CN114377693B - 一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 - Google Patents
一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 Download PDFInfo
- Publication number
- CN114377693B CN114377693B CN202111625171.XA CN202111625171A CN114377693B CN 114377693 B CN114377693 B CN 114377693B CN 202111625171 A CN202111625171 A CN 202111625171A CN 114377693 B CN114377693 B CN 114377693B
- Authority
- CN
- China
- Prior art keywords
- znin
- nanotube
- induced
- solution
- vacancy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002071 nanotube Substances 0.000 title claims abstract description 59
- 230000000694 effects Effects 0.000 title claims description 8
- 238000002360 preparation method Methods 0.000 title claims description 7
- 238000007539 photo-oxidation reaction Methods 0.000 title claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 title description 2
- 229910052707 ruthenium Inorganic materials 0.000 title description 2
- UDWJTDBVEGNWAB-UHFFFAOYSA-N zinc indium(3+) sulfide Chemical compound [S-2].[Zn+2].[In+3] UDWJTDBVEGNWAB-UHFFFAOYSA-N 0.000 title description 2
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 15
- 235000019445 benzyl alcohol Nutrition 0.000 claims abstract description 12
- 239000013216 MIL-68 Substances 0.000 claims abstract description 7
- 239000013346 indium-based metal-organic framework Substances 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 10
- 239000012621 metal-organic framework Substances 0.000 claims description 7
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 18
- 230000001699 photocatalysis Effects 0.000 abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 10
- 239000002105 nanoparticle Substances 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 239000000376 reactant Substances 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 3
- 230000013742 energy transducer activity Effects 0.000 abstract description 3
- 241000208720 Nepenthes Species 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 abstract description 2
- 230000000877 morphologic effect Effects 0.000 abstract description 2
- 230000027756 respiratory electron transport chain Effects 0.000 abstract description 2
- 238000001212 derivatisation Methods 0.000 abstract 1
- 229910044991 metal oxide Inorganic materials 0.000 abstract 1
- 150000004706 metal oxides Chemical class 0.000 abstract 1
- 239000011941 photocatalyst Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001362 electron spin resonance spectrum Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 238000013032 photocatalytic reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- -1 aldehyde compounds Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- YZZFBYAKINKKFM-UHFFFAOYSA-N dinitrooxyindiganyl nitrate;hydrate Chemical compound O.[In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZZFBYAKINKKFM-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000002055 nanoplate Substances 0.000 description 1
- 239000002064 nanoplatelet Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XKKVXDJVQGBBFQ-UHFFFAOYSA-L zinc ethanol diacetate Chemical compound C(C)O.C(C)(=O)[O-].[Zn+2].C(C)(=O)[O-] XKKVXDJVQGBBFQ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/043—Sulfides with iron group metals or platinum group metals
- B01J27/045—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/37—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
- C07C45/38—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
本发明属于光催化材料领域,具体涉及一种基于MOF衍生的策略,以MIL‑68(In‑mof)为形态模板,制备出了具有独特仿猪笼草结构的富含缺陷ZnIn2S4纳米管,并利用其表面缺陷诱导单分散Ru纳米颗粒的沉积,揭示了界面载流子分离对生成高效活性氧和苯甲醇氧化的影响机理。研究结果表明,仿猪笼草的中空纳米管结构增加了对光子的捕获,增强了对反应物分子的吸附。此外,金属半导体界面的设计不仅诱导了更多缺陷的生成,促进了电子空穴对的分离,还为反应物分子和氧气分子提供了更有效的吸附位点,这种优化后的电子转移路径,为更高浓度的活性氧的生成提供了可能,使其能够有效的氧化有机分子,从而驱动了整个苯甲醇转化反应的进行。
Description
技术领域
本发明属于光催化剂材料技术领域,具体涉及一种MOF衍生的多级 ZnIn2S4/Ru纳米管的制备及应用
背景技术
在有机合成和化学工业中,醇类的选择性氧化制得醛类化合物起着至关重 要的作用,因为所制得的醛类化合物是香料和医药等合成的重要中间体。(Guo Z,Liu B,ZhangQ,et al.Recent advances in heterogeneous selective oxidation catalysis forsustainable chemistry[J].Chemical SocietyReviews,2014,43(10):3480- 3524.SunX,ZhangX,XieY.Surface Defects in Two-Dimensional Photocatalysts for EfficientOrganic Synthesis[J].Matter,2020,2(4):842-861)。然而,在工业生产中,醇的选择性氧化通常是在高温高压下通过传统的氧化剂,如高锰酸盐和重铬酸 盐实现的,这导致了大量的能源消耗和环境污染。因此,开发高效、环境友好 的催化选择性氧化醇的绿色途径势在必行。光催化选择性氧化反应已成为污染 消除、能量转换和精细化工生产领域最有前途的环保技术之一。这种途径主要 是通过太阳能和O2驱动半导体光催化进行的绿色光催化反应。我们都知道,太 阳能和O2是最经济和最清洁的资源,产生的唯一副产物是H2O或H2O2。然而, 光催化醇氧化仍然存在效率低、选择性差的特点。其中一个关键问题是催化剂 与氧分子之间的相互作用差,导致光催化醇氧化效率低下,因为O2的参与,无 论是直接作为反应物,还是间接作为电子受体,都应该伴随着界面电子转移。 (Su F Z,Mathew S C,LipnerG,Fu X Z,Antonietti M,Blechert S,Wang X C.mpg-C3N4-Catalyzed SelectiveOxidation of Alcohols Using O2 and Visible Light[J].Journal of the AmericanChemical Society,2010,132:16299–16301.Li H,Qin F, Yang Z,et al.New ReactionPathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOClPossessing Oxygen Vacancies[J].Journal of the American Chemical Society,2017,139(9):3513-3521)选择性差的另一个关键问题 是激活O2生成具有不同氧化能力的活性氧的过程,如羟基自由基(·OH)、超氧 自由基(·O2 -)、单态氧(1O2)和过氧化氢(H2O2)。(Wang H,Jiang S L,Shao W,et al. Optically Switchable Photocatalysis inUltrathin Black Phosphorus Nanosheets[J]. Journal of the American ChemicalSociety,2018,140(9):3474-3480).考虑到以上因素,我们需要控制选择性氧化反应的高效和特异性活性氧的产生。然而,由于 半导体中载流子利用率和电荷转移较低,ROS的产生效率通常较低。因此,实 现选择性醇氧化的挑战是开发能与O2强烈相互作用但不产生任何强氧化活性氧 的光催化剂。
发明内容
发明目的:为解决现有技术中存在的半导体中载流子利用率和电荷转移较 低导致氧化能力较弱的问题
技术方案:ZnIn2S4作为一种三元硫族化合物半导体,由于其合适可调的带 隙,在光催化反应方面表现出了良好的前景。然而,ZnIn2S4的光催化性能仍不 理想,主要原因是体相中严重的载流子复合。因此,针对载流子的利用,我们 尝试在三维中空多级纳米管结构中通过表面缺陷工程来优化O2活化过程。理论 分析和实验结果表明,具有丰富限域电子的光催化剂缺陷有利于吸附和活化不 同的目标分子,并能有效促进电子空穴的分离,降低界面电荷转移的能垒。此 外,缺陷的引入可以引起新的缺陷能级,调节能带结构,从而增强光吸收。但另一方面,诱导缺陷不可避免地会形成载流子复合的陷阱,从而会影响光催化活性。将缺陷工程和贵金属修饰结合,构建金属-半导体界面为调整不同的活性 位点和基于界面的协同效应提供了一个新的机会。金属纳米粒子不仅可以接受 光产生的电子以促进界面电荷的分离和转移,而且还提供质子还原位点。金属- 硫化物界面相互作用还可以诱导界面处产生高浓度的缺陷,形成相邻的金属-空位双活性位点,协同促进光催化反应,这表明相界面的合理构造在决定电荷转 移效率和随之产生的反应活性方面起着至关重要的作用。此外,先进的形态结 构设计也可以进一步提高半导体的光催化性能。在中空纳米管框架上均匀生长 二维纳米片是同时暴露活性位点和加速氧化还原反应的最有效策略之一。
有鉴于此,本发明提供一种MOF衍生的具有类猪笼草结构的多级 ZnIn2S4/Ru纳米管的制备方法,并用来使苯甲醇(BA)以绿色光氧化还原方式 在可见光驱动下选择性转化成苯甲醛(BAD)。
一种MOF衍生的具有类猪笼草结构的多级ZnIn2S4/Ru纳米管(多级既指外部 的壳层与内部的空纳米管复合而成的复杂纳米结构)的制备方法。包括一下步骤:
(1)将硝酸铟水合物(In(NO3)3·xH2O)50-90mg和对苯二甲酸(H2BDC)55- 100mg溶液混合溶解在N-N二甲基甲酰胺(DMF)25-50mL(AR,分析纯),然后将 得到的溶液放置在油浴中100-150℃反应20-50min,将反应后的样品离心洗涤 真空干燥,得到六方棱柱形MIL-68(In-MOF)
(2)将步骤(1)所得到的样品分散到30-50ml乙醇(AR,分析纯)中并加入硫脲 400-800mg搅拌10-30min混合均匀,然后再加入0.1-0.5M体积为0.3-0.6mL乙 酸锌乙醇溶液,搅拌10-30min混合均匀,最后将反应溶液倒入反应釜中400- 500K反应10-30h,将反应后的样品离心洗涤真空干燥,类猪笼草结构的多级 ZnIn2S4纳米管。
(3)将步骤(2)所得到的中空多级ZnIn2S4纳米管50-150mg分散到5-20mL 去离子水中并加入聚乙烯吡咯烷酮(PVP)3-10mg,然后取10-20mM RuCl3溶液 1-2mL加入,搅拌0.5-2h混合均匀后加入过量新制备的NaBH4水溶液,搅拌 0.5-2h后离心洗涤收集产物,烘干,得到多级ZnIn2S4/Ru纳米管。
有益效果:1、本发明所制备的多级ZnIn2S4/Ru纳米管受天然独特猪笼草 结构捕获。昆虫的启发,采用MOF(MIL-68)为形貌模板合成了类猪笼草结构 富含缺陷ZnIn2S4中空多级纳米管结构,并以纳米管为载体在上面负载Ru纳米 颗粒,用来使苯甲醇(BA)以绿色光氧化还原方式在可见光驱动下选择性转化 成苯甲醛(BAD)。MOF不仅作为自我牺牲的模板,而且作为金属离子连续释放的前驱体,可以产生三维结构框架,与ZnIn2S4中的另一种金属离子结合可能 会造成表面缺陷。
2、本发明所制备的多级ZnIn2S4/Ru纳米管增加了对光子的捕获,增强了对 反应物分子的吸附。Ru对有机物的光催化氧化具有良好的选择性,是一种很有 前途的助催化剂。同时Ru纳米颗粒沉积在硫化物半导体上是一种有效的策略 来提高光催化活性,因为金属纳米颗粒不仅可以作为电子陷阱来促进界面电荷 分离和转移,也提供有效的活性位点有利于底物分子的吸附和活化。这种富含缺 陷的异质结构光催化剂对吸附目标分子、调节能带结构、促进ZnIn2S4/Ru载流 子的形成和转移具有重要作用。因此,更快的载流子分离和更多的表面活性位 点协同作用,使ZnIn2S4/Ru的光催化效率显著提高。
附图说明
图1为六方棱柱型In-MOF纳米棒的SEM图片。
图2为多级中空ZnIn2S4纳米管的SEM图片。
图3为多级中空ZnIn2S4/Ru纳米管的SEM图片。
图4为多级中空ZnIn2S4/Ru纳米管的TEM图片。
图5为多级中空ZnIn2S4/Ru纳米管的分辨透射电镜(HRTEM)图
图6为原始的ZnIn2S4、多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳 米管的XRD谱图。
图7为原始的ZnIn2S4、多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳 米管的EPR谱图。
图8为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管的固体紫外可
见光谱图
图9为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管电化学阻抗谱 图(内置为相对应的等效电路模型)
图10为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管电流-时间曲 线谱图。
图11为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管莫特肖特基 曲线谱图
图12为苯甲醛的转化率和多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru 纳米管的选择性随时间的变化图
图13为ZnIn2S4/Ru催化剂上光催化选择性氧化苯甲醇的催化循环性能图
具体实施方式
下面结合具体实施例,进一步阐述本发明相关内容。需要指出的是,这些 实施例仅用于说明本发明而不用于限制本发明的范围,而且,在阅读了本发明 的内容之后,本领域相关技术人员可以对本发明做出各种改动或修改,这些等 价形式同样落入本申请所附权利要求书所限定的范围。
实施案例
将In(NO3)3·xH2O和H2BDC混合溶解在DMF中,搅拌至澄清透明,然后 将得到的溶液放置入油浴中加热一段时间后。在冷却至室温后,将上层液体倾 倒出去,留下的白色固体用乙醇离心洗涤直至完全去除溶液中多余的离子,最 后把得到的产品60℃真空干燥一整夜备用。如图1所示,为六方棱柱型In- MOF纳米棒的SEM图片,说明合成出的MIL-68呈六棱柱的棒状结构,大小均 一,而且表面光滑,平均长度在6um,直径在500nm左右。
将上述得到的MIL-68棱柱型前驱体分散到含硫脲的乙醇溶液中,搅拌, 然后加入Zn(CH3COO)2乙醇溶液,再搅,最后,将反应液倒入80ml反应釜中, 将其在一定温度的条件下反应一段时间。反应完成后冷却至室温,将得到的产 物分别用乙醇和水离心洗涤直至完全去除溶液中多余的离子,最后把得到的产 品60℃真空干燥一整夜备用。如图2所示,为多级中空ZnIn2S4纳米管的SEM 图片,从图中可见合成的MIL-68进行水热液相硫化后,六棱柱状的棒状表面 生长了一层薄薄的纳米片,并且从两端开口处可以看出合成的ZnIn2S4样品呈中 空的管状结构。
进一步采用原位还原法将Ru NPs沉积在ZnIn2S4上。首先,将特定的 ZnIn2S4载体分散到含有PVP的去离子水中,然后加入的RuCl3前驱体溶液(15 mM)。将混合溶液在室温下磁搅拌1h,然后注入过量的新制备的NaBH4水溶 液[n(NaBH4)=5n(Ru)]。再常温下搅拌,离心洗涤收集产物,80℃烘干12h。 不同Ru的负载量只需要改变加入RuCl3前驱体溶液的体积。如图3所示,为多 级中空ZnIn2S4/Ru纳米管的SEM图片,从图中可以看到,ZnIn2S4的外观并没 有发生明显的变化,这表明Ru纳米颗粒的高度分散性。
部分实施例的具体实验数据如下:
如图4所示,为多级中空ZnIn2S4/Ru纳米管的TEM图片,通过图透射电子 显微镜(TEM)发现ZnIn2S4样品呈明显的中空管状结构。如图5所示,为多级 中空ZnIn2S4/Ru纳米管的分辨透射电镜(HRTEM)图,其中晶格的晶面间距为 0.33nm和0.205nm归因于ZnIn2S4的(102)晶面和Ru纳米颗粒的(001)晶 面。如图6所示,为原始的ZnIn2S4、多级中空ZnIn2S4纳米管和多级中空 ZnIn2S4/Ru纳米管的XRD谱图。从图中可以看出三个样品所显示的衍射峰都来 源于ZnIn2S4(JCPDSNO.65-2023,a=b=3.85,c=24.6798)。ZnIn2S4和ZnIn2S4/Ru 相比于的原始的ZnIn2S4的衍射峰变弱变宽,表明在ZnIn2S4中可能形成了缺陷, 并且它们(006)晶面主衍射峰与原始的ZnIn2S4的衍射峰相比有轻微的负移, 这表明层间的间距发生了扩展。层间距的逐渐扩大可能是由于平面上S空位数 目增加,范德华作用减弱所致。如图7所示,为原始的ZnIn2S4、多级中空 ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管的EPR谱图。EPR谱图对合成纳 米材料中的缺陷进行了进一步表征,EPR信号峰(g=2.004)来自于利用空位俘 获单电子的塞曼效应,信号峰的强度就代表着缺陷的浓度,可以看出MOF转 化合成的ZIS拥有更高的S空位浓度。在Ru纳米颗粒沉积之后,ZnIn2S4/Ru表 现出了更强的EPR信号,这表明Ru纳米颗粒的引入诱导了更多空位的产生。如图8所示,为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管的固体紫 外可见光谱图通过紫外可见光谱我们可以看出,两个样品都在400-500nm处有 一个强吸收边,这说明了样品在可见光区域有很好的光吸收。Ru纳米粒子沉积 之后展现出了明显的光吸收增强,这是由于Ru纳米颗粒的表面等离子共振效 应(LSPR)。为了证实上述结果,还进行了EIS谱图的分析。如图9所示,在 高频区ZnIn2S4/Ru的圆弧半径小于纯的ZnIn2S4样品,小的圆弧半径意味着更小 的界面电荷传输电阻,表明异质结构样品中有更快的电子传输速率。如图10所 示,为多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管电化学阻抗谱图, 通过图的内置插图显示了基于EIS测试的等效电路模型。拟合结果表明, ZnIn2S4的Rct值达到485.8欧姆,约为ZnIn2S4/Ru(64.8欧姆)的7.5倍。因 此所制备的ZnIn2S4/Ru光催化剂具有更小界面电子传输阻力和更快的载流子传 输动力学。如图11所示,为多级中空ZIS纳米管和多级中空ZnIn2S4/Ru纳米管 电流-时间曲线谱图,如图所示ZnIn2S4/Ru具有更高的瞬态光电流响应,表明其 具有更高的载流子分离效率。如图12所示,为多级中空ZnIn2S4纳米管和多级 中空ZnIn2S4/Ru纳米管的莫特肖特基曲线图,从图中看出与ZnIn2S4样品相比, ZnIn2S4/Ru样品的M-S曲线斜率有所减小,因为载流子密度随着肖特基曲线的 斜率减小而增加,所以ZnIn2S4/Ru中载流子密度更高。如图13所示,为苯甲醛 的转化率和多级中空ZnIn2S4纳米管和多级中空ZnIn2S4/Ru纳米管的选择性随时 间的变化图,从图中可以看出苯甲醇的转化率随着光照时间的延长而增加,当光照射反应8h后,ZnIn2S4/Ru的转化率达到68.28%,远高于ZIS的44.6%将近 1.5倍。与ZIS相比,ZnIn2S4/Ru异质结构对BA选择性氧化的显著增强的光活 性主要是由于增强的电荷分离和高的光诱导载流子利用效率。
该反应的机理是中空多级的纳米管结构增加了对光子的捕获,金属位点和 缺陷半导体之间界面的设计为催化反应提供了对O2和苯甲醇分子的共吸附,促 进了载流子的有效分离。此外,ZnIn2S4/Ru界面上分离的高浓度载流子极大地 促进了O2分子的活化,并促进了·O2-的生成。因此,由于高效率活性氧·O2-的 产生,Ru NPs与ZnIn2S4光催化剂界面缺陷的协同作用,在可见光照射下使 ZnIn2S4/Ru表现出了优异的光催化氧化反应性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。
Claims (3)
1.一种具有光氧化活性的空位诱导ZnIn2S4/Ru纳米管的制备方法,其特征在于:其具体步骤如下:
(1)首先将50-90mgIn(NO3)3·xH2O和55-100mgH2BDC混合溶解在25-50mlDMF中,搅拌1-10min至澄清透明,然后将得到的溶液放置入油浴中100-150℃加热20-50min,收集得到In-MOF;
(2)MIL-68六方前驱体分散到含400-800mg硫脲的30-50ml的乙醇溶液中,搅拌10-30min,然后加入0.1-0.5MZn(CH3COO)2乙醇溶液0.3-0.6mL,再搅拌10-30min,最后,将反应液倒入80mL反应釜中,将其在400-500K的条件下反应10-30h,收集得到ZnIn2S4;
(3)将50-150mg特定的ZnIn2S4载体分散到含有3-10mgPVP的5-20mL去离子水中,然后加入1-2mL的RuCl3前驱体溶液10-20mM;将混合溶液在室温下磁搅拌0.5-2h,然后注入过量的新制备的NaBH4水溶液n(NaBH4)=5n(Ru);再常温下搅拌0.5-2h,离心洗涤收集产物,60-100℃烘干10-24h;
通过MOF转化在与另一种金属离子结合的同时,使ZnIn2S4富含了空位,同时产生了中空的类猪笼草结构的ZnIn2S4。
2.根据权利要求1所述的一种具有光氧化活性的空位诱导ZnIn2S4/Ru纳米管的制备方法,其特征在于:所述的空位诱导了单分散的Ru的沉积。
3.一种基于权利要求1或2所述制备方法制备的具有光氧化活性的空位诱导ZnIn2S4/Ru纳米管的应用,其特征在于:多级ZnIn2S4/Ru纳米管用于可见光下使苯甲醇以绿色光氧化的方式选择性的转换苯甲醛。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111625171.XA CN114377693B (zh) | 2021-12-28 | 2021-12-28 | 一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111625171.XA CN114377693B (zh) | 2021-12-28 | 2021-12-28 | 一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114377693A CN114377693A (zh) | 2022-04-22 |
CN114377693B true CN114377693B (zh) | 2024-03-19 |
Family
ID=81197823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111625171.XA Active CN114377693B (zh) | 2021-12-28 | 2021-12-28 | 一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114377693B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115228489A (zh) * | 2022-08-02 | 2022-10-25 | 陕西科技大学 | 柱状BPQDs/ZnIn2S4二元异质结构复合光催化材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110624563A (zh) * | 2019-09-03 | 2019-12-31 | 沈阳化工大学 | 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法 |
CN111013608A (zh) * | 2019-12-31 | 2020-04-17 | 福州大学 | 一种金属镍修饰的硫铟锌光催化剂及其制备方法与应用 |
CN111185208A (zh) * | 2020-02-14 | 2020-05-22 | 淮北师范大学 | 一种非贵金属助催化剂和缺陷同时修饰的纳米复合材料及其制备方法与应用 |
CN111525128A (zh) * | 2020-04-20 | 2020-08-11 | 电子科技大学 | 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法 |
CN112551571A (zh) * | 2020-11-18 | 2021-03-26 | 汕头大学 | 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用 |
CN112756000A (zh) * | 2019-11-04 | 2021-05-07 | 商丘师范学院 | 一种硫空位缺陷制备硫化物半导体/金属纳米粒子的方法及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106563431B (zh) * | 2016-11-07 | 2019-11-12 | 杭州同净环境科技有限公司 | 一种复合光催化剂及其制备方法、应用 |
-
2021
- 2021-12-28 CN CN202111625171.XA patent/CN114377693B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110624563A (zh) * | 2019-09-03 | 2019-12-31 | 沈阳化工大学 | 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法 |
CN112756000A (zh) * | 2019-11-04 | 2021-05-07 | 商丘师范学院 | 一种硫空位缺陷制备硫化物半导体/金属纳米粒子的方法及其应用 |
CN111013608A (zh) * | 2019-12-31 | 2020-04-17 | 福州大学 | 一种金属镍修饰的硫铟锌光催化剂及其制备方法与应用 |
CN111185208A (zh) * | 2020-02-14 | 2020-05-22 | 淮北师范大学 | 一种非贵金属助催化剂和缺陷同时修饰的纳米复合材料及其制备方法与应用 |
CN111525128A (zh) * | 2020-04-20 | 2020-08-11 | 电子科技大学 | 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法 |
CN112551571A (zh) * | 2020-11-18 | 2021-03-26 | 汕头大学 | 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用 |
Non-Patent Citations (3)
Title |
---|
Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: Extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation;Quan Zhang et.al;《Applied Catalysis B: Environmental》;第298卷;摘要、第2.2.1节、第2.2.3节、第4节、图2、图3、图7 * |
ZnIn2S4负载贵金属光催化剂的制备及其芳香醇选择氧化反应性能研究;冯晨洁;《中国优秀硕士学问论文全文数据库 工程科技I辑》;摘要、第2.4.1节、第3.2节、第3.3.6.3节、第3.4节、第5.3.2节 * |
李凤生等编著.《纳米功能复合材料及应用》.国防工业出版社,2003,111. * |
Also Published As
Publication number | Publication date |
---|---|
CN114377693A (zh) | 2022-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity | |
Liu et al. | Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction | |
Zhang et al. | Hollow core–shell Co9S8@ ZnIn2S4/CdS nanoreactor for efficient photothermal effect and CO2 photoreduction | |
Zhao et al. | Efficient hydrogen evolution with ZnO/SrTiO3 S-scheme heterojunction photocatalyst sensitized by Eosin Y | |
Zhang et al. | Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn2S4/ZnIn2S4 Z-scheme heterojunction with abundant vacancies for improving CO2 reduction and water splitting | |
Gao et al. | Combustion synthesis of Bi/BiOCl composites with enhanced electron–hole separation and excellent visible light photocatalytic properties | |
Yang et al. | One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance | |
Zhang et al. | Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity | |
Zhang et al. | CdSe QDs@ Fe-based metal organic framework composites for improved photocatalytic RhB degradation under visible light | |
Zhang et al. | Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles | |
Li et al. | One-step synthesis of oxygen-defects modified Ta2O5 nanosheets with high photocatalytic performance by chemical vapor deposition method | |
Yu et al. | Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis | |
Yu et al. | The construction of three-dimensional CdIn2S4/MoS2 composite materials for efficient hydrogen production | |
Kong et al. | Synthesis and photocatalytic hydrogen activity of Mo1− xS2 nanosheets with controllable Mo vacancies | |
Shi et al. | Preparation of TiO2/MoSe2 heterostructure composites by a solvothermal method and their photocatalytic hydrogen production performance | |
Li et al. | Development of double heterojunction of Pr2Sn2O7@ Bi2Sn2O7/TiO2 for hydrogen production | |
Wu et al. | Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2Tx hybrid for effectively removing tetracycline hydrochloride and rhodamine B | |
CN114377693B (zh) | 一种具有光氧化活性的空位诱导钌负载的硫铟化锌纳米管及制备与应用 | |
Ahmad et al. | Robust S-scheme ZnO-TiO2-Ag with efficient charge separations for highly active hydrogen evolution performance and photocatalytic mechanism insight | |
CN113426461B (zh) | 银掺杂多晶面铁酸锌光催化纳米材料的制备方法 | |
Zhao et al. | Fabrication of ZSM-5 zeolite supported TiO2-NiO heterojunction photocatalyst and research on its photocatalytic performance | |
Li et al. | Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications | |
Shen et al. | Zn0. 1Cd0. 9S/NiS heterojunction photocatalysts for enhanced H2 production and glucose conversion | |
Cao et al. | Efficient photocatalytic hydrogen evolution on amorphous MoSx-modified CdS/KTaO3 heterojunctions under visible light irradiation | |
Ma et al. | Deep understanding the formation of hollow ZnO@ ZnS core-sheath heterojunction towards efficient CO2 photoreduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |