehicles, the Internet of Things, the Industrial Internet, etc.
  • the technical solution of the embodiment of the present application can also be applied to the scenario where the terminal is connected to a single base station, wherein the base station to which the terminal is connected and the core network (CN) to which the base station is connected are of the same standard.
  • the base station to which the terminal is connected and the core network (CN) to which the base station is connected are of the same standard.
  • the CN is 5G Core
  • the base station corresponds to a 5G base station, and the 5G base station is directly connected to the 5G Core
  • the CN is 6G Core
  • the base station is a 6G base station, and the 6G base station is directly connected to the 6G Core.
  • the technical solution of the embodiment of the present application can also be applied to the dual connectivity (DC) scenario where the terminal is connected to at least two base stations.
  • DC dual connectivity
  • the technical solution of the embodiment of the present application can also use macro and micro scenarios composed of base stations of different forms in the communication network.
  • the base station can be a satellite, an aerial balloon station, a drone station, etc.
  • the technical solution of the embodiment of the present application is also suitable for scenarios where there are both wide coverage base stations and small coverage base stations.
  • the technical solutions of the embodiments of the present application can also be applied to 5.5G, 6G and later wireless communication systems, and applicable scenarios include but are not limited to ground cellular communications, NTN, satellite communications, high altitude platform station (HAPS) communications, vehicle-to-everything (V2X), integrated access and backhaul (IAB), reconfigurable intelligent surface (RIS) communications, indoor commercial use and other scenarios.
  • ground cellular communications NTN, satellite communications, high altitude platform station (HAPS) communications, vehicle-to-everything (V2X), integrated access and backhaul (IAB), reconfigurable intelligent surface (RIS) communications, indoor commercial use and other scenarios.
  • NTN high altitude platform station
  • HAPS high altitude platform station
  • V2X vehicle-to-everything
  • IAB integrated access and backhaul
  • RIS reconfigurable intelligent surface
  • the technical solution of the embodiment of the present application can also be applied to SL communication between terminal devices directly, that is, the shared channel and the feedback channel are transmitted and received between the terminal devices.
  • the terminal in the embodiment of the present application can be a device with wireless transceiver function, which can specifically refer to user equipment (UE), access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • wireless communication device user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a customer-premises equipment (CPE), an intelligent point of sale (POS) machine, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot, a device-to-device communication (
  • D2D device-to-device
  • terminals in V2X virtual reality
  • VR virtual reality
  • AR augmented reality
  • the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device may be installed in the terminal device or used in combination with the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the network device in the embodiment of the present application is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network device can be a node in the radio access network (RAN), which can also be called a base station, or a RAN node. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (PLMN) evolved after 5G, a broadband network service gateway (BNG), an aggregation switch or a 3GPP access device, etc.
  • RAN radio access network
  • RAN radio access network
  • RAN radio access network
  • eNB evolved Node B
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • aggregation switch or a 3GPP access device, etc.
  • the network device in the embodiment of the present application may also include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), Relay stations, transmission points (transmitting and receiving points, TRP), transmitting points (transmitting points, TP), mobile switching centers, and devices that perform base station functions in device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications, etc., may also include centralized units (CU) and distributed units (DU) in cloud access network (C-RAN) systems, and network devices in NTN communication systems, which are not specifically limited in the embodiments of the present application.
  • CU centralized units
  • DU distributed units
  • C-RAN cloud access network
  • the device for realizing the function of the network device in the embodiment of the present application may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system.
  • the device may be installed in the network device or used in combination with the network device.
  • the chip system in the embodiment of the present application may be composed of a chip, or may include a chip and other discrete devices.
  • Fig. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 110, a terminal device 120, and a terminal device 130.
  • the embodiment of the present application does not limit the number of terminal devices and network devices included in the communication system 100.
  • Figure 1 is only for illustrative purposes and cannot limit the scope of protection claimed in this application.
  • the terminal device 120 and the terminal device 130 can be any of the terminal devices listed above, and the network device 110 can be any of the network devices listed above.
  • the terminal device 120 and the terminal device 130 can communicate through the PC5 interface, that is, the terminal device 120 and the terminal device 130 can perform SL communication.
  • the terminal device 120 or the terminal device 130 and the network device 110 can also communicate through the air interface (Uu).
  • SL-U communication needs to at least meet LBT.
  • Type 1-LBT requires counter rollback (i.e., multiple channel listening), and the channel listening time is generally longer.
  • Type 2-LBT only needs to listen to the channel for a fixed time, and the channel listening time is generally shorter. Since the channel listening time of Type 2-LBT is shorter, the probability of the terminal device accessing the channel through Type 2-LBT will be higher.
  • a terminal device When a terminal device needs to transmit data, it needs to perform channel sensing on one or more 20 MHz channels corresponding to the frequency domain resources occupied by the transmitted data, wherein the channel granularity of the channel sensing performed by the terminal device is 20 MHz.
  • the terminal device can obtain two results when executing the channel access process: the channel access process is completed and the channel access process is not completed. Specifically, there are multiple time domain starting positions in the time-frequency resources used for data transmission. If the terminal device determines that the channel is idle before the time domain starting position of any time-frequency resource, the channel access process is considered to be completed; if the terminal device determines that the channel is busy before the time domain starting positions of all time-frequency resources, the channel access process is considered to be incomplete.
  • the terminal device needs to perform LBT on the data transmission resource first, and can use the resource for data transmission only when it is determined that the resource is in an idle channel.
  • the PSFCH feedback mechanism is configured/pre-configured for the resource pool.
  • the transmission occasion (occasion) of PSFCH is periodically configured on the resource pool, and the period can be a value (in time slots) in ⁇ 0, 1, 2, 4 ⁇ and is configured by RRC signaling sl-PSFCH-Period-r1.
  • the configured period is 0, it means that the resource pool does not support the transmission of hybrid automatic repeat request (HARQ) information.
  • HARQ hybrid automatic repeat request
  • the configured period is 1, 2 or 4, it means that the resource pool supports the transmission of HARQ information.
  • a resource pool includes time domain resources and frequency domain resources used to transmit PSSCH.
  • the minimum time-frequency unit for transmitting PSSCH in the resource pool specified by the existing standards occupies one time slot in the time domain and one sub-channel in the frequency domain.
  • PSSCH may occupy one or more of the above-mentioned minimum time-frequency units.
  • the transmission timing of its associated PSFCH is located at the transmission timing of the closest PSFCH after a number of time slots (configured by RRC signaling sl-MinTimeGapPSFCH-r16) from the time slot.
  • FIG2 is a schematic diagram of the configuration of the transmission timing of PSFCH.
  • the configuration period of the transmission timing of PSFCH is four time slots.
  • the transmission timing of PSFCH is located in time slot 2, and the transmission timing includes an orthogonal frequency division multiplexing (OFDM) symbol (hereinafter referred to as symbol A) for transmitting PSFCH.
  • OFDM orthogonal frequency division multiplexing
  • the sending device After receiving the PSSCH, if the receiving device cannot send the HARQ information at the corresponding PSFCH resource location due to LBT failure, the sending device will consider this as a discontinuous transmission (DTX). In order to avoid the failure to successfully send HARQ information due to LBT failure, it is possible to consider using multiple PSFCHs to send HARQ information multiple times, that is, a multi-PSFCH transmission mechanism. However, when the receiving device cannot send HARQ information at multiple PSFCH resource locations due to LBT failure, the sending device will trigger the RLF detection mechanism because the number of DTXs reaches the DTX number threshold, which will affect the communication between the sending device and the receiving device. For example, the sending device will disconnect its communication link with the receiving device.
  • DTX discontinuous transmission
  • the present application provides a sidelink feedback method and a communication device, which can avoid triggering a radio failure detection mechanism prematurely due to too many failed feedback information reception times.
  • Figure 3 is a schematic diagram of the interaction process of the side link feedback method 300 of an embodiment of the present application.
  • the method flow in Figure 3 can be executed by the first communication device and the second communication device, or by modules and/or devices (for example, chips or integrated circuits, etc.) with corresponding functions installed in the first communication device and the second communication device, which is not limited by the present application.
  • the first communication device is a terminal device
  • the second communication device is a terminal device.
  • the following will take the first communication device and the second communication device as an example for explanation.
  • the method 300 includes:
  • the second communication device sends PSSCH#A to the first communication device.
  • the first communication device receives PSSCH#A from the second communication device.
  • the second communication device sending PSSCH#A to the first communication device may be: the second communication device sends data A to the first communication device via PSSCH#A, that is, data A is carried on PSSCH#A.
  • the first communication device receiving PSSCH#A from the second communication device may be: the first communication device receives data A sent by the second communication device and carried on PSSCH#A.
  • the first communication device sends feedback information on each of the at least two PSFCHs corresponding to PSSCH#A.
  • the first communication device determines multiple PSFCHs (at least two PSFCHs) based on PSSCH#A.
  • the present application does not limit the mapping relationship between the multiple PSFCHs and PSSCH#A.
  • the mapping relationship between the multiple PSFCHs and PSSCH#A is predefined by the protocol; or, the mapping relationship between the multiple PSFCHs and PSSCH#A is indicated by the second communication device to the first communication device.
  • the multiple PSFCHs are indicated by the second communication device to the first communication device.
  • the first communication device can determine multiple PSFCHs corresponding to PSSCH#A.
  • the first communication device sends feedback information on each PSFCH of the at least two PSFHCs, wherein the feedback information may include HARQ information or other types of information, which is not limited in the present application.
  • the first communication device may fail to successfully send feedback information at the resource location of some PSFCHs in the multiple PSFCHs due to LBT failure, and the second communication device cannot successfully receive or detect feedback information at the corresponding resource location of the PSFCH, and the second communication device will perform DTX counting. If the number of DXTs reaches the DTX number threshold, the second communication device will determine that the wireless link between the first communication device and the second communication device is in a failed state, and detect the wireless link, which will affect the communication between the first communication device and the second communication device.
  • the first communication device when the first communication device successfully sends feedback information at a resource position of a PSFCH among the above-mentioned multiple PSFCHs, the first communication device may no longer send feedback information, that is, no longer use the remaining PSFCHs to send feedback information.
  • the first communication device may continue to use the remaining PSFCH to send feedback information.
  • the timing (duration T0) is started (it can be understood that the first communication device can redetermine multiple PSFCHs).
  • the starting position of the duration T0 is the time slot where the last PSFCH of the above-mentioned at least two PSFCHs is located or the first time slot thereafter, and can also be the first symbol of the time slot where the last PSFCH is located. Accordingly, the first communication device provides feedback on the re-determined multiple PSFCHs.
  • the time interval between the last PSFCH of the newly determined multiple PSFCHs and PSSCH#A does not exceed the duration T0.
  • the first communication device will provide feedback at the resource locations of the newly determined multiple PSFCHs, and will send out the feedback information only when the LBT is successful.
  • the timing exceeds T0 the first communication device stops sending feedback information.
  • the first communication device when the first communication device provides feedback at the resource locations of the newly determined multiple PSFCHs, after sending out the feedback information, the first communication device no longer uses the remaining PSFCH resource locations for feedback. At this time, the first communication device can stop timing.
  • the multiple PSFCHs for sending feedback information from the first communication device to the second communication device may include those determined by the second communication device, or may include those determined by the first communication device itself, and this application does not limit this.
  • the second communication device determines the DTX quantity within at least two timing cycles.
  • the second communication device starts timer A (or sl-HARQ-Timer) after sending PSSCH#A or at the resource position of the first PSFCH among the above-mentioned multiple PSFCHs.
  • timer A or sl-HARQ-Timer
  • timer A performs multiple cycle timing within the set duration.
  • each cycle timing of timer A can be regarded as a timing cycle of timer A.
  • a DTX indicates a failure to receive feedback information
  • the feedback information is carried on the PSFCH.
  • the failure to receive the feedback information can be understood as: the second communication device fails to successfully receive or detect the feedback information at the resource position of the corresponding PSFCH.
  • the failure of the second communication device to successfully receive or detect the feedback information at the resource position of the corresponding PSFCH may be caused by the failure of the first communication device to successfully send due to the failure of LBT, or it may be caused by the first communication device successfully sending the feedback information, but the channel condition between the second communication device and the first communication device is not good, and this application does not limit this.
  • any one of the at least two timing cycles mentioned above includes at least one PSFCH.
  • the PSFCH included in the timing cycle S belongs to some PSFCHs of the at least two PSFCHs mentioned above.
  • the number of PSFCHs corresponding to PSSCH#A is 6, and the timing cycle S can include the first three or the first two PSFCHs of the 6 PSFCHs.
  • the timing cycle S please refer to Figure 4.
  • the timing period S may include PSFCH#1, PSFCH#2, PSFCH#3; the timing period S may also include PSFCH#1, PSFCH#2; the timing period S may also include PSFCH#1, and so on.
  • the time length of each timing cycle in the at least two timing cycles may be the same or different, and this application does not limit this.
  • this application takes the same time length of each timing cycle as an example for description, but does not limit the scenario where the time length of each timing cycle is different.
  • the second communication device determines the number of DTXs within at least two timing cycles, which may also be: the second communication device determines the number of DTXs within at least two timing cycles.
  • the number of DTXs within at least two timing cycles may be determined by continuous statistics of the second communication device, or may be determined by non-continuous statistics of the second communication device.
  • the above-mentioned at least two timing cycles include three timing cycles, namely timing cycle #1, timing cycle #2, and timing cycle #3.
  • the second communication device may count the number of DTXs in timing cycle #1, timing cycle #2, and timing cycle #3, or may only count the number of DTXs in timing cycle #1 and timing cycle #3, and not count the number of DTXs in timing cycle #2.
  • the number of DTX counted in each timing cycle may be less than the number of PSFCHs in the timing cycle.
  • the number of DTXs in the timing cycle S is less than 3.
  • the number of DTXs in the timing cycle S may be 1 or 2. See FIG. 4 for details.
  • FIG4 is a schematic diagram of the corresponding relationship between the timing cycle, the number of PSFCHs, and the number of DTXs in an embodiment of the present application.
  • at least two timing cycles include two timing cycles, namely, timing cycle #1 and timing cycle #2, and multiple PSFCHs include 6 PSFCHs.
  • the number of PSFCHs in each timing cycle is 3, and the number of DTXs in each timing cycle is 1.
  • the above-mentioned timing cycle S can be the timing cycle #1 or timing cycle #2 described below.
  • the second communication device can maintain a counter Q, and the initial value of counter Q is 0.
  • the number of PSFCHs included in each timing cycle is 3, and the number of DTXs that can be counted in each timing cycle is 1.
  • the value of counter Q is increased by one (the value of counter Q is 1).
  • the value of counter Q is not increased by one (the value of counter Q is still 1).
  • the value of counter Q is increased by one (the value of counter Q is still 1).
  • the value of the counter Q is 2), and when the feedback information is not successfully received or detected at the resource positions of the second PSFCH and the third PSFCH, the second communication device will not increase the counter Q by one (the value of the counter Q is still 2).
  • the second communication device counts the reception failure of the feedback information on the second PSFCH in timing cycle #1, and does not count the reception failure of the feedback information on the first PSFCH.
  • the present application does not limit the resource position of the PSFCH corresponding to the DTX counted by the second communication device in each timing cycle.
  • the second communication device determines whether the wireless link between the first communication device and the second communication device is in a failed state according to the number of DTXs in at least two timing cycles.
  • the second communication device will determine that the wireless link between the first communication device and the second communication device is in a failed state; if the number of DTXs in the above-mentioned at least two timing cycles does not reach the number threshold, the second communication device will determine that the wireless link between the first communication device and the second communication device is in a normal state.
  • the second communication device receives feedback information corresponding to PSSCH#A in any of the above-mentioned timing cycles, the second communication device can determine that the wireless link between the first communication device and the second communication device is in a normal state, and can terminate the operation of timer A.
  • the second communication device can maintain the operation of multiple timing cycles, and can successfully receive or detect the feedback information at the resource position of a certain PSFCH (the PSFCH may be ranked very late in multiple PSFCHs), and the number of DTXs will not exceed the quantity threshold.
  • the quantity threshold (or DTX-MaxCount) and counter A are determined by the second communication device through configuration information sent by receiving the base station/configuration parameters from system information block 12 (SIB12)/pre-configuration/upper layer.
  • the present application can control the number of DTXs in each timing cycle to avoid triggering the RLF detection mechanism prematurely due to an excessive number of DTXs, thereby supporting smooth communication between the first communication device and the second communication device.
  • method 300 further includes:
  • the second communication device determines that the wireless link between the first communication device and the second communication device is in a failed state.
  • the number of DTXs in at least two timing cycles is cumulatively counted, and it is accumulated as multiple timing cycles are run.
  • the second communication device terminates the timing (or terminates the cyclic timing of timer A), and determines that the wireless link between the first communication device and the second communication device is in a failed state.
  • method 300 further includes:
  • S340b2 The second communication device determines that the wireless link between the first communication device and the second communication device is in a normal state.
  • the second communication device when the second communication device successfully receives or detects the feedback information B corresponding to PSSCH#A in a timing cycle of the at least two timing cycles, the second communication device terminates the timing (or terminates the cyclic timing of timer A). Accordingly, the second communication device can also determine that the wireless link between the first communication device and the second communication device is in a normal state (non-failure state).
  • method 300 further includes:
  • the second communication device sends indication information 1 to the first communication device, which is used to indicate the resource location of each PSFCH of at least two PSFCHs.
  • the first communication device receives indication information 1 from the second communication device, and determines the resource location of each of the at least two PSFCHs based on indication information 1. Further, the first communication device sends feedback information to the second communication device based on the resource location of each PSFCH indicated by indication information 1.
  • indication information 1 may be side link control information (SL control information, SCI) used to schedule PSSCH#A, or it may be a separate indication message.
  • SL control information SCI
  • execution order of S310a can be after S310 and before S320, or it can be performed simultaneously with S310, and this application does not limit this.
  • method 300 further includes:
  • the second communication device sends indication information 2 to the first communication device, which is used to indicate that PSSCH#A corresponds to PSSCH#A
  • the duration T0 between the PSFCHs For the description of the duration T0, please refer to the above description, which will not be repeated here.
  • the indication information 2 is a radio resource control (RRC) information sent by the second communication device to the first communication device.
  • the RRC information carries a duration T0, which is used to indicate a maximum time interval between PSSCH#A and a corresponding PSFCH.
  • indication information 2 is an SCI for scheduling PSSCH#A.
  • the SCI carries a duration T0.
  • the duration T0 may be a configuration value from a system-level base station or a fixed value (specified value).
  • the duration T0 may be embodied by a timer or a counter. For example, when the duration T0 is embodied by a timer, it indicates that the first communication device sends a plurality of feedback information to the second communication device within the duration set by the timer until the time length preset by the timer.
  • the duration T0 When the duration T0 is embodied by a counter, it indicates that the first communication device sends a plurality of feedback information to the second communication device within the time length corresponding to each number counted by the counter until the number calculated by the counter reaches a preset value.
  • the counter may be set to 5 digits, each of which corresponds to a time length, and the duration T0 is equal to the total time length corresponding to the 5 digits.
  • multiple PSFCH resources may not be selected through the duration T0.
  • the first communication device fails to successfully send feedback information at the resource positions of the multiple PSFCHs indicated by the second communication device, multiple PSFCH resources within the duration T0 may be selected (at this time, the multiple PSFCH resources are determined by the first communication device itself).
  • execution order of S310a can be after S310 and before S320, or it can be performed simultaneously with S310, and this application does not limit this.
  • S310b can be an optional step or a required step, and this application does not limit this.
  • the time interval between the time domain positions of any two adjacent PSFCHs among the above-mentioned at least two PSFCHs is greater than or equal to the time interval threshold.
  • the at least two PSFCHs include PSFCH#1, PSFCH#2, PSFCH#3 and PSFCH#4.
  • the interval between the time domain positions between PSFCH#1 and PSFCH#2 is greater than or equal to T1
  • the interval between the time domain positions between PSFCH#3 and PSFCH#4 is greater than or equal to T1.
  • the second communication device can configure the time domain position of any two adjacent PSFCHs of the above-mentioned at least two PSFCHs according to the time interval threshold, so that the time interval between any two adjacent PSFCHs in the time domain position is greater than or equal to the time interval threshold.
  • the time interval threshold can be determined by the second communication device according to the configuration information of the network device/from SIB12/pre-configuration/upper layer configuration parameters (for example, sl-PSFCH-Gap).
  • the time interval threshold is indicated by the first communication device to the second communication device.
  • the schematic diagram of the time interval between the time domain positions of any two adjacent PSFCHs being greater than or equal to the time interval threshold can be referred to the time interval between the counted PSFCH and the uncounted PSFCH in Figure 4.
  • the first communication device may also configure the time interval between the time domain positions of any two adjacent PSFCHs of the at least two PSFCHs according to the above-mentioned time interval threshold.
  • the time interval threshold may be determined by the first communication device according to the configuration information of the network device/from SIB12/pre-configuration/upper layer configuration parameters (e.g., sl-PSFCH-Gap).
  • the time interval threshold is indicated by the second communication device to the first communication device through indication information 3.
  • the above-mentioned technical solution of adopting the timing cycle and the technical solution of configuring the time interval threshold can be coupled or performed independently.
  • the time interval between the time domain positions of any two adjacent PSFCHs in the above-mentioned at least two PSFCHs can be greater than or equal to the time interval threshold, or can be less than the time interval threshold, and this application does not limit this.
  • the time interval between the time domain positions of any two adjacent PSFCHs in the above-mentioned at least two PSFCHs can be greater than or equal to the time interval threshold, the number of PSFCHs in each timing cycle can be reduced, and accordingly, the number of DTXs in each timing cycle will also be reduced, which can avoid prematurely triggering an unreasonable radio link state judgment (or triggering an RLF detection mechanism) mechanism.
  • the configuration time interval threshold is adopted, the timing cycle can be omitted, and the total number of DTXs can be reduced to a certain extent; if the timing cycle is also adopted at the same time, the total number of DTXs can be further reduced, and the triggering of an unreasonable radio link state judgment mechanism can be avoided.
  • a unicast link may be established between the first communication device and the second communication device.
  • a unicast link may be established between the first communication device and the second communication device.
  • the terminal and the network device may include a hardware structure and/or a software
  • the above functions are implemented in the form of hardware structure, software module, or hardware structure plus software module. Whether one of the above functions is implemented in the form of hardware structure, software module, or hardware structure plus software module depends on the specific application and design constraints of the technical solution.
  • Fig. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 includes a processor 510 and a communication interface 520, and the processor 510 and the communication interface 520 are interconnected via a bus 530.
  • the communication device 500 shown in Fig. 5 may be a first communication device or a second communication device.
  • the communication device 500 further includes a memory 540 .
  • the memory 540 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or compact disc read-only memory (CD-ROM), and the memory 540 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Processor 510 may be one or more central processing units (CPUs). When processor 510 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • CPUs central processing units
  • the processor 510 is used to read the computer program or instructions stored in the memory 540, and exemplarily perform the following operations: receiving PSSCH#A from the second communication device; and sending feedback information to the second communication device on each of at least two PSFCHs corresponding to PSSCH#A.
  • the following operations may be performed: receiving indication information 1 from the second communication device, which is used to indicate the resource location of each PSFCH of at least two PSFCHs.
  • the following operations may be performed: receiving indication information 2 from the second communication device, which is used to indicate a duration T0 between PSSCH#A and a PSFCH corresponding to PSSCH#A.
  • the communication device 500 is the first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the first communication device can be a terminal device or a network device.
  • the processor 510 is used to read the computer program or instructions stored in the memory 540, and exemplarily, perform the following operations: sending PSSCH#A to the first communication device; determining the number of DTX within at least two timing cycles; and determining whether the wireless link between the first communication device and the second communication device is in a failed state based on the number of DTX within at least two timing cycles.
  • indication information 1 is sent to the first communication device, where the indication information 1 is used to indicate the resource location of each PSFCH of at least two PSFCHs.
  • indication information 2 is sent to the first communication device, which is used to indicate the duration T0 between PSSCH#A and the PSFCH corresponding to PSSCH#A.
  • the communication device 500 is a second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • the second communication device can be a terminal device or a network device.
  • FIG6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may be the first communication device or the second communication device in the above embodiment, or may be a chip or module in the first communication device or the second communication device, for implementing the method involved in the above embodiment.
  • the communication device 600 includes a transceiver unit 610 and a processing unit 620.
  • the transceiver unit 610 and the processing unit 620 are exemplarily introduced below.
  • the transceiver unit 610 may include a sending unit and a receiving unit, which are respectively used to implement the sending or receiving functions in the above method embodiments; it may further include a processing unit, which is used to implement functions other than sending or receiving.
  • the transceiver unit 610 when the communication device 600 is a first communication device, the transceiver unit 610 is used to receive PSSCH#A from a second communication device; the transceiver unit 610 is also used to send feedback information to the second communication device on each of at least two PSFCHs corresponding to PSSCH#A.
  • the communication device 600 further includes a storage unit 630, which is used to store a program or code for executing the aforementioned method.
  • the communication device 600 is the first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the transceiver unit 610 is used to send PSSCH#A to the first communication device; the processing unit 620 is used to determine the number of DTX within at least two timing cycles; the processing unit 620 is used to determine whether the wireless link between the second communication device and the first communication device is in a failure state based on the number of DTX within at least two timing cycles.
  • the communication device 600 further includes a storage unit 630, which is used to store a program or code for executing the aforementioned method.
  • the communication device 600 is the second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • each operation in FIG. 6 may also refer to the corresponding description of the method shown in the above embodiment, which will not be repeated here.
  • the above-mentioned transceiver unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform a sending action of the communication device
  • the receiving unit is used to perform a receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one transceiver unit. A unified description is given here, and no further description is given later.
  • Fig. 7 is a schematic diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may be used to implement the functions of the first communication device or the second communication device in the above method.
  • the communication device 700 may be a chip in the first communication device or the second communication device.
  • the communication device 700 includes: an input/output interface 720 and a processor 710.
  • the input/output interface 720 may be an input/output circuit.
  • the processor 710 may be a signal processor, a chip, or other integrated circuit that can implement the method of the present application.
  • the input/output interface 720 is used for inputting or outputting signals or data.
  • the input/output interface 720 is used to receive PSSCH#A from a second communication device and to send feedback information to the second communication device on each of at least two PSFCHs corresponding to PSSCH#A.
  • the input/output interface 720 is used to send PSSCH#A to the first communication device.
  • the processor 710 is used to determine the DTX quantity within at least two timing cycles.
  • the processor 710 is also used to determine whether the wireless link between the second communication device and the first communication device is in a failed state according to the DTX quantity within at least two timing cycles.
  • the processor 710 implements the functions implemented by the network device or the terminal device by executing instructions stored in the memory.
  • the communication device 700 also includes a memory.
  • processor and memory are integrated together.
  • the memory is outside the communication device 700 .
  • the processor 710 may be a logic circuit, and the processor 710 inputs/outputs messages or signals through the input/output interface 720.
  • the logic circuit may be a signal processor, a chip, or other integrated circuit that can implement the method of the embodiment of the present application.
  • FIG. 7 The above description of the device in FIG. 7 is only an exemplary description.
  • the device can be used to execute the method described in the above embodiment.
  • FIG8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 may be a network device or a chip.
  • the communication device 800 may be used to perform the operations performed by the first communication device in the method embodiment shown in FIG3 above.
  • the communication device 800 is a network device (the first communication device or the second communication device is a network device), it is, for example, a base station.
  • Figure 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes parts 810, 820, and 830.
  • Part 810 is mainly used for baseband processing, controlling the base station, etc.; part 810 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform the processing operations on the network device side in the above method embodiment.
  • Part 820 is mainly used to store computer program code and data.
  • Part 830 is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals into baseband signals; part 830 can usually be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver module of part 830 which can also be called a transceiver or a transceiver, etc., includes an antenna 833 and a radio frequency circuit (not shown in the figure), wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 830 may be regarded as a receiver, and the device for implementing the transmitting function may be regarded as a transmitter, that is, part 830 includes a receiver 832 and a transmitter 831.
  • the receiver may also be referred to as a receiving module, a receiver, or a receiving circuit, etc.
  • the transmitter may be referred to as a transmitting module, a transmitter, or a transmitting circuit, etc.
  • Part 810 and part 820 may include one or more boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple boards may share one One or more processors, or multiple boards share one or more memories, or multiple boards share one or more processors at the same time.
  • the transceiver module of part 830 is used to execute the transceiver-related process executed by the network device in the embodiment shown in Figure 3.
  • the processor of part 810 is used to execute the processing-related process executed by the network device in the embodiment shown in Figure 3.
  • the processor of part 810 is used to execute a process related to the processing performed by the communication device in the embodiment shown in FIG. 3 .
  • the transceiver module of part 830 is used to execute the transceiver-related processes performed by the communication device in the embodiment shown in FIG. 3 .
  • FIG. 8 is merely an example and not a limitation, and the network device including the processor, memory, and transceiver described above may not rely on the structures shown in FIG. 5 to FIG. 7 .
  • the chip When the communication device 800 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the network device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment may be understood as the input of the chip.
  • Fig. 9 is a schematic block diagram of a communication device 900 of an embodiment of the present application.
  • the communication device 900 may be a terminal device, a processor of a terminal device, or a chip.
  • the communication device 900 may be used to perform the operations performed by the terminal device or the communication device in the above method embodiment.
  • FIG9 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal device includes a processor, a memory, and a transceiver.
  • the memory can store computer program codes
  • the transceiver includes a transmitter 931, a receiver 932, a radio frequency circuit (not shown in the figure), an antenna 933, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, as well as to control terminal devices, execute software programs, process software program data, etc.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • only one memory, processor, and transceiver are shown in FIG9. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device, etc.
  • the memory may be set independently of the processor or integrated with the processor, and the embodiments of the present application do not limit this.
  • the antenna and the radio frequency circuit with transceiver functions can be regarded as the transceiver module of the terminal device, and the processor with processing function can be regarded as the processing module of the terminal device.
  • the terminal device includes a processor 910, a memory 920 and a transceiver 930.
  • the processor 910 may also be referred to as a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 930 may also be referred to as a transceiver unit, a transceiver, a transceiver device, etc.
  • the device for implementing the receiving function in the transceiver 930 may be regarded as a receiving module, and the device for implementing the sending function in the transceiver 930 may be regarded as a sending module, that is, the transceiver 930 includes a receiver and a transmitter.
  • a transceiver may sometimes be referred to as a transceiver, a transceiver module, or a transceiver circuit, etc.
  • a receiver may sometimes be referred to as a receiver, a receiving module, or a receiving circuit, etc.
  • a transmitter may sometimes be referred to as a transmitter, a transmitting module, or a transmitting circuit, etc.
  • the processor 910 is used to execute the processing actions on the terminal device side in the embodiment shown in FIG. 3
  • the transceiver 930 is used to execute the transceiver actions on the terminal device side in FIG. 3 .
  • the processor 910 is used to execute the processing actions on the terminal device side in the embodiment shown in FIG. 3
  • the transceiver 930 is used to execute the transceiver actions on the terminal device side in FIG. 3 .
  • FIG. 9 is merely an example and not a limitation, and the above-mentioned terminal device including the transceiver module and the processing module may not rely on the structures shown in FIG. 5 to FIG. 7 .
  • the chip When the communication device 900 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver can be an input/output
  • the processor may be a processing module or a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment may be understood as the input of the chip.
  • the present application also provides a chip, including a processor, for calling and executing instructions stored in a memory from the memory, so that a communication device equipped with the chip executes the methods in the above examples.
  • the present application also provides another chip, including: an input interface, an output interface, and a processor, wherein the input interface, the output interface, and the processor are connected via an internal connection path, and the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in each of the above examples.
  • the chip also includes a memory, and the memory is used to store computer programs or codes.
  • the present application also provides a processor, which is coupled to a memory and is used to execute the methods and functions involving a network device or a terminal device in any of the above embodiments.
  • a computer program product including instructions is provided.
  • the method of the above embodiment is implemented.
  • the present application also provides a computer program.
  • the computer program is executed in a computer, the method of the above embodiment is implemented.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the method described in the above embodiment is implemented.
  • a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the words “first”, “second” and the like are used to distinguish between the same items or similar items with substantially the same functions and effects. Those skilled in the art will understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not necessarily limit the difference. At the same time, in the embodiments of the present application, the words “exemplarily” or “for example” are used to indicate examples, illustrations or explanations.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods of each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种侧行链路反馈方法与通信装置,该方法能够应用于侧行链路通信领域,方法包括:发送物理侧行链路共享信道PSSCH;在至少两个计时周期内确定非连续发送DTX数量,一个DTX指示一个反馈信息的接收失败,一个反馈信息承载于一个物理侧行链路反馈信道PSFCH,一个PSSCH对应至少两个PSFCH,至少两个计时周期中的第一计时周期包括至少两个PSFCH中的至少一个PSFCH,第一计时周期内的DTX数量小于第一计时周期包括的PSFCH数量;根据至少两个计时周期内的DTX数量确定发送端与接收端之间的无线链路是否处于失败状态。如此,能够避免因反馈信息接收失败的次数过多而过早地触发无线电失效检测机制。

Description

侧行链路反馈方法与通信装置
本申请要求于2022年10月25日提交中国国家知识产权局、申请号为202211307961.8、申请名称为“侧行链路反馈方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种侧行链路反馈方法与通信装置。
背景技术
侧行链路(sidelink,SL)通信支持终端之间的直接传输。目前,第三代合作伙伴项目(the 3rd generation partnership project,3GPP)正在探讨将SL通信扩展到带宽更大的非授权频谱之上,即为SL-非授权频谱(SL-unlicensed,SL-U)通信,以便支持更高速率的业务的传输,譬如,虚拟现实(virtual reality,VR)业务等。
在非授权频段上,SL-U通信需要满足信道侦听(listen-before-talk,LBT)。具体来说,接收设备对发送设备进行反馈时,其需要确定物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)资源是否空闲,若是,接收设备使用该资源进行反馈;若不是,接收设备不使用该资源进行反馈。
目前,3GPP协议规定一个接收设备可以使用多个PSFCH资源向发送设备发送混合自动重传请求(hybrid automatic repeat request,HARQ)信息,其用于对发送设备发送的数据的解调情况进行反馈。但是该机制容易引起发送设备在相应的PSFCH的资源位置没有接收到或者检测出接收设备发送的HARQ信息时会过早地触发不合理的无线电链路失效(radio link failure,RLF)检测机制,这可能会影响二者之间的通信。
发明内容
本申请提供一种侧行链路反馈方法与通信装置,能够避免因反馈信息接收失败的次数过多而过早地误触发无线电失效检测机制。
应理解,非授权频谱上,除了采用SL-U技术进行通信的通信装置/终端以外,还存在采用其他技术通信的通信装置/终端,如采用WIFI技术通信的通信装置/终端。在本申请中,如不加特殊限定,通信装置/终端是指采用SL-U技术通信的通信装置/终端。
第一方面,提供了一种侧行链路反馈方法,包括:第二通信装置向第一通信装置发送物理侧行链路共享信道PSSCH;第二通信装置在至少两个计时周期内确定非连续发送DTX数量,一个DTX指示一个反馈信息的接收失败,一个反馈信息承载于一个PSFCH,一个PSSCH对应至少两个PSFCH,至少两个计时周期中的第一计时周期包括至少两个PSFCH中的至少一个PSFCH,第一计时周期内的DTX数量小于第一计时周期包括的PSFCH的数量;第二通信装置根据至少两个计时周期内的DTX数量确定第一通信装置与第二通信装置之间的无线链路是否处于失败状态。
具体而言,通过采用计时周期,且每个计时周期内的DTX数量少于每个计时周期所包括的PSFCH数量,第一通信装置在每个计时周期内的每个PSFCH的资源位置上都因LBT失败而未能成功发送反馈信息时,第二通信装置可以通过维持多个计时周期的运转,则可以在某个PSFCH(该PSFCH在多个PSFCH中的排序可能会很靠后)的资源位置上成功接收到或者检测出反馈信息,且DTX数量不会超过数量阈值。
综上,通过引入计时周期,本申请能够控制每个计时周期内的DTX数量来实现避免因DTX数量过多而过早地触发RLF检测机制,从而支持第一通信装置与第二通信装置之间通信的顺利进行。
一种可能的实现方式中,第二通信装置根据至少两个计时周期内的DTX数量确定第一通信装置与第二通信装置之间的无线链路是否处于失败状态,包括:至少两个计时周期内的DTX数量等于数量阈值时,第二通信装置终止计时;第二通信装置确定该无线链路处于失败状态。
如此,本申请支持第二通信装置能够准确地发送异常的无线链路状态,提高SL通信效率。
一种可能的实现方式中,第二通信装置根据至少两个计时周期内的DTX数量确定第一通信装置与第二通信装置之间的无线链路是否处于失败状态,包括:在接收到PSSCH对应的第一反馈信息时,第二通信装置终止计时;第二通信装置确定第一通信装置与第二通信装置之间的无线链路处于正常状态。
一种可能的实现方式中,该方法还包括:第二通信装置向第一通信装置发送第一指示信息,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
如此,第一通信装置可以在第二通信装置所指示的PSFCH的资源位置上向其发送反馈信息,便于第二通信装置可以在对应的PSFCH的资源位置上检测反馈信息。
一种可能的实现方式中,上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
如此,能够避免多个PSFCH在时域上的位置分布过密,导致第一通信装置在该多个分布过密的PSFCH的资源位置上因LBT失败而过早地触发RLF检测机制。
一种可能的实现方式中,该方法还包括:第二通信装置向第一通信装置发送第二指示信息,其包括时间间隔阈值;至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
如此,能够避免多个PSFCH在时域上的位置分布过密,导致第一通信装置在该多个分布过密的PSFCH的资源位置上因LBT失败而过早地触发RLF检测机制。
一种可能的实现方式中,该方法还包括:第二通信装置向第一通信装置发送第三指示信息,其用于指示PSSCH与PSSCH对应的PSFCH之间的最大时间间隔。
第二方面,提供了一种侧行链路反馈方法,包括:第一通信装置接收来自于第二通信装置的PSSCH;第一通信装置在PSSCH对应的至少两个PSFCH中的每个PSFCH向第二通信装置发送反馈信息,至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
一种可能的实现方式中,在PSSCH对应的至少两个PSFCH中的每个PSFCH发送反馈信息之前,该方法还包括:第一通信装置根据该时间间隔阈值配置至少两个PSFCH中的每个PSFCH的资源位置。
一种可能的实现方式中,在PSSCH对应的至少两个PSFCH中的每个PSFCH发送反馈信息之前,该方法还包括:第一通信装置接收来自于第二通信装置的第一指示信息,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
一种可能的实现方式中,该方法还包括:第一通信装置接收来自于第二通信装置的第二指示信息,其用于指示PSSCH与PSSCH对应的PSFCH之间的最大时间间隔。
第三方面,提供了一种通信装置,包括:收发单元,用于向第一通信装置发送PSSCH;处理单元,用于在至少两个计时周期内确定非连续发送DTX数量,一个DTX指示一个反馈信息的接收失败,一个反馈信息承载于一个PSFCH,一个PSSCH对应至少两个PSFCH,至少两个计时周期中的第一计时周期包括至少两个PSFCH中的至少一个PSFCH,第一计时周期内的DTX数量小于第一计时周期包括的PSFCH数量;处理单元,还用于根据至少两个计时周期内的DTX数量确定第一通信装置与该通信装置之间的无线链路是否处于失败状态。
一种可能的实现方式中,处理单元,还用于:在至少两个计时周期内的DTX数量等于数量阈值时,终止计时;确定第一通信装置与该通信装置之间的无线链路是否处于失败状态。
一种可能的实现方式中,处理单元,还用于:在接收到PSSCH对应的第一反馈信息时,终止计时;确定第一通信装置与该通信装置之间的无线链路处于正常状态。
一种可能的实现方式中,收发单元,还用于向第一通信装置发送第一指示信息,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
一种可能的实现方式中,至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
一种可能的实现方式中,收发单元,还用于向第一通信装置发送第二指示信息,其包括时间间隔阈值;至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于该时间间隔阈值。
一种可能的实现方式中,收发单元,还用于向第一通信装置发送第三指示信息,其用于指示PSSCH 与PSSCH对应的PSFCH之间的最大时间间隔。
第四方面,提供了一种通信装置,包括:收发单元,用于接收来自于第二通信装置的PSSCH;收发单元,还用于在PSSCH对应的至少两个PSFCH中的每个PSFCH向第二通信装置发送反馈信息,至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
一种可能的实现方式中,装置还包括处理单元,其用于根据该时间间隔阈值配置至少两个PSFCH中的每个PSFCH的资源位置。
一种可能的实现方式中,收发单元,还用于接收来自于第二通信装置的第一指示信息,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
一种可能的实现方式中,收发单元,还用于接收来自于第二通信装置的第二指示信息,其用于指示PSSCH与PSSCH对应的PSFCH之间的最大时间间隔。
第五方面,提供了一种通信装置,包括处理器,其用于通过执行计算机程序或指令,或者,通过逻辑电路,使得该通信装置执行第一方面以及第一方面的任意一个可能的实现方式中任一项所述的方法;或者,使得该通信装置执行第二方面以及第二方面的任意一个可能的实现方式中任一项所述的方法。
一种可能的实现方式中,该通信装置还包括存储器,其用于存储该计算机程序或指令。
一种可能的实现方式中,该通信装置还包括通信接口,其用于输入和/或输出信号。
第六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,该输入输出接口用于输入和/或输出信号,该逻辑电路用于执行第一方面以及第一方面的任意一个可能的实现方式中任一项所述的方法;或者,用于执行第二方面以及第二方面的任意一个可能的实现方式中任一项所述的方法。
第七方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当该计算机程序或该指令在计算机上运行时,使得第一方面以及第一方面的任意一个可能的实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任意一个可能的实现方式中任一项所述的方法中任一项所述的方法被执行。
第八方面,提供了一种计算机程序产品,包含指令,当该指令在计算机上运行时,使得第一方面以及第一方面的任意一个可能的实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任意一个可能的实现方式中任一项所述的方法中任一项所述的方法被执行。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得第一方面以及第一方面的任意一个可能的实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任意一个可能的实现方式中任一项所述的方法中任一项所述的方法被执行。
附图说明
图1是本申请实施例的适用通信系统100的示意图。
图2是PSFCH的传输时机的配置示意图。
图3是本申请实施例的侧行链路反馈方法300的交互流程示意图。
图4是本申请实施例的计时周期、PSFCH数量以及DTX数量之间的对应关系示意图。
图5是本申请实施例的通信装置500的示意框图。
图6是本申请实施例的通信装置600的示意框图。
图7是本申请实施例的通信装置700的示意框图。
图8是本申请实施例的通信装置800的示意框图。
图9是本申请实施例的通信装置900的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新空口(new radio,NR)、第六代(6th generation,6G)系统等5G之后演进的系统、星间通 信和卫星通信等非陆地通信网络(non-terrestrial network,NTN)系统。卫星通信系统包括卫星基站以及终端设备。卫星基站为终端设备提供通信服务。卫星基站也可以与地面基站进行通信。卫星可作为基站,也可作为终端设备。其中,卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等非地面基站或非地面设备等。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站之间的多点协同传输,对FDD/TDD系统均适用。本申请实施例的技术方案不仅适用于低频场景(sub 6G),也适用于高频场景(6GHz以上),太赫兹,光通信等。本申请实施例的技术方案不仅可以适用于网络设备和终端的通信,也可以适用于网络设备和网络设备的通信,终端和终端的通信,车联网,物联网,工业互联网等的通信。
本申请实施例的技术方案也可以应用于终端与单个基站连接的场景,其中,终端所连接的基站以及基站所连接的核心网络(core network,CN)为相同制式。比如CN为5G Core,基站对应的为5G基站,5G基站直接连接5G Core;或者CN为6G Core,基站为6G基站,6G基站直接连接6G Core。本申请实施例的技术方案也可以适用于终端与至少两个基站连接的双连接(dual connectivity,DC)场景。
本申请实施例的技术方案也可以使用通信网络中不同形态的基站组成的宏微场景,例如,基站可以是卫星、空中气球站、无人机站点等。本申请实施例的技术方案也适合于同时存在广覆盖基站和小覆盖基站的场景。
本申请实施例的技术方案还可以应用于5.5G、6G及以后的无线通信系统,适用场景包括但不限于地面蜂窝通信、NTN、卫星通信、高空通信平台(high altitude platform station,HAPS)通信、车辆外联(vehicle-to-everything,V2X)、接入回传一体化(integrated access and backhaul,IAB),以及可重构智能表面(reconfigurable intelligent surface,RIS)通信、室内商用等场景。
本申请实施例的技术方案还可以应用于终端设备与终端设备之间直接通信的SL通信,即共享信道和反馈信道都是终端设备之间进行传输和接收的。
应理解,本申请实施例的技术方案还可以适用于室内商用等场景,譬如,如手机向大屏进行高清投屏,手机向VR眼镜传输VR视频等。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者3GPP接入设备等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、 中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
图1是本申请实施例的适用通信系统100的示意图。如图1所示,通信系统100包括网络设备110、终端设备120以及终端设备130。本申请实施例对通信系统100所包括的终端设备与网络设备的数量不作限定。
应理解,图1仅作为示例性理解,并不能限定本申请所要求的保护范围。终端设备120与终端设备130可以是如上所列举的任意一个终端设备,网络设备110可以是如上所列举的任意一个网络设备。
在通信系统100中,终端设备120与终端设备130之间可以通过PC5接口进行通信,即:终端设备120与终端设备130之间进行SL通信。终端设备120或者终端设备130与网络设备110之间也可以通过空口(Uu)进行通信。
下文将对与本申请揭示的技术方案相关的部分术语做简短的描述。
第一、SL-U。
如前文所述,SL-U通信需要至少满足LBT。
具体地,LBT分为两类:类型1-LBT和类型2-LBT。其中,类型1-LBT需要进行计数器回退(即进行多次信道侦听),信道侦听的时间一般较长。类型2-LBT只需要对信道进行固定时间的侦听,信道侦听的时间一般较短。由于类型2-LBT的信道侦听的时间较短,终端设备通过类型2-LBT接入信道的概率会较高。
当终端设备需要传输数据时,其需要在传输数据所占用的频域资源对应的一个或多个20MHz信道上进行信道侦听。其中,终端设备进行信道侦听的信道粒度为20MHz。
另外,终端设备在执行信道接入过程时能够得到两种结果:信道接入过程完成和信道接入过程未完成。具体而言,用于数据传输的时频资源中有多个时域起始位置,终端设备在任意时频资源的时域起始位置之前确定信道空闲,则认为信道接入过程完成;在所有时频资源的时域起始位置之前确定信道忙碌,则认为信道接入过程未完成。
综上,终端设备需要对数据传输资源先进行LBT,并在确定该资源处于信道空闲时,才能可以使用该资源进行数据传输。
第二、PSFCH。
具体而言,PSFCH反馈机制是针对资源池配置/预配置的。其中,PSFCH的传输时机(occasion)是周期性地配置在资源池上的,周期可以为{0,1,2,4}中的一个值(以时隙为单位),且由RRC信令sl-PSFCH-Period-r1配置。当配置的周期为0时,代表该资源池不支持混合自动重传请求(hybrid automatic repeat request,HARQ)信息的发送。当配置的周期为1、2或4时,代表该资源池支持HARQ信息的发送。
其中,一个资源池包括传输PSSCH所使用的时域资源与频域资源。现有标准规定的资源池内用于传输PSSCH的最小时频单元在时域上占用一个时隙(slot),在频域上占用一个子信道(sub-channel)。PSSCH可能占用上述的一个或多个最小时频单元。对于资源池内的每个时隙,其关联的PSFCH的传输时机位于距离该时隙若干时隙(由RRC信令sl-MinTimeGapPSFCH-r16配置)之后的最接近的PSFCH的传输时机上。
图2是PSFCH的传输时机的配置示意图。如图2所示,PSFCH的传输时机的配置周期为四个时隙。其中,PSFCH的传输时机位于时隙2,该传输时机包括用于传输PSFCH的正交频分多路复用(orthogonal frequency division multiplexing,OFDM)符号(下文用符号A指代)。此时,共有4个时隙关联到符号A上的PSFCH的传输时机(例如,时隙6中的符号A关联时隙1~时隙4),即接收设备在符号A上需要反馈四个时隙上所有可能的物理侧行链路共享信道(physical sidelink shared channel, PSSCH)。
在SL-U中,接收设备在接收到PSSCH后,如果在对应的PSFCH的资源位置因为LBT失败而不能将HARQ信息发送出去,发送设备则会认为这是一次非连续发送(discontinuous transmission,DTX)。为了避免因LBT失败而导致无法成功发送HARQ信息,可以考虑采用多个PSFCH多次发送HARQ信息,即多PSFCH的传输机制。但是接收设备在多个PSFCH的资源位置均因LBT失败而无法发送HARQ信息时,发送设备则会因为DTX数量达到DTX的数量阈值而触发RLF检测机制,其会对发送设备与接收设备之间的通信造成影响。譬如,发送设备会断开其与接收设备的通信链接。
鉴于上述技术问题,本申请提供了一种侧行链路反馈方法与通信装置,能够避免因反馈信息接收失败的次数过多而过早地触发无线电失效检测机制。
下文将结合附图对本申请实施例的侧行链路反馈方法与通信装置进行描述。
图3是本申请实施例的侧行链路反馈方法300的交互流程示意图。图3中的方法流程可以由第一通信装置与第二通信装置执行,或者由安装于第一通信装置与第二通信装置中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,本申请不限定。其中,第一通信装置为终端设备,第二通信装置为终端设备。下文便以第一通信装置与第二通信装置为例进行说明。如图3所示,方法300包括:
S310、第二通信装置向第一通信装置发送PSSCH#A。
相应地,第一通信装置接收来自于第二通信装置的PSSCH#A。
具体来说,第二通信装置向第一通信装置发送PSSCH#A可以为:第二通信装置通过PSSCH#A向第一通信装置发送数据A,即数据A承载于PSSCH#A之上。相应地,第一通信装置接收来自于第二通信装置的PSSCH#A可以为:第一通信装置接收第二通信装置发送的且承载于PSSCH#A之上的数据A。
S320、第一通信装置在PSSCH#A对应的至少两个PSFCH中的每个PSFCH发送反馈信息。
具体来说,在成功解调或者接收PSSCH#A之后,第一通信装置根据PSSCH#A确定多个PSFCH(至少两个PSFCH)。其中,本申请对该多个PSFCH与PSSCH#A之间的映射关系不做限定。示例性地,该多个PSFCH与PSSCH#A之间的映射关系是协议预定义的;或者,该多个PSFCH与PSSCH#A之间的映射关系是由第二通信装置向第一通信装置指示的。又或者,该多个PSFCH是第二通信装置向第一通信装置指示的。综上,第一通信装置能够确定PSSCH#A对应的多个PSFCH。
第一通信装置会在上述的至少两个PSFHC中的每个PSFCH上发送反馈信息。其中,该反馈信息可以包括HARQ信息,也可以包括其他类型的信息,本申请对此不做限定。
如前文所述,第一通信装置在该多个PSFCH中的部分PSFCH的资源位置可能会由于LBT失败而不能成功发送反馈信息,第二通信装置相应地无法在对应的PSFCH的资源位置成功接收或者检测反馈信息,第二通信装置则会进行DTX计数。若DXT数量达到DTX的数量阈值,第二通信装置则会确定第一通信装置与第二通信装置之间的无线链路处于失败状态,并对该无线链路进行检测,从而会影响第一通信装置与第二通信装置之间的通信。
一个可能的实现方式,第一通信装置在上述的多个PSFCH中的某个PSFCH的资源位置上成功发送反馈信息时,第一通信装置可以不再发送反馈信息,即:不再使用剩余的PSFCH发送反馈信息。
可选地,第一通信装置还可以继续使用剩余的PSFCH发送反馈信息。
可选地,第一通信装置接收到PSSCH#A后,在上述的多个PSFCH的资源位置均因LBT失败而没有成功发送反馈信息,则启动计时(时长T0)(可以理解为第一通信装置可以重新确定多个PSFCH)。其中,时长T0的起始位置是上述的至少两个PSFCH中的最后一个PSFCH所在的时隙或者是其后的第一个时隙,还可以是最后一个PSFCH所在时隙的第一个符号。相应地,第一通信装置在重新确定的多个PSFCH上进行反馈。其中,新确定的多个PSFCH中的最后一个PSFCH与PSSCH#A之间的时间间隔不超过时长T0。
另外,第一通信装置会在上述的新确定的多个PSFCH的资源位置进行反馈,仅当LBT成功时才会把反馈信息发送出去。在计时超过T0时,第一通信装置停止发送反馈信息。或者,当第一通信装置在上述的新确定的多个PSFCH的资源位置进行反馈,当把反馈信息发送出去后,第一通信装置不再使用剩余的PSFCH的资源位置进行反馈。此时,第一通信装置可以停止计时。
综上,第一通信装置向第二通信装置发送反馈信息的多个PSFCH可以包括由第二通信装置指示确定的,也可以包括第一通信装置自行确定的,本申请对此不做限定。
S330、第二通信装置在至少两个计时周期内确定DTX数量。
为了避免因DTX数量过多(也可以为短时间内的DTX数量过多)而过早地触发RLF检测机制,第二通信装置在发送PSSCH#A之后或者在上述的多个PSFCH中的第一个PSFCH的资源位置启动计时器A(或者为sl-HARQ-Timer)。其中,本申请支持计数器A采用顺序计时或者逆序计时。
示例性地,若计数器A采用顺序计时,则设定计时器A顺序计时到10毫秒时,复位并重新计时,每一次的重新计时能够作为一个计时周期。示例性地,若计数器A采用逆序计时,则设定计时器A从10毫秒逆序计时到0时可以重新计时,每一次的重新计时能够作为一个计时周期。因此,上述的至少两个计时周期可以理解为:计时器A在设定的时长内进行多次循环计时。其中,计时器A的每一次循环计时可以作为计时器A的一个计时周期。
S330中,可以理解的是,一个DTX指示一个反馈信息的接收失败,该反馈信息承载于PSFCH之上。其中,反馈信息的接收失败可以理解为:第二通信装置在对应的PSFCH的资源位置没有成功接收或者检测出反馈信息。示例性地,第二通信装置在对应的PSFCH的资源位置没有成功接收或者检测出反馈信息可以是由于第一通信装置因LBT失败而未能成功发送而导致的,或者,也可以是第一通信装置成功发送出反馈信息,但是第二通信装置与第一通信装置之间的信道条件不好而导致的,本申请对此不做限定。
其中,上述的至少两个计时周期中的任意一个计时周期(下文以计时周期S为上述的至少两个计时周期中的任意一个计时周期为例进行描述)包括至少一个PSFCH。计时周期S所包括的PSFCH属于上述的至少两个PSFCH中的部分PSFCH。譬如,PSSCH#A对应的PSFCH的数量为6个,计时周期S可以包括6个PSFCH中的前三个或者前两个PSFCH。关于计时周期S的描述可以参见图4。
示例性地,PSSCH#A对应PSFCH#1、PSFCH#2、PSFCH#3、PSFCH#4、PSFCH#5以及PSFCH#6时(以PSFCH的时域位置进行顺序排序),计时周期S可以包括PSFCH#1、PSFCH#2、PSFCH#3;计时周期S也可以包括PSFCH#1、PSFCH#2;计时周期S还可以包括PSFCH#1,等等。
一个可能的实现方式,上述的至少两个计时周期内的每个计时周期的时间长度可以相同,也可以不同,本申请对此不做限定。为便于描述,本申请以每个计时周期的时间长度相同为例进行描述,但不限定每个计时周期的时间长度不同的场景。
S330中,第二通信装置在至少两个计时周期内确定DTX数量,也可以为:第二通信装置确定至少两个计时周期内的DTX数量。其中,至少两个计时周期内的DTX数量可以是第二通信装置连续统计确定的,也可以是第二通信装置非连续统计确定的。譬如,上述的至少两个计时周期包括3个计时周期,分别是计时周期#1、计时周期#2以及计时周期#3。第二通信装置可以统计计时周期#1、计时周期#2以及计时周期#3的DTX数量,也可以仅统计计时周期#1与计时周期#3的DTX数量,不统计计时周期#2的DTX数量。
另外,每个计时周期内统计的DXT数量可以少于该计时周期内的PSFCH数量。示例性地,计时周期S包括三个PSFCH时,计时周期S内的DTX数量少于3个。譬如,计时周期S内的DTX数量可以为1,也可以为2。具体可以见图4。
图4是本申请实施例的计时周期、PSFCH数量以及DTX数量之间的对应关系的示意图。如图4所示,示例性地,至少两个计时周期包括两个计时周期,分别是计时周期#1与计时周期#2,多个PSFCH包括6个PSFCH。其中,每个计时周期内的PSFCH的数量为3个,每个计时周期内的DXT数量都为1个。其中,上述的计时周期S可以为下述的计时周期#1或者计时周期#2。
第二通信装置可以维护一个计数器Q,计数器Q的初始值为0。示例性地,每个计时周期所包括的PSFCH的数量为3个,每个计时周期内所能够统计的DTX数量为1个,第二通信装置在计时周期#1内的第一个PSFCH的资源位置上没有成功接收到或者检测出反馈信息时,则使计数器Q的值加一(计数器Q的值为1),在第二个PSFCH和第三个PSFCH的资源位置上都没有成功接收到或者检测出反馈信息时,则不会使计数器Q的值再加一(计数器Q的值仍为1)。第二通信装置在计时周期#2内的第一个PSFCH的资源位置上没有成功接收或者检测出反馈信息时,则使计数器Q的值再加一(计 数器Q的值为2),在第二个PSFCH和第三个PSFCH的资源位置上都没有成功接收到或者检测出反馈信息时,第二通信装置则不会使计数器Q再加一(计数器Q的值仍为2)。
可选地,若每个计时周期内的PSFCH的资源位置已确定时,示例性地,第二通信装置统计计时周期#1内的第二个PSFCH上的反馈信息的接收失败,不统计第一个PSFCH上的反馈信息的接收失败。换言之,本申请对第二通信装置在每个计时周期内统计的DTX所对应的PSFCH的资源位置不做限定。
S340、第二通信装置根据至少两个计时周期内的DTX数量确定第一通信装置与第二通信装置之间的无线链路是否处于失败状态。
具体地,若上述的至少两个计时周期内的DTX数量达到数量阈值,第二通信装置则会确定第一通信装置与第二通信装置之间的无线链路处于失败状态;若上述的至少两个计时周期内的DTX数量没有达到数量阈值,第二通信装置则会确定第一通信装置与第二通信装置之间的无线链路处于正常状态。又或者,当第二通信装置在上述的任意一个计时周期内收到与PSSCH#A对应的反馈信息时,第二通信装置则可以确定第一通信装置与第二通信装置之间的无线链路处于正常状态,并可以终止计时器A的运转。
具体而言,通过采用计时周期,且每个计时周期内的DTX数量少于每个计时周期所包括的PSFCH数量,第一通信装置在每个计时周期内的每个PSFCH的资源位置上都因LBT失败而未能成功发送反馈信息时,第二通信装置可以通过维持多个计时周期的运转,则可以在某个PSFCH(该PSFCH在多个PSFCH中的排序可能会很靠后)的资源位置上成功接收到或者检测出反馈信息,且DTX数量不会超过数量阈值。
一个可能的实现方式,数量阈值(或者为DTX-MaxCount)与计数器A是第二通信装置通过接收基站发送的配置信息/来自系统信息块12(system information block,SIB12)/预配置/上层的配置参数确定的。
通过引入计时周期,本申请能够控制每个计时周期内的DTX数量来实现避免因DTX数量过多而过早地触发RLF检测机制,从而支持第一通信装置与第二通信装置之间通信的顺利进行。
一个可能的实现方式,方法300还包括:
S340a1,至少两个计时周期内的DTX数量等于数量阈值时,第二通信装置终止计时;
S340b1,第二通信装置确定第一通信装置与第二通信装置之间的无线链路处于失败状态。
具体来说,至少两个计时周期内的DTX数量是累计统计的,其会随着多个计时周期的运转而累加。在至少两个计时周期内的DTX数量等于数量阈值时,第二通信装置终止计时(或者终止计时器A的循环计时),并会确定第一通信装置与第二通信装置之间的无线链路处于失败状态。
一个可能的实现方式,方法300还包括:
S340a2,在接收到PSSCH#A对应的反馈信息B时,第二通信装置终止计时;
S340b2,第二通信装置确定第一通信装置与第二通信装置之间的无线链路处于正常状态。
具体地,第二通信装置在上述的至少两个计时周期内的某个计时周期内成功接收到或者检测出PSSCH#A对应的反馈信息B时,第二通信装置终止计时(或者终止计时器A的循环计时)。相应地,第二通信装置还可以确定第一通信装置与第二通信装置之间的无线链路处于正常状态(非失败状态)。
一个可能的实现方式,方法300还包括:
S310a,第二通信装置向第一通信装置发送指示信息1,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
相应地,第一通信装置接收来自于第二通信装置的指示信息1,并基于指示信息1确定上述的至少两个PSFCH中的每个PSFCH的资源位置。进一步地,第一通信装置基于指示信息1所指示的每个PSFCH的资源位置向第二通信装置发送反馈信息。
一个可能的实现方式,指示信息1可以是用于调度PSSCH#A的侧行链路控制信息(SL control information,SCI),也可以是一个单独的指示消息。
应理解,S310a的执行顺序可以在S310之后,在S320之前,也可以与S310同时进行,本申请对此不做限定。
一个可能的实现方式,方法300还包括:
S310b、第二通信装置向第一通信装置发送指示信息2,其用于指示PSSCH#A与PSSCH#A对应 的PSFCH之间的时长T0。其中,关于时长T0的描述可以参见上文描述,在此不再赘述。
一个可能的实现方式,指示信息2是第二通信装置向第一通信装置发送的无线资源控制(radio resource control,RRC)信息。其中,该RRC信息携带时长T0,其用于指示PSSCH#A与对应的PSFCH之间的最大时间间隔。
可选地,指示信息2是用于调度PSSCH#A的SCI。其中,该SCI携带时长T0。其中,时长T0可以是来自于系统级基站的配置值,也可以是固定值(specified value)。示例性地,时长T0可以通过定时器或者计数器来体现。譬如,通过定时器体现时长T0时,其表示:第一通信装置在定时器所设定的时长内向第二通信装置发送多个反馈信息,直至定时器所预设的时间长度。通过计数器体现时长T0时,其表示:第一通信装置在计数器所统计的每个数所对应的时间长度内向第二通信装置发送多个反馈信息,直至计数器所计算的数字达到预设值。具体地说,计数器可以设定5个数字,每个数字分别对应一个时间长度,则时长T0等于5个数字所对应的总时间长度。
具体而言,第一通信装置在第二通信装置所指示的多个PSFCH的资源位置上成功发送了反馈信息,则可以不通过时长T0选择多个PSFCH资源。换言之,当第一通信装置在第二通信装置所指示的多个PSFCH的资源位置上都没有成功发送反馈信息时,可以选择时长T0内的多个PSFCH资源(此时该多个PSFCH资源是第一通信装置自行确定的)。
应理解,S310a的执行顺序可以在S310之后,在S320之前,也可以与S310同时进行,本申请对此不做限定。
可以理解的是,S310b可以是一个可选的步骤,也可以是一个必须的步骤,本申请对此不做限定。
一个可能的实现方式,上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。示例性地,至少两个PSFCH包括PSFCH#1、PSFCH#2、PSFCH#3以及PSFCH#4。其中,PSFCH#1与PSFCH#2之间的时域位置之间的间隔大于或等于T1,PSFCH#3与PSFCH#4之间的时域位置之间的间隔大于或等于T1。如此,能够避免多个PSFCH在时域上的位置分布过密,导致第一通信装置在该多个分布过密的PSFCH的资源位置上因LBT失败而触发RLF检测机制。
具体地,第二通信装置可以根据该时间间隔阈值配置上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置,使得任意两个相邻PSFCH在时域位置上的时间间隔大于或等于时间间隔阈值。其中,该时间间隔阈值可以是第二通信装置根据网络设备的配置信息/来自SIB12/预配置/上层配置参数(例如,sl-PSFCH-Gap)确定的。又或者,该时间间隔阈值是第一通信装置向第二通信装置进行指示的。其中,关于任意两个相邻的PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值的示意图可以参见图4中的被统计的PSFCH与未被统计的PSFCH之间的时间间隔。
另外,第一通信装置也可以根据上述的时间间隔阈值自行配置上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔。其中,该时间间隔阈值可以是第一通信装置根据网络设备的配置信息/来自SIB12/预配置/上层配置参数(例如,sl-PSFCH-Gap)确定的。又或者,该时间间隔阈值是第二通信装置向第一通信装置通过指示信息3进行指示的。
需要说明的是,上述的采用计时周期技术方案与配置时间间隔阈值技术方案二者可以耦合,也可以独立进行。譬如,采用计时周期技术方案时,上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔可以大于或等于时间间隔阈值,也可以小于时间间隔阈值,本申请对此不做限定。但是若上述的至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔可以大于或等于时间间隔阈值时,则可以使得每个计时周期内的PSFCH数量较少,相应地,每个计时周期内的DTX数量也会较少,能够避免过早地触发不合理的无线链路状态判断(或者触发RLF检测机制)机制。譬如,采用配置时间间隔阈值时,则可以不采用计时周期,则也能够在一定程度上减少DTX的总数量;若同时还采用计时周期,则能够进一步地减少DTX的总数量,能够避免触发不合理的无线链路状态判断机制。
应理解,方法300中,第一通信装置与第二通信装置之间可以建立单播链接。其中,关于该过程的描述可以参见现有的描述,本申请对此不再赘述。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软 件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图5是本申请实施例的通信装置500的示意性框图。通信装置500包括处理器510和通信接口520,处理器510和通信接口520通过总线530相互连接。图5所示的通信装置500可以是第一通信装置,也可以是第二通信装置。
可选地,通信装置500还包括存储器540。
存储器540包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器540用于相关指令及数据。
处理器510可以是一个或多个中央处理器(central processing unit,CPU),在处理器510是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当通信装置500是第一通信装置时,处理器510用于读取存储器540中存储的计算机程序或指令,示例性地,执行以下操作:接收来自于第二通信装置的PSSCH#A;在PSSCH#A对应的至少两个PSFCH中的每个PSFCH向第二通信装置发送反馈信息。
又示例性地,可以执行以下操作:接收来自于第二通信装置的指示信息1,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
又示例性地,可以执行以下操作:接收来自于第二通信装置的指示信息2,其用于指示PSSCH#A与PSSCH#A对应的PSFCH之间的时长T0。
上述所述内容仅作为示例性描述。通信装置500是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。另外,第一通信装置可以是终端设备,也可以是网络设备。
当通信装置500是第二通信装置时,处理器510用于读取存储器540中存储的计算机程序或指令,示例性地,执行以下操作:向第一通信装置发送PSSCH#A;在至少两个计时周期内确定DTX数量;根据至少两个计时周期内的DTX数量确定第一通信装置与第二通信装置之间的无线链路是否处于失败状态。
又示例性地,可以执行以下操作:向第一通信装置发送指示信息1,其用于指示至少两个PSFCH中的每个PSFCH的资源位置。
又示例性地,可以执行以下操作:向第一通信装置发送指示信息2,其用于指示PSSCH#A与PSSCH#A对应的PSFCH之间的时长T0。
上述所述内容仅作为示例性描述。该通信装置500是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。另外,第二通信装置可以是终端设备,也可以是网络设备。
上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图5中的各个操作的实现还可以对应参照图3至图4所示的方法实施例的相应描述。
图6是本申请实施例的通信装置600的示意性框图。通信装置600可以为上述实施例中的第一通信装置或者第二通信装置,也可以为第一通信装置或者第二通信装置中的芯片或模块,用于实现上述实施例涉及的方法。通信装置600包括收发单元610与处理单元620。下面对该收发单元610与处理单元620进行示例性地介绍。
收发单元610可以包括发送单元和接收单元,分别用于实现上述方法实施例中发送或接收的功能;还可以进一步包括处理单元,用于实现除发送或接收之外的功能。
示例性地,通信装置600为第一通信装置时,该收发单元610用于接收来自于第二通信装置的PSSCH#A;收发单元610,还用于在PSSCH#A对应的至少两个PSFCH中的每个PSFCH向第二通信装置发送反馈信息。
可选地,通信装置600还包括存储单元630,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置600是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。
示例性地,通信装置600为第二通信装置时,该收发单元610用于向第一通信装置发送PSSCH#A;处理单元620,用于在至少两个计时周期内确定DTX数量;处理单元620用于根据至少两个计时周期内的DTX数量确定第二通信装置与第一通信装置之间的无线链路是否处于失败状态。
可选地,通信装置600还包括存储单元630,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置600是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。
另外,图6的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图5和图6所示的装置实施例是用于实现前述方法实施例图3和图4所述的内容的。因此,图5和图6所示装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
图7是本申请实施例的通信装置700的示意图。通信装置700可用于实现上述方法中第一通信装置或者第二通信装置的功能。通信装置700可以是第一通信装置或者第二通信装置中的芯片。
通信装置700包括:输入输出接口720和处理器710。输入输出接口720可以是输入输出电路。处理器710可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口720用于信号或数据的输入或输出。
举例来说,通信装置700为第一通信装置时,输入输出接口720用于接收来自于第二通信装置的PSSCH#A。输入输出接口720还用于在PSSCH#A对应的至少两个PSFCH中的每个PSFCH向第二通信装置发送反馈信息。
举例来说,通信装置700为第二通信装置时,输入输出接口720用于向第一通信装置发送PSSCH#A。处理器710用于在至少两个计时周期内确定DTX数量。处理器710还用于根据至少两个计时周期内的DTX数量确定第二通信装置与第一通信装置之间的无线链路是否处于失败状态。
一种可能的实现中,处理器710通过执行存储器中存储的指令,以实现网络设备或终端设备实现的功能。
可选的,通信装置700还包括存储器。
可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置700之外。
一种可能的实现中,处理器710可以为逻辑电路,处理器710通过输入输出接口720输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
上述对于图7的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
图8是本申请实施例的通信装置800的示意框图。通信装置800可以是网络设备也可以是芯片。该通信装置800可以用于执行上述图3所示的方法实施例中由第一通信装置所执行的操作。
当通信装置800为网络设备(第一通信装置或者第二通信装置为网络设备)时,例如为基站。图8示出了一种简化的基站结构示意图。基站包括810部分、820部分以及830部分。810部分主要用于基带处理,对基站进行控制等;810部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。820部分主要用于存储计算机程序代码和数据。830部分主要用于射频信号的收发以及射频信号与基带信号的转换;830部分通常可以称为收发模块、收发机、收发电路、或者收发器等。830部分的收发模块,也可以称为收发机或收发器等,其包括天线833和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将830部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即830部分包括接收机832和发射机831。接收机也可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
810部分与820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一 个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,830部分的收发模块用于执行图3所示实施例中由网络设备执行的收发相关的过程。810部分的处理器用于执行图3所示实施例中由网络设备执行的处理相关的过程。
另一种实现方式中,810部分的处理器用于执行图3所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,830部分的收发模块用于执行图3所示实施例中由通信设备执行的收发相关的过程。
应理解,图8仅为示例而非限定,上述所包括的处理器、存储器以及收发器的网络设备可以不依赖于图5至图7所示的结构。
当通信装置800为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例中网络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
图9是本申请实施例的通信装置900的示意框图。通信装置900可以为终端设备、终端设备的处理器、或芯片。通信装置900可以用于执行上述方法实施例中由终端设备或通信设备所执行的操作。
当通信装置900为终端设备(第一通信装置或者第二通信装置为终端设备)时,图9示出了一种简化的终端设备的结构示意图。如图9所示,终端设备包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机931、接收机932、射频电路(图中未示出)、天线933以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。
如图9所示,终端设备包括处理器910、存储器920和收发器930。处理器910也可以称为处理单元,处理单板,处理模块、处理装置等,收发器930也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器930中用于实现接收功能的器件视为接收模块,将收发器930中用于实现发送功能的器件视为发送模块,即收发器930包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器910用于执行图3所示的实施例中终端设备侧的处理动作,收发器930用于执行图3中终端设备侧的收发动作。
例如,在一种实现方式中,处理器910用于执行图3所示的实施例中终端设备侧的处理动作,收发器930用于执行图3中终端设备侧的收发动作。
应理解,图9仅为示例而非限定,上述的包括收发模块和处理模块的终端设备可以不依赖于图5至图7所示的结构。
当该通信装置900为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输 出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机程序或者代码。
本申请还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及网络设备或者终端设备的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
本申请还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指二个或多于二个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以二个或二个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种侧行链路反馈方法,其特征在于,包括:
    第二通信装置向第一通信装置发送物理侧行链路共享信道PSSCH;
    所述第二通信装置在至少两个计时周期内确定非连续发送DTX数量,一个DTX指示一个反馈信息的接收失败,一个反馈信息承载于一个物理侧行链路反馈信道PSFCH,所述PSSCH对应至少两个PSFCH,所述至少两个计时周期中的第一计时周期包括所述至少两个PSFCH中的至少一个PSFCH,所述第一计时周期内的DTX数量小于所述第一计时周期包括的PSFCH的数量;
    所述第二通信装置根据所述至少两个计时周期内的DTX数量确定所述第二通信装置与所述第一通信装置之间的无线链路是否处于失败状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第二通信装置根据所述至少两个计时周期内的DTX数量确定所述无线链路是否处于失败状态,包括:
    所述至少两个计时周期内的DTX数量等于数量阈值时,所述第二通信装置终止计时;
    所述第二通信装置确定所述无线链路处于失败状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述至少两个PSFCH中的每个PSFCH的资源位置。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第二指示信息,所述第二指示信息包括时间间隔阈值;
    所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于所述时间间隔阈值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第三指示信息,所述第三指示信息用于指示所述PSSCH与所述PSSCH对应的PSFCH之间的最大时间间隔。
  7. 一种侧行链路反馈方法,其特征在于,包括:
    第一通信装置接收来自于第二通信装置的物理侧行链路共享信道PSSCH;
    所述第一通信装置在所述PSSCH对应的至少两个物理侧行链路反馈信道PSFCH中的每个PSFCH向所述第二通信装置发送反馈信息,所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置根据所述时间间隔阈值配置所述至少两个PSFCH中的每个PSFCH的资源位置。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自于所述第二通信装置的第一指示信息,所述第一指示信息用于指示所述至少两个PSFCH中的每个PSFCH的资源位置。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自于所述第二通信装置的第二指示信息,所述第二指示信息用于指示所述PSSCH与所述PSSCH对应的PSFCH之间的最大时间间隔。
  11. 一种通信装置,其特征在于,包括:
    收发单元,用于向第一通信装置发送物理侧行链路共享信道PSSCH;
    处理单元,用于在至少两个计时周期内确定非连续发送DTX数量,一个DTX指示一个反馈信息的接收失败,一个反馈信息承载于一个物理侧行链路反馈信道PSFCH,所述PSSCH对应至少两个PSFCH,所述至少两个计时周期中的第一计时周期包括所述至少两个PSFCH中的至少一个PSFCH,所述第一计时周期内的DTX数量小于所述第一计时周期包括的PSFCH的数量;
    所述处理单元,还用于根据所述至少两个计时周期内的DTX数量确定所述第一通信装置与所述通 信装置之间的无线链路是否处于失败状态。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元,还用于:
    所述至少两个计时周期内的DTX数量等于数量阈值时,终止计时;
    确定所述无线链路处于失败状态。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述收发单元,还用于向所述第一通信装置发送第一指示信息,所述第一指示信息用于指示所述至少两个PSFCH中的每个PSFCH的资源位置。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,
    所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
  15. 根据权利要求11至13中任一项所述的装置,其特征在于,
    所述收发单元,还用于向所述第一通信装置发送第二指示信息,所述第二指示信息包括时间间隔阈值;
    所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于所述时间间隔阈值。
  16. 根据权利要求11至15中任一项所述的装置,其特征在于,
    所述收发单元,还用于向所述第一通信装置发送第三指示信息,所述第三指示信息用于指示所述PSSCH与所述PSSCH对应的PSFCH之间的最大时间间隔。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自于第二通信装置的物理侧行链路共享信道PSSCH;
    所述收发单元,还用于在所述PSSCH对应的至少两个物理侧行链路反馈信道PSFCH中的每个PSFCH向所述第二通信装置发送反馈信息,所述至少两个PSFCH中的任意两个相邻PSFCH的时域位置之间的时间间隔大于或等于时间间隔阈值。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括处理单元,
    所述处理单元,用于根据所述时间间隔阈值配置所述至少两个PSFCH中的每个PSFCH的资源位置。
  19. 根据权利要求18所述的装置,其特征在于,
    所述收发单元,还用于接收来自于所述第二通信装置的第一指示信息,所述第一指示信息用于指示所述至少两个PSFCH中的每个PSFCH的资源位置。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,
    所述收发单元,还用于接收来自于所述第二通信装置的第二指示信息,所述第二指示信息用于指示所述PSSCH与所述PSSCH对应的PSFCH之间的最大时间间隔。
  21. 一种通信装置,其特征在于,包括处理器,所述处理器用于,通过执行计算机程序或指令,或者,通过逻辑电路,使得所述通信装置执行权利要求1至10中任一项所述的方法。
  22. 根据权利要求21所述的通信装置,其特征在于,所述通信装置还包括存储器,所述存储器用于存储所述计算机程序或指令。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述通信装置还包括通信接口,所述通信接口用于输入和/或输出信号。
  24. 一种通信装置,其特征在于,包括逻辑电路和输入输出接口,所述输入输出接口用于输入和/或输出信号,所述逻辑电路用于执行权利要求1至10中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得权利要求1至10中任一项所述的方法被执行。
  26. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得权利要求1至10中任一项所述的方法被执行。
  27. 一种计算机程序,其特征在于,当其在计算机上运行时,使得权利要求1至10中任一项所述的方法被执行。
PCT/CN2023/116710 2022-10-25 2023-09-04 侧行链路反馈方法与通信装置 WO2024087884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211307961.8A CN117939491A (zh) 2022-10-25 2022-10-25 侧行链路反馈方法与通信装置
CN202211307961.8 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087884A1 true WO2024087884A1 (zh) 2024-05-02

Family

ID=90763312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116710 WO2024087884A1 (zh) 2022-10-25 2023-09-04 侧行链路反馈方法与通信装置

Country Status (2)

Country Link
CN (1) CN117939491A (zh)
WO (1) WO2024087884A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351707A1 (en) * 2019-05-02 2020-11-05 Mediatek Inc. Radio link monitoring in sidelink communications
WO2021235705A1 (ko) * 2020-05-19 2021-11-25 엘지전자 주식회사 Nr v2x에서 rlf를 위한 방법 및 장치
CN114009070A (zh) * 2021-09-27 2022-02-01 北京小米移动软件有限公司 一种反馈信息传输方法、装置及存储介质
CN114402639A (zh) * 2019-07-10 2022-04-26 Lg电子株式会社 用于在nr v2x中确定反馈资源的方法和装置
WO2022104542A1 (zh) * 2020-11-17 2022-05-27 Oppo广东移动通信有限公司 无线通信方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351707A1 (en) * 2019-05-02 2020-11-05 Mediatek Inc. Radio link monitoring in sidelink communications
CN114402639A (zh) * 2019-07-10 2022-04-26 Lg电子株式会社 用于在nr v2x中确定反馈资源的方法和装置
WO2021235705A1 (ko) * 2020-05-19 2021-11-25 엘지전자 주식회사 Nr v2x에서 rlf를 위한 방법 및 장치
WO2022104542A1 (zh) * 2020-11-17 2022-05-27 Oppo广东移动通信有限公司 无线通信方法和通信装置
CN114009070A (zh) * 2021-09-27 2022-02-01 北京小米移动软件有限公司 一种反馈信息传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN117939491A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US20210266223A1 (en) Switching method, base station and terminal
WO2020088551A1 (zh) 发送和接收数据的方法以及通信装置
WO2019196885A1 (zh) 一种波束恢复的方法及装置
WO2020221296A1 (zh) 数据传输的方法和装置
CN109842915A (zh) 一种通信方法和装置以及系统
WO2021026915A1 (zh) 无线通信方法、装置及系统
CN113825189A (zh) 一种切换控制方法及通信装置
WO2022001145A1 (zh) 跨系统干扰避让方法、设备及系统
US8305976B1 (en) Efficient wireless communication network entry for wireless communication devices
WO2024087884A1 (zh) 侧行链路反馈方法与通信装置
CN111698768B (zh) 通信方法及其装置
WO2023065987A1 (zh) 一种传输信息的方法及装置
US20210212110A1 (en) Random access method, terminal device, and network device
WO2021056585A1 (zh) 一种混合自动重传请求反馈方法及装置
CN113727457A (zh) 一种通信方法与装置
CN113056938A (zh) 装置、方法和计算机程序
WO2023231636A1 (zh) 一种通信方法及相关装置
WO2024130579A1 (zh) 通信方法及通信装置
WO2023051059A1 (zh) 资源配置方法和通信装置
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2024067172A1 (zh) 一种数据传输的方法和装置
TWI839839B (zh) 實體層協定資料單元傳輸方法、通信裝置、電腦可讀儲存介質、電腦程式產品、晶片及通信系統
WO2023207878A1 (zh) 一种设备唤醒方法及装置
WO2023051397A1 (zh) 一种资源配置方法及装置
WO2024066982A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881465

Country of ref document: EP

Kind code of ref document: A1