CN114397581A - 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法 - Google Patents

一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法 Download PDF

Info

Publication number
CN114397581A
CN114397581A CN202111500172.1A CN202111500172A CN114397581A CN 114397581 A CN114397581 A CN 114397581A CN 202111500172 A CN202111500172 A CN 202111500172A CN 114397581 A CN114397581 A CN 114397581A
Authority
CN
China
Prior art keywords
charging
evaluation
value
new energy
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111500172.1A
Other languages
English (en)
Inventor
张剑
杨景禄
王强
郭智利
孟凡杰
匙航
席燕军
王洋
白银明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Chengnan Power Supply Co of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Chengnan Power Supply Co of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd, Chengnan Power Supply Co of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202111500172.1A priority Critical patent/CN114397581A/zh
Publication of CN114397581A publication Critical patent/CN114397581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,以新能源汽车、60KW直流充电桩为例,将本发明提出的方法与带噪声的安时积分法、EKF法、ASTUK法分别进行实验室环境与工程实际环境新能源汽车充电实验测试,并对SOC评估误差进行分析。面向流充电桩充电监测数据,应用本方法对不良数据阈值进行自适应更新,然后剔除不良数据,提高原始数据准确性,最终结合二级动力电池Thevenin模型应用鲁棒性卡尔曼滤波法进行评估,实现SOC精确评估。充分利用直流充电桩的分析计算优势,以直流充电桩充电监测数据为基础,提高SOC评估精度,增强新能源汽车充电安全性能。

Description

一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗 扰评估方法
技术领域
本发明涉及一种新能源汽车电池SOC评估方法,更进一步涉及针对恶劣环境与强噪声干扰下的新能源汽车电池充电SOC评估方法,特别涉及一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法。
背景技术
随着化石能源逐渐枯竭与环境日益恶化,新能源汽车的发展为解决能源与环境问题带来了曙光,成为世界各国重要的能源发展战略。在新能源汽车规划发展战略中,直流充电桩与直流充电方式由于其极快速高效的充电效率,得到学界广泛关注,直流充电枪可通过CAN总线基于27930通信协议与汽车BMS系统进行高速信息双向交互,使得新能源汽车能够成为一种承载车网互动的“充电宝”。然而直流充电桩充电过程中的安全状态监测与安全管理成为制约新能源汽车与充电设施发展的关键技术瓶颈。其中荷电状态(StateofCharge,SOC)是重要的充电安全状态评估指标,其定义为电池某时刻的剩余电量与电池的实际电荷容量的比值。精准估算汽车电池过程中的SOC工作状态,无论对新能源汽车车载电池能量管理系统(Battery Management System,BMS)还是对直流充电装置本身而言,均具有重要的意义,不仅能够有效提高电池安全性能而且有利于提高充电效率,增强直流充电设施安全稳定性。若SOC评估不准确,则可能会致使电池充电操作不正确,缩短电池的使用寿命,增加使用成本,降低电池的工作效率,甚至对整个充电站安全运营造成严重危害。因此,精确的SOC评估是大力发展新能源汽车战略、保障直流充电桩充电安全的核心内容。
目前SOC的评估方法主要包括安时积分法、开路电压法、神经网络法、卡尔曼滤波法等。其中卡尔曼滤波法(Kalman Filtering,KF)是一种基于白箱模型的最优化自回归数据处理算法,针对任意类型的动力电池SOC评估具有良好的适用性,得到诸多应用。LivintG等人提出一种基于改进扩展卡尔曼滤波的电池SOC评估方法,具有较高的准确性和收敛性。He H等人提出一种改进型自适应强跟踪卡尔曼滤波,有效解决了系统噪声统计不确定性。然而上述研究均基于实验室理想环境,将噪声统一建模为高斯白噪声或噪声干扰极小。在实际新能源汽车充电过程中,由于恶劣环境、自然灾害、低温、电磁干扰等各类型因素干扰,使得BMS量测数据往往极度不准确或存在强噪声干扰,导致SOC评估偏差较大。
近年来,随着直流充电桩的智能化发展与落地应用,其自身具有良好的边缘计算资源与分析能力,且对充电过程中全周期充电信息进行直接监测,可在一定程度上降低外部环境干扰。因此,面向直流充电桩充电监测数据,适应于恶劣充电环境且具有强鲁棒性的动力电池SOC评估方法成为重要的研究方向之一。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,在恶劣环境与强噪声干扰下能有效地对充电电压、电流等直流充电桩充电监测数据进行降噪处理,实现动力电池SOC准确评估,全面支撑新能源汽车充电安全性分析。
本发明解决其技术问题是采取以下技术方案实现的:
一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,包含有如下阶段:
1)建立二阶动力电池Thevenin等效模型
分析二阶等效电路模型,根据Thevenin定理得到电池的端电压与电流之间的关系:
Figure BDA0003401268340000021
Uoc为开路电压;R0为电池内阻;R1、R2为极化电阻;C1、C2为等效电容;U1、U2为极化电压,利用脉冲放电实现(Hybrid Pulse Power Characteristic,HPPC)获取测试数据,基于Matab对端电压、电流曲线进行拟合,实现电池等效电路模型参数辨识,得到上述R0、R1、R2、C1、C2参数值。基于实际直流充电桩充电监测数据,通过比较实际值与端电压值对模型进行验证。
2)基于不同工况的不良数据检测与剔除
考虑低温、自然灾害、极端恶劣天气、电磁辐射等多因素影响而造成的SOC评估强噪声干扰问题,基于车载电池能量管理系统的SOC评估初值,充分利用直流充电桩充电数据采集与分析处理功能,提出一种前置滤波过程随监测量变化趋势自适应阈值调整方法,对充电电流、电压等直流充电桩充电监测值进行不良数据辨识与剔除,具体步骤如下:
(1)获取数据
提取充电桩采集的充电电压、充电电流等监测数据,同时将直流充电桩与新能源汽车BMS系统控制平台通过CAN总线连接,基于27930通信协议进行双向信息互动,获取BMS的SOC预估初值。
(2)前置滤波
设定一个初始阈值δ0,将t时刻的BMS预估值Zk与监测值mk求差得到ΔZk,定义ΔZk与评估值Zk之比为校正系数,计算如(式2)所示。
Figure BDA0003401268340000031
(3)阈值更新
考虑k-1时刻阈值δk-1与校正系数βk-1的大小关系,进行自适应阈值更新。
Figure BDA0003401268340000032
式中:m为取值范围为[4,10]的修正常数。若阈值小于校正系数,则提高阈值,若阈值大于校正系数,则减小阈值,从而逐渐减小预估值与监测值的差值,实现高精度不良数据辨识,消除强噪声干扰。
(4)检验不良数据
ΔVk为k时刻监测值mk与前一时刻监测值mk-1差的绝对值,即:
ΔVk=|mk-mk-1| (式4)
若ΔVkkmk-1,则认为量测量mk为不良数据,则舍弃该测量值,进而使用评估值Zk代替量测值mk
3)基于鲁棒性扩展卡尔曼滤波法量测
通过2)得到已剔除不良数据的动力电池充电程中的电压、电流监测量,采用鲁棒性扩展卡尔曼滤波法(Robust Extended Kalman Filtering,REKF)进行数据处理与SOC评估,具体步骤如下:
(1)初始化
基于1)中HPPC测试获取R0、R1、R2、C1、C2参数初值,并基于该参数将模型端电压评估值与端电压真实充电数据进行对比,验证二阶动力电池Thevenin等效模型的精确度。
(2)线性化处理
基于1)二阶动力电池Thevenin等效模型,采用REKF算法进行线性化处理,建立系统的状态方程和观测方程,如(式5)、(式6)所示。wk,vk是系统中两类互不相关的高斯白噪声;η是效率;T是系统的采样周期;τ1,τ2分别是等效模型中两个RC并联模块的时间常数,其数值为τ1=R1C1,τ2=R2C2;It(k)则是这一时刻的输出电流,在充电过程中输出I始终为负。Ut为充电端电压,Ik为充电电流,UOC为开路电压;
Figure BDA0003401268340000041
Ut(k+1)=UOC(k+1)-U1(k+1)-U2(k+1)-R0It(k+1)+vk+1 (式6)
(3)状态向量求偏导
通过(2)中的状态方程与观测方程求偏导,获得系统的参数矩阵Ak、Ck,如(式7)、(式8)所示。
Figure BDA0003401268340000042
Figure BDA0003401268340000043
(4)时间更新
利用k时刻的后验(SOC、U1、U2)评估以及外加激励Ik计算k+1时刻的先验评估,实现预测当前状态X和计算先验评估协方差P。
①系统状态评估的时间更新:
Figure BDA0003401268340000044
②误差协方差的时间更新,通过k时刻的后验评估的均方误差矩阵最小,以及外加激励产生的白噪声的协方差阵计算k+1时刻的均方误差阵:
Figure BDA0003401268340000045
(5)测量更新
用所能观测到的数据来修正先验评估,使所得到的后验最优评估代入观测方程后能够最接近观测量,负责反馈控制。
①卡尔曼增益矩阵的计算:
Figure BDA0003401268340000046
②系统状态的测量更新:
Figure BDA0003401268340000047
③误差协方差的测量更新:
Figure BDA0003401268340000051
4)动力电池实验验证:
选择任意品牌型号的新能源汽车,提取其电池参数信息,在实验室充电场景与直流充电桩充电实际工程场景下,对新能源汽车进行充电操作,在此过程中通过CAN总线,实时互动并记录车载BMS估测值与直流充电桩充电监测数据,基于3)进行SOC精确评估。
(1)场景1:实验室环境下对新能源汽车进行充电操作;
(2)场景2:具有低温(-5℃)、电磁干扰(采用GRQ-03E型电磁干扰器产生40dB电磁噪声)强干扰的直流充电桩实际工程环境下对新能源汽车进行充电操作。
本发明的优点和积极效果是:
本发明申请技术方案面向复杂噪声干扰下的直流充电桩实际充电工况,提出前置滤波过程随监测量变化趋势自适应阈值调整方法,该方案充分利用了扩展卡尔曼滤波法的高精度优势,创新性与优势在于:
①区别于传统实验室环境,本文算法面向低温、暴雨、电磁干扰等直流充电桩充电实际复杂工程场景;
②提出针对不同精度数据的前置滤波过程随量测量变化趋势自适应阈值调整方法,对充电监测数据进行不良数据辨识与剔除;
③提出基于REKF的SOC评估流程,实现适应于不同复杂工况的动力电池SOC精确评估;
④开展实际恶劣环境直流充电桩充电现场实验,数据真实有效,验证了REKF算法的可行性与有效性。
附图说明
图1为本发明基于鲁棒性卡尔曼滤波的新能源汽车电池SOC评估方法工作流程图;
图2为本发明二阶动力电池Thevenin等效模型示意图;
图3为本发明中动力电池Thevenin模型端电压量测值与真实值对比结果图;
图4为本发明中场景1中三种方法SOC评估值结果;
图5为本发明中场景1中三种方法SOC评估误差结果;
图6为本发明中场景2中三种方法SOC评估值结果。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
本发明提出了一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,具体方法工作原理如图1所示,该方法实现了新能源汽车电池SOC精确评估。现场实验选用装载三元锂动力电池的新能源汽车进行充电操作,分别设置实验室环境与直流充电桩充电实际工程环境以验证本发明的实用性与有效性。
首先,建立二阶动力电池Thevenin等效模型,分析二阶等效电路模型,如图2所示,根据Thevenin定理得到电池的端电压与电流之间的关系,进行HPPC测试,利用Matlab拟合工具箱对测试数据进行拟合,获取动力电池二阶模型参数。提取电池充电过程中端电压变化曲线,并将基于模型的端电压评估值与实际监测值行对比,对比结果如图3所示。由图可知:二阶动力电池Thevenin等效模型评估指与真实监测数据之间的误差极小,即该模型具有良好的拟合精度。
进而,开展场景1实验室场景下新能源汽车充电实验验证。在实验室条件下对充电电流的监测极为准确,因此通常认为实验室环境中利用安时积分法得到的SOC评估值为标准SOC值。图4展示了场景1下本发明方法、带噪声的安时积分法、ASTUK三种方法SOC评估值随着时间的变化情况。由图可知:在时间小于1.5*104s时本文方法对应SOC评估值能够毫无偏差跟随真实值,当时间大于1.5*104s后SOC评估值略低于标准值,而带噪声的安时积分法、ASTUK算法对应的SOC评估值变化趋势与真实值相同,但始终存在一定的评估误差。图5展示了场景1下本发明方法、带噪声安时积分法、ASTUK三种方法SOC评估误差随着时间的变化情况。带噪声安时积分法算法评估的最大误差为0.0908,ASTUK算法评估的最大误差为0.0456,而本文算法评估的最大误差为0.008。因此,在实验室环境即良好工况进行充电操作时,本文方法相较于传统方法,对应的SOC评估精度更高。
最后,开展场景2低温(-5℃)、电磁干扰(采用GRQ-03E型电磁干扰器产生40dB电磁噪声)强噪声干扰下直流充电桩实际充电环境下实验验证。图6展示了场景2下本发明方法、EKF、ASTUK三种方法SOC评估值随着时间的变化情况。由图可知:在低温、雨雪等强噪声干扰下,随着时间增加,REKF算法对SOC评估值曲线始终能够跟随工程实测值变化趋势,SOC评估误差相对较小,这是由于REKF算法输入量为直流充电桩充电监测数据,并能够有效辨识并剔除电流监测量中的不良数据,提高了卡尔曼滤波输入精度。而EKF、ASTUK算法对应的SOC评估值远小于工程实测值,且随着时间增加,SOC评估误差不断增大。电流测量误差与内阻增加导致实际充电场景测试时EKF和ASTUK算法失效,而本发明提出的REKF算法直接利用精确的直流充电桩充电监测数据,较为现有工程量测方法,更适用于实际恶劣工程条件下新能源汽车动力电池SOC评估,具有鲁棒性强、精度高的优势。
分析二阶等效电路模型,根据Thevenin定理得到电池的端电压与电流之间的关系。
具体方法步骤如下:
1.一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法
本发明所采用的技术方案是:一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,包含有如下阶段:
1)建立二阶动力电池Thevenin等效模型
分析二阶等效电路模型,根据Thevenin定理得到电池的端电压与电流之间的关系:
Figure BDA0003401268340000071
Uoc为开路电压;R0为电池内阻;R1、R2为极化电阻;C1、C2为等效电容;U1、U2为极化电压,利用HPPC测试与Matlab拟合工具箱进行电池等效电路模型参数辨识,得到上述R0、R1、R2、C1、C2参数值。
2)基于不同工况的不良数据检测与剔除
(1)获取数据
提取充电桩采集的充电电压、充电电流等监测数据,同时将直流充电桩与新能源汽车BMS系统控制平台通过CAN总线连接,基于27930通信协议进行双向信息互动,获取BMS的SOC预估初值。
(2)前置滤波
设定一个初始阈值δ0,将k时刻的SOC预估值Zk与量测值mk求差得到ΔZk,定义ΔZk与评估值Zk之比为校正系数:
Figure BDA0003401268340000072
(3)阈值更新
考虑k-1时刻阈值δk-1与校正系数βk-1的大小关系,进行自适应阈值更新。
Figure BDA0003401268340000073
式中m为取值范围为[4,10]的修正常数。若阈值小于校正系数,则提高阈值,若阈值大于校正系数,则减小阈值,从而逐渐减小预估值与量测值的差值,实现高精度不良数据辨识。
(4)检验不良数据
ΔVk为k时刻量测值mk与前一时刻量测值mk-1差的绝对值,即:
ΔVk=|mk-mk-1|
若ΔVkkmk-1,则认为量测量mk为不良数据,则舍弃该测量值,进而使用评估值Zk代替量测值mk
3)基于鲁棒性扩展卡尔曼滤波法量测
(1)初始化
基于1)中HPPC测试方法获取R0、R1、R2、C1、C2参数初值,并基于该参数将模型端电压评估值与端电压真实监测值进行对比,验证二阶动力电池Thevenin等效模型的精确度。
(2)线性化处理
基于1)二阶动力电池Thevenin等效模型,采用REKF算法进行线性化处理,建立系统的状态方程和观测方程,如(式5)、(式6)所示。wk,vk是系统中两类互不相关的高斯白噪声;η是效率;T是系统的采样周期;τ1,τ2分别是等效模型中两个RC并联模块的时间常数,其数值为τ1=R1C1,τ2=R2C2;It(k)则是这一时刻的输出电流,在充电过程中输出I始终为负。Ut为充电端电压,Ik为充电电流,UOC为开路电压。
Figure BDA0003401268340000081
Ut(k+1)=UOC(k+1)-U1(k+1)-U2(k+1)-R0It(k+1)+vk+1
(3)状态向量求偏导
通过(2)中的状态方程与观测方程求偏导,获得系统的参数矩阵Ak、Ck
Figure BDA0003401268340000082
Figure BDA0003401268340000083
(4)时间更新
①系统状态评估的时间更新:
Figure BDA0003401268340000084
②误差协方差的时间更新,通过k时刻的后验评估的均方误差矩阵最小,以及外加激励产生的白噪声的协方差阵计算k+1时刻的均方误差阵:
Figure BDA0003401268340000091
(5)测量更新
用所能观测到的数据来修正先验评估,使所得到的后验最优评估代入观测方程后能够最接近观测量,负责反馈控制。
①卡尔曼增益矩阵的计算:
Figure BDA0003401268340000092
②系统状态的测量更新:
Figure BDA0003401268340000093
③误差协方差的测量更新:
Figure BDA0003401268340000094
4)动力电池实验验证:
选择任意品牌型号的新能源汽车,提取其电池参数信息,在实验室充电场景与直流充电桩充电实际工程场景下,对新能源汽车进行充电操作,在此过程中通过CAN总线,实时互动并记录车载BMS估测值与直流充电桩充电监测数据,基于3)进行SOC精确评估。
(1)场景1:实验室环境下对新能源汽车进行充电操作;
(2)场景2:具有低温(-5℃)、电磁干扰(采用GRQ-03E型电磁干扰器产生40dB电磁噪声)强干扰的直流充电桩实际工程环境下对新能源汽车进行充电操作。
本发明以新能源汽车、60KW直流充电桩为例,现阶段新能源汽车动力电池与充电装置安全得到高度重视,而车载BMS系统固有的SOC评估功能在实际环境中易受低温、电磁干扰、雨雪等恶劣环境影响,SOC评估不准确,精度较低,不利于充电安全性分析。因此,要充分利用直流充电桩的分析计算优势,以直流充电桩充电监测数据为基础,提高SOC评估精度,增强新能源汽车充电安全性能。面向流充电桩充电监测数据,应用本方法对不良数据阈值进行自适应更新,然后剔除不良数据,提高原始数据准确性,最终结合二级动力电池Thevenin模型应用鲁棒性卡尔曼滤波法进行评估,实现SOC精确评估。将本发明提出的方法与带噪声的安时积分法、EKF法、ASTUK法分别进行实验室环境与工程实际环境新能源汽车充电实验测试,并对SOC评估误差进行分析。
尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例所公开的内容。

Claims (5)

1.一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,其特征在于:包含有如下阶段:
1)建立二阶动力电池Thevenin等效模型,分析二阶等效电路模型,根据Thevenin定理得到电池的端电压与电流之间的关系:
Figure FDA0003401268330000011
Uoc为开路电压;R0为电池内阻;R1、R2为极化电阻;C1、C2为等效电容;U1、U2为极化电压,利用脉冲放电实现获取测试数据,基于Matab对端电压、电流曲线进行拟合,实现电池等效电路模型参数辨识,得到上述R0、R1、R2、C1、C2参数值,基于实际直流充电桩充电监测数据,通过比较实际值与端电压值对模型进行验证;
2)基于不同工况的不良数据检测与剔除
考虑低温、自然灾害、极端恶劣天气、电磁辐射等多因素影响而造成的SOC评估强噪声干扰问题,基于车载电池能量管理系统的SOC评估初值,充分利用直流充电桩充电数据采集与分析处理功能,提出一种前置滤波过程随监测量变化趋势自适应阈值调整方法,对充电电流、电压等直流充电桩充电监测值进行不良数据辨识与剔除;
3)基于鲁棒性扩展卡尔曼滤波法量测
通过2)得到已剔除不良数据的动力电池充电程中的电压、电流监测量,采用鲁棒性扩展卡尔曼滤波法进行数据处理与SOC评估;
4)动力电池实验验证:
选择任意品牌型号的新能源汽车,提取其电池参数信息,在实验室充电场景与直流充电桩充电实际工程场景下,对新能源汽车进行充电操作,在此过程中通过CAN总线,实时互动并记录车载BMS估测值与直流充电桩充电监测数据,基于3)进行SOC精确评估。
2.根据权利要求1所述的一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,其特征在于:步骤2)对充电电流、电压等直流充电桩充电监测值进行不良数据辨识与剔除,具体方法步骤如下:
步骤1获取数据
提取充电桩采集的充电电压、充电电流等监测数据,同时将直流充电桩与新能源汽车BMS系统控制平台通过CAN总线连接,基于27930通信协议进行双向信息互动,获取BMS的SOC预估初值;
步骤2前置滤波
设定一个初始阈值δ0,将t时刻的BMS预估值Zk与监测值mk求差得到ΔZk,定义ΔZk与评估值Zk之比为校正系数,计算如(式2)所示:
Figure FDA0003401268330000021
步骤3阈值更新
考虑k-1时刻阈值δk-1与校正系数βk-1的大小关系,进行自适应阈值更新:
Figure FDA0003401268330000022
式中:m为取值范围为[4,10]的修正常数,若阈值小于校正系数,则提高阈值,若阈值大于校正系数,则减小阈值,从而逐渐减小预估值与监测值的差值,实现高精度不良数据辨识,消除强噪声干扰;
步骤4检验不良数据
ΔVk为k时刻监测值mk与前一时刻监测值mk-1差的绝对值,即:
ΔVk=|mk-mk-1| (式4)
若ΔVkkmk-1,则认为量测量mk为不良数据,则舍弃该测量值,进而使用评估值Zk代替量测值mk
3.根据权利要求1所述的一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,其特征在于:步骤3)采用鲁棒性扩展卡尔曼滤波法进行数据处理与SOC评估,具体方法步骤如下:
步骤1初始化
基于1)中HPPC测试获取R0、R1、R2、C1、C2参数初值,并基于该参数将模型端电压评估值与端电压真实充电数据进行对比,验证二阶动力电池Thevenin等效模型的精确度;
步骤2线性化处理
基于1)二阶动力电池Thevenin等效模型,采用REKF算法进行线性化处理,建立系统的状态方程和观测方程,如(式5)、(式6)所示:
wk,vk是系统中两类互不相关的高斯白噪声;η是效率;T是系统的采样周期;τ1,τ2分别是等效模型中两个RC并联模块的时间常数,其数值为τ1=R1C1,τ2=R2C2;It(k)则是这一时刻的输出电流,在充电过程中输出I始终为负,
Ut为充电端电压,Ik为充电电流,UOC为开路电压;
Figure FDA0003401268330000031
Ut(k+1)=UOC(k+1)-U1(k+1)-U2(k+1)-R0It(k+1)+vk+1 (式6)
步骤3状态向量求偏导
通过步骤2中的状态方程与观测方程求偏导,获得系统的参数矩阵Ak、Ck,如(式7)、(式8)所示:
Figure FDA0003401268330000032
Figure FDA0003401268330000033
步骤4时间更新
利用k时刻的后验(SOC、U1、U2)评估以及外加激励Ik计算k+1时刻的先验评估,实现预测当前状态X和计算先验评估协方差P;
①系统状态评估的时间更新:
Figure FDA0003401268330000034
②误差协方差的时间更新,通过k时刻的后验评估的均方误差矩阵最小,以及外加激励产生的白噪声的协方差阵计算k+1时刻的均方误差阵:
Figure FDA0003401268330000035
步骤5测量更新
用所能观测到的数据来修正先验评估,使所得到的后验最优评估代入观测方程后能够最接近观测量,负责反馈控制:
①卡尔曼增益矩阵的计算:
Figure FDA0003401268330000036
②系统状态的测量更新:
Figure FDA0003401268330000041
③误差协方差的测量更新:
Figure FDA0003401268330000042
4.根据权利要求1所述的一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,其特征在于:实验室充电场景为在实验室环境下对新能源汽车进行充电操作。
5.根据权利要求1所述的一种面向直流充电桩充电监测数据的新能源汽车电池SOC抗扰评估方法,其特征在于:直流充电桩充电实际工程场景为具有低温(-5℃)、电磁干扰(采用GRQ-03E型电磁干扰器产生40dB电磁噪声)强干扰的直流充电桩实际工程环境下对新能源汽车进行充电操作。
CN202111500172.1A 2021-12-09 2021-12-09 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法 Pending CN114397581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111500172.1A CN114397581A (zh) 2021-12-09 2021-12-09 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111500172.1A CN114397581A (zh) 2021-12-09 2021-12-09 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法

Publications (1)

Publication Number Publication Date
CN114397581A true CN114397581A (zh) 2022-04-26

Family

ID=81227570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111500172.1A Pending CN114397581A (zh) 2021-12-09 2021-12-09 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法

Country Status (1)

Country Link
CN (1) CN114397581A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117371670A (zh) * 2023-12-07 2024-01-09 深圳汇能新能源科技有限公司 一种新能源电动汽车充电桩的可靠性分析系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060112747A (ko) * 2005-04-28 2006-11-02 명지대학교 산학협력단 개선된 기준신호 발생용 적응예측필터 및 이를 이용한능동전력필터 시스템
US20140316728A1 (en) * 2013-06-20 2014-10-23 University Of Electronic Science And Technology Of China System and method for soc estimation of a battery
US20160252585A1 (en) * 2013-10-21 2016-09-01 Calsonic Kansei Corporation Battery parameter estimation device and parameter estimation method
CN109669134A (zh) * 2019-02-27 2019-04-23 浙江科技学院 一种基于卡尔曼滤波法的soc的估算方法
CN110275114A (zh) * 2019-07-22 2019-09-24 山东正晨科技股份有限公司 基于组合滤波算法的蓄电池内阻在线监测方法
CN111366855A (zh) * 2020-03-19 2020-07-03 北京理工大学 一种电池等效电路模型抗扰动参数化方法
CN111753699A (zh) * 2020-06-17 2020-10-09 国网江西省电力有限公司电力科学研究院 一种直流充电桩数字计量准确度提升的方法
CN112993989A (zh) * 2021-03-05 2021-06-18 广东电网有限责任公司广州供电局 一种主动配电系统抗差状态估计数据处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060112747A (ko) * 2005-04-28 2006-11-02 명지대학교 산학협력단 개선된 기준신호 발생용 적응예측필터 및 이를 이용한능동전력필터 시스템
US20140316728A1 (en) * 2013-06-20 2014-10-23 University Of Electronic Science And Technology Of China System and method for soc estimation of a battery
US20160252585A1 (en) * 2013-10-21 2016-09-01 Calsonic Kansei Corporation Battery parameter estimation device and parameter estimation method
CN109669134A (zh) * 2019-02-27 2019-04-23 浙江科技学院 一种基于卡尔曼滤波法的soc的估算方法
CN110275114A (zh) * 2019-07-22 2019-09-24 山东正晨科技股份有限公司 基于组合滤波算法的蓄电池内阻在线监测方法
CN111366855A (zh) * 2020-03-19 2020-07-03 北京理工大学 一种电池等效电路模型抗扰动参数化方法
CN111753699A (zh) * 2020-06-17 2020-10-09 国网江西省电力有限公司电力科学研究院 一种直流充电桩数字计量准确度提升的方法
CN112993989A (zh) * 2021-03-05 2021-06-18 广东电网有限责任公司广州供电局 一种主动配电系统抗差状态估计数据处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨晓梅 等: "基于自适应阈值和奇异值分解的电能质量扰动检测新方法", 《电网技术》, vol. 42, no. 7, 31 July 2018 (2018-07-31), pages 2286 - 2294 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117371670A (zh) * 2023-12-07 2024-01-09 深圳汇能新能源科技有限公司 一种新能源电动汽车充电桩的可靠性分析系统
CN117371670B (zh) * 2023-12-07 2024-03-12 深圳汇能新能源科技有限公司 一种新能源电动汽车充电桩的可靠性分析系统

Similar Documents

Publication Publication Date Title
CN108445406B (zh) 一种动力电池健康状态估计方法
WO2018161486A1 (zh) 一种基于动态参数的动力电池soc估算方法及系统
CN110596593A (zh) 基于智能自适应扩展卡尔曼滤波的锂离子电池soc估计方法
CN108732508B (zh) 一种锂离子电池容量的实时估计方法
CN110196393B (zh) 一种锂电池荷电状态、能量状态和功率状态的联合在线估计方法
CN112415414A (zh) 一种锂离子电池剩余使用寿命预测方法
CN111220920B (zh) 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法
CN111781503B (zh) 一种锂离子储能电池soc在线估算方法
CN112285570B (zh) 一种基于衰减记忆滤波器的电动汽车故障诊断方法
CN107783057B (zh) 一种动力电池soc估算方法及估算系统
CN111537895B (zh) 一种多参数联合估算soc的方法
CN111856282B (zh) 基于改进遗传无迹卡尔曼滤波的车载锂电池状态估计方法
CN111679199A (zh) 一种锂离子电池soc估计方法及装置
CN113075569A (zh) 一种基于噪声自适应粒子滤波的电池荷电状态估计方法和装置
CN112858929A (zh) 一种基于模糊逻辑与扩展卡尔曼滤波的电池soc估计方法
CN112269133B (zh) 一种基于预充电路模型参数识别的soc估计方法
CN113777510A (zh) 一种锂电池荷电状态估计方法及装置
CN111537903A (zh) 一种基于hckf的电池soc估计方法
CN115792638A (zh) 基于电池模型参数辨识的soc-内短路联合估计方法
CN115219918A (zh) 一种基于容量衰退组合模型的锂离子电池寿命预测方法
CN114397581A (zh) 一种面向直流充电桩充电监测数据的新能源汽车电池soc抗扰评估方法
CN114720881A (zh) 一种基于改进初值带遗忘因子递推最小二乘法的锂电池参数辨识方法
CN112946480B (zh) 一种提高soc估计实时性的锂电池电路模型简化方法
CN112009252B (zh) 一种动力电池系统故障诊断及容错控制方法
CN113759258A (zh) 一种动力电池soc估计方法、装置及纯电动汽车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination