CN114381683B - 基体防护涂层的制备方法 - Google Patents

基体防护涂层的制备方法 Download PDF

Info

Publication number
CN114381683B
CN114381683B CN202011121503.6A CN202011121503A CN114381683B CN 114381683 B CN114381683 B CN 114381683B CN 202011121503 A CN202011121503 A CN 202011121503A CN 114381683 B CN114381683 B CN 114381683B
Authority
CN
China
Prior art keywords
coating
spraying
powder
preparation
transfer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011121503.6A
Other languages
English (en)
Other versions
CN114381683A (zh
Inventor
吴护林
解志文
向林
高旭
郭锋
宁海青
熊欢
胡素影
吴帅
谢浩
苏虹
王晓辉
黄波
吴迪
项运良
沈蕾芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Original Assignee
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL, No 59 Research Institute of China Ordnance Industry filed Critical University of Science and Technology Liaoning USTL
Priority to CN202011121503.6A priority Critical patent/CN114381683B/zh
Priority to US17/134,371 priority patent/US20220119932A1/en
Publication of CN114381683A publication Critical patent/CN114381683A/zh
Application granted granted Critical
Publication of CN114381683B publication Critical patent/CN114381683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明属于表面防护技术领域,具体涉及一种基体防护涂层的制备方法。所述制备方法包括预处理和类传递膜涂层制备工序,所述类传递摸涂层制备工序包括以下步骤:将YSZ粉末和聚四氟乙烯粉末混合、干燥、冷却后采用大气等离子喷涂法喷涂于经预处理的基体表面,喷涂参数设置为:喷枪移动速度为440‑460mm/s,电流550‑600A,电压40‑50V,功率24.8‑30kW,压缩空气为0.6‑0.7MPa,送分载气Ar为3‑6L/min,送分率为25‑28g/min,喷涂距离108‑112mm。本发明的方法制得的涂层耐磨性能得到了显著提高;耐腐蚀性能优异;具有优异的超疏水性能。

Description

基体防护涂层的制备方法
技术领域
本发明属于表面防护技术领域,具体涉及一种基体防护涂层的制备方法。
背景技术
有机聚合物一般具有较低的摩擦系数,但是其耐磨性差,磨损率高,且易脱落。
研究表明,表面防护是改善有机聚合物基体表面耐磨性能的有效途径。公开号为CN111701825A的专利文献以悬浮液等离子喷涂(SPS)制备柱状多孔氧化钇(Y2O3)稳定氧化锆(YSZ)作为陶瓷材料的骨架,通过填充经过聚丙烯腈(PAN)改性后的PTFE自润滑聚合物,随后将PAN-PTFE改性涂料涂覆在YSZ涂层上,然后负压抽真空,再固化。其原理为:将YSZ悬浮液作为喷涂原料直接进行等离子喷涂制备YSZ涂层,解决了纳米粉末在高温条件下易长大的问题,且前驱体胶团高速通过等离子焰流,飞行的时间极短(<10-3秒),成核的纳米晶来不及长大就与基体碰撞,沉积为纳米涂层;其次,聚丙烯晴(PAN)能够提高转移膜与对磨面的结合力,使转移膜能够较完整地、牢固地附着在对磨面上而不易脱落,减少了由形成转移膜→转移膜的脱落→再形成转移膜这→循环过程,从而降低了磨损量;此外,负压使PAN-PTFE改性涂料能够充分渗入到具有锥柱状孔隙的YSZ涂层中,从而降低了YSZ涂层的孔隙率,增加其致密性,降低其摩擦系数和磨损率,提高其磨损性能。该方法制备的涂层具有较低的摩擦系数以及磨损率,能够更有效的发挥聚四氟乙烯材料本身所具有的耐腐蚀性能和疏水性能,解决磨损量过大的耐磨性不佳的问题。其磨损率为80×10-6mm3·N-1·m-1,摩擦系数为0.42。然而,该方法制备的涂层耐磨性能仍无法满足应用需求。
发明内容
有鉴于此,本发明的目的在于提供一种基体防护涂层的制备方法。
为实现上述目的,本发明的技术方案为:
基体防护涂层的制备方法,包括预处理和类传递膜涂层制备工序,所述类传递摸涂层制备工序包括以下步骤:
将YSZ粉末和聚四氟乙烯粉末混合、干燥、冷却后采用大气等离子喷涂法喷涂于经预处理的基体表面,喷涂参数设置为:喷枪移动速度为440-460mm/s,电流550-600A,电压40-50V,功率24.8-30kW,压缩空气为0.6-0.7MPa,送分载气Ar为3-6L/min,送分率为25-28g/min,喷涂距离108-112mm。
进一步,所述预处理包括喷砂处理步骤。
进一步,所述喷砂处理的参数设置为:以0.3-0.4MPa空气为动力,喷距为100-130mm,喷射角为70°-90°,将多棱角的60-150目白刚玉磨料喷射至基体表面。
进一步,YSZ粉末和聚四氟乙烯粉末的混合比例为92%-93%:7%-8%,以质量百分比计。
进一步,所述干燥是指于50-90℃下干燥3h。
进一步,所述类传递摸涂层的厚度为20μm-40μm。
进一步,所述基体为金属或陶瓷材料。
本发明的有益效果在于:
本发明的方法制得的涂层耐磨性能得到了显著提高,涂层平均摩擦系数可降低至0.1392,磨损率可降低在为8.434×10-6mm3·N-1·m-1
本发明的方法制得的涂层耐腐蚀性能优异。
本发明的方法制得的涂层具有优异的超疏水性能。
采用本发明的方法制备涂层,喷涂时,阴极和阳极之间产生直流电弧,把导入的工作气体加热电离成高温等离子体从喷嘴喷出,形成等离子焰,其中心温度可达30000°k,喷嘴出口温度可达15000-20000°k。焰流速度在喷嘴出口处可达1000-2000m/s,但迅速衰减。混合粉末由送粉器送入火焰中熔化,并由焰流加速得到高于150m/s的速度,喷射到基体材料上形成涂层。高温等离子体可以使PTFE完全熔融,YSZ粉末部分或完全熔融,熔融的元素凝固和未熔融YSZ粉末会对涂层表面形成冲击,并形成较为牢固的骨架结构,加固有机组分,防止一次材料脱落,可在基体表面形成具有优异粘结力的涂层。
本发明采用外焰送粉,能够有效保证聚四氟乙烯PTFE组分不会被烧尽,在重力的作用下又可以使YSZ颗粒到达高温区实现完全熔融,未进入高温区的YSZ粉末保持颗粒状态,在等离子焰流的作用下,对已沉积涂层产生冲击效果,使处于液相区的PTFE组分更加致密光滑达到类传递膜结构。
附图说明
图1为类传递膜涂层的制备原理示意图;
图2为涂层表界面与断面组织形貌及疏水性能检测结果;
图3为涂层截面图,其中,coating为涂层;
图4为耐磨性能检测结果,其中,sliding time为滑动时间,frictioncoefficient为摩擦系数,wear rate为磨损率,samples为样本;
图5为耐腐蚀性能检测结果,其中横坐标Time为时间,单位Sec为秒,纵坐标E为电位,单位Volts为伏特。
具体实施方式
所举实施例是为了更好地对本发明的内容进行说明,但并不是本发明的内容仅限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
基体防护涂层的制备方法,具体步骤如下:
A、预处理,包括:
a)基材准备:取316L不锈钢工件,尺寸为Φ25mm*6mm,用砂纸仔细打磨,清除表面的毛刺、焊渣、尖角等;
b)喷砂处理:用0.3-0.4MPa干燥洁净压缩空气为动力,喷距为150mm,喷射角为70°-90°,将多棱角颗粒的150目白刚玉磨料高速喷射到基体表面,使表面杂质彻底清除干净,并使表面粗化得到预处理表层;
B、制备耐磨涂层:
a)将由二氧化锆-氧化钇粉末即YSZ粉末(该粉末中氧化钇含量为8wt%)和聚四氟乙烯粉末(PTFE粉末)按照质量百分比为92%(YSZ):8%(PTFE)组成的混合粉末通过滚动式球磨机混合2h,使其混合均匀,在干燥箱内50℃下干燥3h后冷却至室温;
b)采用大气等离子喷涂技术,通过送粉器,采用F4喷枪把冷却至室温的复合材料混合粉末均匀喷涂在预处理表层表面,喷涂参数设置为:喷枪移动速度为450mm/s,电流600A,电压50V,功率30kW,压缩空气为0.6-0.7MPa,送分载气Ar为3L/min,送分率为24g/min,喷涂距离110mm;喷涂结束后即为成品,不需要对基体保温加热。
其中,类传递膜涂层的制备原理如图1所示。
由图1可知,YSZ粉末、PTFE粉末之间的熔点差距较大,本实施例采用外焰送粉,能够保证两种材料都能发挥出较好的性能,内焰温度远高于PTFE汽化温度,因此在高温区无PTFE组分,虽然采用外焰送粉,但是在重力的作用下,部分YSZ会出现在中心高温区获得较好的熔融状态。粉末离开高温区到达距离枪口较远的低温区会达到相对均匀状态。熔融较好的YSZ组分和PTFE组分会在基体表面沉积,YSZ形成连续的骨架结构,以固定住PTFE组分,防止一次材料的脱落。未熔融的YSZ有三种状态:1、跟随熔融较好的粉末一起沉积,以颗粒状态填充于涂层内部;2、粘附在涂层表面;3、由于冲击力度不足在涂层表面被弹开,虽然未粘附于涂层,但是对涂层表面起到锤击夯实的作用。
性能检测
采用Zeiss-ΣIGMAHD型场发射电子显微镜观察涂层表界面与断面组织形貌,并观察水滴是否能在实施例1制得的涂层上形成球形,结果如图2所示。
由图2可知,涂层表面比较致密,存在均匀隆起,由于尺寸较小,表面相对光滑;
熔融的YSZ有更高的能量,PTFE可以获得一个较宽的液相区,这使得应力能够得到较好的释放,同时已堆积涂层不断遭受未熔融颗粒的低冲击动能,使得在固化过程的PTFE不断被锤击夯实,因此涂层具有一个较好的致密度。喷涂角度随着枪口的移动发生改变产生遮蔽效应。在粒子冲击和遮蔽效应的共同作用下,造成了既相对致密平滑又存在均匀隆起的表面结构。这种结构在一定程度上具备了传递膜的一些特性,本申请称之为类传递膜,这种结构在外力的作用下可以瞬间转化为传递膜。PTFE组分使得涂层表面具有较低的表面能,涂层表面的微纳米隆起可以在水滴被放置时困住空气,形成保护气垫,使得涂层表面不能被润湿,因此获得超疏水性能(水接触角为150.58°)。由此证明,本发明的涂层具备超疏水性能。
采用MS-T3000型摩擦磨损试验机进行摩擦磨损性能检测,选取直径6mmGCr15不锈钢球摩擦副,测试参数为:旋转速度200rap/min,旋转直径8mm,载荷条件5N,摩擦测试时间90min,结果如图3所示。
由图3可知,涂层厚度为20μm左右,可以明显看到表面隆起结构,这也为图1的表面微纳米结构形成超疏水性能提供了证据。
采用ALPHASTEP D-100台阶仪测量磨痕截面轮廓,结果如图4所示。
由图4可知,涂层平均摩擦系数为0.1392,磨损率为8.434×10-6mm3·N-1·m-1。由此证明,本发明方法制得的涂层具有优异的耐磨性。这是由于在载荷的作用下所述类传递膜结构瞬间转化为传递膜,传递膜具有表面光滑、连贯、坚韧的特点,因此复合涂层的摩擦系数有一个较低的值。填料YSZ在涂层中形成了十分牢固的骨架结构,不仅加固了PTFE组分,防止一次材料脱落(PTFE组分的粘结性能差极大的阻碍了其使用范围,骨架结构有效束缚了PTFE组分,有效增加了其结合力,防止了PTFE组分的脱落),而且加固保护了传递膜,防止其二次材料脱落(PTFE组分在载荷作用下形成的传递膜易脱落,YSZ填料可以明显提升传递膜的质量,阻止面下损伤和分隔碎片)。磨合过程中,复合涂层的磨屑被不断地清除补充,到达一个过渡点后,配合端面布满纳米级的碎片,这些碎片持续存在,复合涂层的磨损表面变得平滑致密,从而为涂层的低摩擦系数和低磨损率提供了保障。
采用由武汉科思特仪器公司设计制造的CorrTestCS系列电化学腐蚀工作站进行电化学腐蚀开路电位曲线测试,结果如图5所示。
由图5可知,涂层的开路电位在8000s后已经变成大于0的正值,且继续保持上升趋势。图中开路电位曲线出现较为明显的波动,这是由于涂层所具备的疏水性,使其在3.5%NaCl溶液环境下表面形成了一层密集的气泡壁垒,在电位的作用下气泡破裂造成的。开路电位为正值,涂层被腐蚀的趋势大幅度降低。由此证明,本发明的涂层具有良好的耐腐蚀性。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

1.基体防护涂层的制备方法,其特征在于,包括预处理和类传递膜涂层制备工序,所述类传递膜涂层制备工序包括以下步骤:
将YSZ粉末和聚四氟乙烯粉末混合、干燥、冷却后采用大气等离子喷涂法喷涂于经预处理的基体表面,喷涂时,采用外焰送粉将混合粉末喷射到基体材料上;喷涂参数设置为:喷枪移动速度为440-460mm/s,电流550-600A,电压40-50V,功率24.8-30kW,压缩空气为0.6-0.7MPa,送分载气Ar为3-6L/min,送分率为25-28g/min,喷涂距离108-112mm。
2.根据权利要求1所述的制备方法,其特征在于,所述预处理包括喷砂处理步骤。
3.根据权利要求2所述的制备方法,其特征在于,所述喷砂处理的参数设置为:以0.3-0.4MPa空气为动力,喷距为100-130mm,喷射角为70°-90°,将60-150目白刚玉磨料喷射至基体表面。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,YSZ粉末和聚四氟乙烯粉末的混合比例为92%-93%:7%-8%,以质量百分比计。
5.根据权利要求4所述的制备方法,其特征在于,所述干燥是指于50-90℃下干燥3-5h。
6.根据权利要求5所述的制备方法,其特征在于,所述类传递膜涂层的厚度为20μm-40μm。
7.根据权利要求6所述的制备方法,其特征在于,所述基体为金属或陶瓷材料。
CN202011121503.6A 2020-10-20 2020-10-20 基体防护涂层的制备方法 Active CN114381683B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011121503.6A CN114381683B (zh) 2020-10-20 2020-10-20 基体防护涂层的制备方法
US17/134,371 US20220119932A1 (en) 2020-10-20 2020-12-26 Method for preparing matrix protective coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011121503.6A CN114381683B (zh) 2020-10-20 2020-10-20 基体防护涂层的制备方法

Publications (2)

Publication Number Publication Date
CN114381683A CN114381683A (zh) 2022-04-22
CN114381683B true CN114381683B (zh) 2024-04-12

Family

ID=81185032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011121503.6A Active CN114381683B (zh) 2020-10-20 2020-10-20 基体防护涂层的制备方法

Country Status (2)

Country Link
US (1) US20220119932A1 (zh)
CN (1) CN114381683B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591759A (en) * 1969-06-04 1971-07-06 Sealectro Corp Method of depositing heat fusible material and apparatus therefor
US4971846A (en) * 1987-11-16 1990-11-20 Tre Corporation Thermoplastic cylinder and process for manufacturing same
US5196471A (en) * 1990-11-19 1993-03-23 Sulzer Plasma Technik, Inc. Thermal spray powders for abradable coatings, abradable coatings containing solid lubricants and methods of fabricating abradable coatings
US5530050A (en) * 1994-04-06 1996-06-25 Sulzer Plasma Technik, Inc. Thermal spray abradable powder for very high temperature applications
US5858470A (en) * 1994-12-09 1999-01-12 Northwestern University Small particle plasma spray apparatus, method and coated article
CN1616713A (zh) * 2004-09-13 2005-05-18 中国兵器工业第五九研究所 钢铁材料氟聚合物协合涂层处理工艺
CN101304812A (zh) * 2003-07-10 2008-11-12 普莱克斯技术有限公司 形成离子传递膜结构的方法
CN101304815A (zh) * 2004-03-24 2008-11-12 波克股份有限公司 制备半导体涂敷的基片的方法
CN103819705A (zh) * 2012-11-16 2014-05-28 波音公司 热喷涂的增强聚合物复合材料
CN105431232A (zh) * 2013-09-18 2016-03-23 应用材料公司 使用等离子体火焰热处理的等离子体喷涂增强
CN108401546B (zh) * 2012-12-14 2016-09-07 中国科学院上海硅酸盐研究所 氧化铬-氧化铝/镍铬双层结构耐磨复合涂层及其制备方法
CN106544618A (zh) * 2016-11-04 2017-03-29 中国兵器科学研究院宁波分院 不锈钢表面进行防覆冰涂层的制备方法
KR101865724B1 (ko) * 2016-12-13 2018-06-08 현대자동차 주식회사 다공성 단열 코팅층의 제조 방법
CN109437892A (zh) * 2018-11-27 2019-03-08 陈涛 一种氧化锆陶瓷涂层及其制备方法
CN110451920A (zh) * 2019-08-21 2019-11-15 苏州大学 聚四氟乙烯增强胶黏陶瓷涂层及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276053A1 (en) * 2008-04-22 2009-11-05 Timothy Brown Coated Implants

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591759A (en) * 1969-06-04 1971-07-06 Sealectro Corp Method of depositing heat fusible material and apparatus therefor
US4971846A (en) * 1987-11-16 1990-11-20 Tre Corporation Thermoplastic cylinder and process for manufacturing same
US5196471A (en) * 1990-11-19 1993-03-23 Sulzer Plasma Technik, Inc. Thermal spray powders for abradable coatings, abradable coatings containing solid lubricants and methods of fabricating abradable coatings
US5530050A (en) * 1994-04-06 1996-06-25 Sulzer Plasma Technik, Inc. Thermal spray abradable powder for very high temperature applications
US5858470A (en) * 1994-12-09 1999-01-12 Northwestern University Small particle plasma spray apparatus, method and coated article
CN101304812A (zh) * 2003-07-10 2008-11-12 普莱克斯技术有限公司 形成离子传递膜结构的方法
CN101304815A (zh) * 2004-03-24 2008-11-12 波克股份有限公司 制备半导体涂敷的基片的方法
CN1616713A (zh) * 2004-09-13 2005-05-18 中国兵器工业第五九研究所 钢铁材料氟聚合物协合涂层处理工艺
CN103819705A (zh) * 2012-11-16 2014-05-28 波音公司 热喷涂的增强聚合物复合材料
CN108401546B (zh) * 2012-12-14 2016-09-07 中国科学院上海硅酸盐研究所 氧化铬-氧化铝/镍铬双层结构耐磨复合涂层及其制备方法
CN105431232A (zh) * 2013-09-18 2016-03-23 应用材料公司 使用等离子体火焰热处理的等离子体喷涂增强
CN106544618A (zh) * 2016-11-04 2017-03-29 中国兵器科学研究院宁波分院 不锈钢表面进行防覆冰涂层的制备方法
KR101865724B1 (ko) * 2016-12-13 2018-06-08 현대자동차 주식회사 다공성 단열 코팅층의 제조 방법
CN109437892A (zh) * 2018-11-27 2019-03-08 陈涛 一种氧化锆陶瓷涂层及其制备方法
CN110451920A (zh) * 2019-08-21 2019-11-15 苏州大学 聚四氟乙烯增强胶黏陶瓷涂层及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
yan wang等.a novel structured suspension plasma sprayed YSZ-PTFE composite coating with tribological performance improvement.《surface & coatings technology》.2018,第第358卷卷第108-113页. *
刘爱国.《低温等离子体表面强化技术》.哈尔滨工业大学出版社,2015,(第1版),第179页. *
刘爱国.《低温等离子体表面强化技术》.哈尔滨工业大学出版社,2015,(第1版),第206页. *
孙方红;马壮;刘应瑞;鲍亚楠;范雅.等离子喷涂陶瓷涂层降低孔隙率的研究进展.硅酸盐通报.2013,(第11期),第2274-2280段. *
王海军.《热喷涂工程师指南》.国防工业出版社,2010,(第1版),第9页. *
魏世丞等.热喷涂技术及其在再制造中的应用》.哈尔滨工业大学出版社,2019,(第1版),第98页. *

Also Published As

Publication number Publication date
CN114381683A (zh) 2022-04-22
US20220119932A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Al-Mutairi et al. Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC–12% Co powders
Praveen et al. Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating
Toma et al. Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review
Couto et al. Cold spray deposition of WC–17 and 12Co cermets onto aluminum
Chen et al. Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth
Szala et al. Effect of Atmospheric Plasma Sprayed TiO 2-10% NiAl Cermet Coating Thickness on Cavitation Erosion, Sliding and Abrasive Wear Resistance.
CN109913792B (zh) 一种利用热-力复合效应提高热喷涂涂层抗高温氧化性能的方法
CN106835112A (zh) 一种镁合金表面冷喷涂420不锈钢复合涂层的制备方法
CN107653431B (zh) 一种TiCN-Al2O3陶瓷复合涂层的制备方法
Lima et al. Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray
CN105714235A (zh) 一种热喷涂用TiO2-CNTs纳米复合粉体及其涂层的制备方法
CN103526135A (zh) WC-Co增强的铁基金属玻璃复合涂层及其制备方法
CN111041398A (zh) 一种利用陶瓷纳米颗粒增强镍基涂层摩擦学性能的方法
Zou et al. Tribological property of plasma-sprayed Al2O3-13wt% TiO2 coatings onto resin-based composites
Łatka et al. Mechanical properties and sliding wear resistance of suspension plasma sprayed YSZ coatings
CN114381683B (zh) 基体防护涂层的制备方法
CN106756729B (zh) 一种FeB/Co耐锌液腐蚀耐磨金属陶瓷涂层及制备方法
US10047014B2 (en) Plasma-sprayed tin coating having excellent hardness and toughness, the preparation method therefor, and a mold coated with said tin coating
Xie et al. Effects of oxygen fuel rate on microstructure and wear properties of detonation sprayed iron-based amorphous coatings
Trelka et al. Microstructure and Property Modification of Cold Sprayed Coatings Using Different Grain Sizes of Cr 3 C 2-25 (Ni20Cr) Composite Powder.
Wang et al. Preparation and characterization of nanostructured Al 2 O 3-13wt.% TiO 2 ceramic coatings by plasma spraying
Girisha et al. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel
Hashemi et al. Experimental investigation and parameter optimization of Cr2O3 atmospheric plasma spray nanocoatings
Batra Thermal spray coating of abradable Ni based composite
Steduto Deposition and properties chromium oxide-based coatings by plasma spray process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant