CN114362853A - 从有线通信信道检测无线通信干扰的技术 - Google Patents

从有线通信信道检测无线通信干扰的技术 Download PDF

Info

Publication number
CN114362853A
CN114362853A CN202111080431.XA CN202111080431A CN114362853A CN 114362853 A CN114362853 A CN 114362853A CN 202111080431 A CN202111080431 A CN 202111080431A CN 114362853 A CN114362853 A CN 114362853A
Authority
CN
China
Prior art keywords
communication channel
cable
wireless
noise power
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111080431.XA
Other languages
English (en)
Other versions
CN114362853B (zh
Inventor
S·布帕缇拉尤
T·温顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nvidia Corp
Original Assignee
Nvidia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nvidia Corp filed Critical Nvidia Corp
Publication of CN114362853A publication Critical patent/CN114362853A/zh
Application granted granted Critical
Publication of CN114362853B publication Critical patent/CN114362853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了从有线通信信道检测无线通信干扰的技术。各个实施例包括用于检测与引起干扰无线通信信道的噪声的有线通信信道相关联的劣质电缆的技术。这些技术针对的是将电缆安装在用户系统中时处理器执行的测试。当禁用有线通信信道时,在系统的一个或更多个处理器上执行的无线测试应用程序将确定无线通信信道的本底噪声。当启用有线通信信道时,无线测试应用程序确定无线通信信道的噪声功率,从而在无线通信信道中引起干扰。无线测试应用程序将噪声功率与本底噪声进行比较以确定电缆是优质电缆还是劣质电缆。

Description

从有线通信信道检测无线通信干扰的技术
技术领域
各种实施例通常涉及计算机处理架构,更具体地,涉及用于从有线通信信道检测无线通信干扰的技术。
背景技术
现代的基于计算机的系统,例如个人计算机、机顶盒、游戏系统、便携计算机和/或类似物,通常包括多个有线和无线通信信道。这样的基于计算机的系统经由这些有线和无线通信信道向其他基于计算机的系统发送数据并从其接收数据。通常,将不同的通信信道设计为互不干扰。在这方面,不同的无线通信信道可以在不同的频带中操作。结果,经由在一个频带中操作的一个通信信道在基于计算机的系统之间交换的数据不会干扰经由在另一频带中操作的另一通信信道在基于计算机的系统之间交换的数据。此外,有线通信信道包括将两个或更多个基于计算机的系统物理连接在一起的电缆,以通过这些电缆与另一个通信。结果,经由在第一组电缆上的一个通信信道在基于计算机的系统之间交换的数据不会干扰经由在第二组电缆上的另一通信信道在基于计算机的系统之间交换的数据。
然而,在某些情况下,一个通信信道会干扰另一通信信道。在一个特定示例中,一个基于计算机的系统能够通过有线通信信道,另外还通过无线通信信道,与另一个基于计算机的系统通信。如果与有线通信信道关联的电缆构造不良或被损坏,则通过有线通信信道传输的数据可能会生成射频(RF)噪声形式的辐射发射,该辐射发射干扰通过无线通信信道传输的数据。例如,如果通过电缆传输的数据的数据速率为每秒6吉比特(Gbps),则构造不良或被损坏的电缆可能会产生6吉赫兹(GHz)范围内的射频噪声。如果无线通信信道在6GHz频率范围内运行,则构造不佳或被损坏的电缆产生的6GHz RF噪声,可能会干扰通过无线通信信道传输的数据。结果,一个基于计算机的系统在无线通信信道上传输的数据可能需要重传多次,直到接收的基于计算机的系统成功接收到该数据为止。在更极端的情况下,数据可能会损坏或丢失,从而使接收的基于计算机的系统可能无法接收原始发送的数据。
一种用于识别不良构造或被损坏的电缆的技术是拆卸电缆,以确定围绕电缆末端处的连接器的任何金属护套、围绕沿着电缆的长度传输数据的电线的金属护套以及这两种类型的金属护套之间的连接的完整性。金属护套中的或不同类型的金属护套之间的连接中的开口可能会导致传递来自经由电缆中的电线传输的数据的RF噪声。这种技术的一个缺点是电缆的拆卸通常是破坏性的,使电缆不适合使用。结果,该技术用于测试来自制造过程中的电缆样本。但是,此技术对于测试在使用时的电缆没用。
用于识别不良构造或被损坏的电缆的另一种技术是使用诸如时域反射仪(TDR)、频谱分析仪和/或类似的测试设备来测试电缆。在这样的测试过程中,信号以各种频率沿着电缆的电线传输,并且当信号到达电缆的另一端和/或当信号反射回信号的原点时,会测量这些信号的效果。经由TDR和频谱分析仪检查传输信号和/或反射信号的波形,工程师或技术人员能够确定是电缆质量差还是被损坏。尽管此技术是非破坏性的,但此技术需要使用昂贵的专用测试设备,并且经过训练和有技能的工程师或技术人员才能正确使用这样的测试设备。结果,该技术用于在工程实验室或其他技术设施中的测试电缆。但是,此技术并不用于测试在使用时的电缆。
如前所述,在本领域中需要的是在使用时易于识别基于计算机的系统中构造不良或被损坏的电缆的技术。
发明内容
本公开的各个实施例阐述了一种用于从有线通信信道检测无线通信干扰的计算机实现的方法。该方法包括确定与无线通信信道相关联的本底噪声。该方法还包括基于来自干扰无线通信信道的有线通信信道的辐射发射确定噪声功率。该方法还包括对比噪声功率与本底噪声以生成比较。该方法还包括基于比较将与有线通信信道相关联的电缆进行分类。
其他实施例包括但不限于实现所公开技术的一个或更多个方面的系统以及包括用于执行所公开技术的一个或更多个方面的指令的一个或更多个计算机可读介质。
相对于现有技术,所公开的技术的至少一个技术优势在于,利用所公开的技术,可以在使用时对电缆进行测试而不会破坏电缆。另外,可以在不使用昂贵的专用测试设备的情况下对电缆进行测试,并且在这样的测试设备的操作中无需特殊的培训或技能。相反,没有经验的用户可以在安装电缆时通过执行简单的测试过程来测试电缆。因此,用户可以容易地识别电缆是否对无线通信信道造成干扰,并且作为响应,采取适当的措施。这些优点表示相对于现有技术方法的一项或更多项技术改进。
附图说明
为了能够详细理解各个实施例的上述特征的方式,可以通过参考各个实施例来对以上简要概述的发明构思进行更具体的描述,其中一些实施例在附图中被示出。然而,应注意的是,附图仅示出了本发明构思的典型实施例,因此不应以任何方式被认为是对范围的限制,并且还有其他等效的实施例。
图1是被配置为实现各个实施例的一个或更多个方面的计算机系统的框图;
图2示出了根据各个实施例的、结合图1的计算机系统部署的优质电缆和劣质电缆;
图3示出了根据各个实施例的、经由图2的优质电缆或劣质电缆传输的典型信号的波形;
图4示出了根据各个实施例的、来自四个典型电缆(例如图2的优质电缆或劣质电缆)的干扰信号的波形;
图5示出了根据各个实施例的、在不包括其他无线设备的环境中,来自图2的劣质电缆的干扰信号的波形;
图6示出了根据各个实施例的、在包括其他无线设备的环境中,来自图2的劣质电缆的干扰信号的波形;和
图7A-7C给出了根据各种实施例的、用于经由图1的计算机系统从有线通信信道检测无线通信干扰的方法步骤的流程图。
具体实施方式
在以下描述中,阐述了许多具体细节以提供对各个实施例的更透彻的理解。然而,对于本领域的技术人员将显而易见的是,可以在没有一个或多个这些具体细节的情况下实践本发明构思。
如本文所述,在一个或更多个处理器上执行的无线测试应用执行一测试以确定与有线通信信道相关联的电缆是否正在产生对无线通信信道造成干扰的辐射发射。辐射发射可能是由屏蔽质量低或没有屏蔽的劣质电缆和/或已被损坏的电缆造成的。当电缆安装在终端用户系统中时,无线测试应用程序执行测试。在该测试的第一阶段,无线测试应用程序禁用有线接口以测量本底噪声。通常,本底噪声是对环境中不包括被测信号的所有噪声源和其他无用信号的幅度的累积影响的度量。在所公开的技术中,本底噪声不包括被测噪声源,即,来自与特定有线通信信道相关联的电缆的辐射发射。无线测试应用程序将无线接口设置为监控模式,以便从无线通信信道收集数字化的波形样本。然后,无线测试应用程序会收集指定频率范围内的波形样本,并将时域中的波形样本转换为频域中的频谱。无线测试应用程序重复样本的收集和经过预定数量的通过(pass)转换为频谱。然后,无线测试应用程序基于几次通过的平均值确定本底噪声。
在测试的第二阶段,无线测试应用程序启用有线接口以测量噪声功率,所述噪声功率包括本底噪声加上电缆的辐射发射。然后,无线测试应用程序将收集指定频率范围内的波形样本,并将时域中的波形样本转换为频域中的频谱。无线测试应用程序重复样本的收集和经过预定数量的通过转换为频谱。然后,无线测试应用程序基于几次通过的平均值确定噪声功率。如果噪声功率未超过本底噪声多于阈值量,则无线测试应用程序将确定电缆通过了测试。但是,如果噪声功率超过本底噪声多于阈值量,则无线测试应用程序将确定电缆未通过测试。
系统概览
图1是配置为实现各个实施例的一个或更多个方面的计算机系统100的框图。如图所示,计算机系统100包括但不限于经由存储器控制器136耦合到系统存储器104的一个或更多个中央处理单元(CPU)102。一个或更多个CPU 102还可以经由处理器总线130耦合到内部存储器106。一个或更多个CPU 102被包括以代表单个CPU、多个CPU,具有多个处理核心的单个CPU、一个或更多个数字信号处理器(DSP)、一个或更多个现场可编程门阵列(FPGA)、一个或更多个图形处理单元(GPU)、一个或更多个张量处理单元等。内部存储器106可以包括内部只读存储器(IROM)和/或内部随机存取存储器(IRAM)。计算机系统100还包括处理器总线130、系统总线132、命令接口134和外围总线138。系统总线132耦合到相机处理器120、视频编码器/解码器122、图形处理单元(GPU)112、显示控制器111、处理器总线130、存储器控制器136和外围总线138。系统总线132进一步通过无线控制器140耦合到无线接口142。总线132进一步通过I/O控制器124耦合到存储设备114。外围总线138耦合到音频设备126、网络适配器127和输入设备128。
在运行中,一个或更多个CPU 102配置为经由存储器控制器136发送和接收存储器流量。一个或更多个CPU 102还配置为发送和接收I/O流量并与经由处理器总线130连接至该系统总线132、命令接口134和外围总线138的设备通信。例如,CPU 102可以经由处理器总线130将命令直接写到设备。另外,CPU 102可以将命令缓冲区写到系统存储器104。命令接口134然后可以从系统存储器104读取命令缓冲区,并将该命令写到设备(诸如相机处理器120、GPU 112等)。命令接口134可以进一步为命令接口134所耦合至的设备提供同步。
系统总线132包括可以直接存储器客户端可以耦合到的高带宽总线。例如,耦合到系统总线132的I/O控制器124可以包括高带宽客户端,诸如通用串行总线(USB)2.0/3.0控制器、闪存控制器等。系统总线132也可以耦合到中间层客户端。例如,I/O控制器124可以包括中间层客户端,例如USB 1.x控制器、多媒体卡控制器、移动工业处理器接口
Figure BDA0003263780960000051
控制器、通用异步接收器/发送器(UART)控制器等。如图所示,存储设备114可以经由I/O控制器124耦合到系统总线132。存储设备114可以配置为存储内容以及由CPU102、GPU112、相机处理器120等使用的应用和数据。通常,存储设备114为应用程序和数据提供非易失性存储,并且可以包括固定或可移动硬盘驱动器、闪存设备以及CD-ROM(光盘只读存储器)、DVD-ROM(数字多功能光盘-ROM)、蓝光光盘和/或其他磁、光和/或固态存储设备。
此外,耦合到系统总线132的一个或更多个无线控制器140可以包括各种无线客户端,例如无线保真(WiFi)控制器、蓝牙控制器、移动宽带控制器等。如图所示,无线控制器140可以耦合到对应的无线接口142。无线接口142可以配置为从无线控制器140接收数据,并且例如通过将数据调制到载波上来准备用于通过一个或更多个无线通信信道传输的数据。同样地,一个或更多个无线接口142可以配置为从一个或更多个无线通信信道接收信号并在其中提取数据,例如通过解调先前已被调制到载波上的数据。然后,一个或更多个无线接口142可以将提取的数据发送到无线控制器140。
外围总线138可以耦合到低带宽客户端。例如,耦合到外围总线138的一个或更多个输入设备128可以包括触摸屏设备、键盘设备、传感器设备和/或配置为接收信息(例如用户输入信息、位置信息、方向信息等)的设备等。输入设备128可以经由串行外围设备接口(SPI)、内部集成电路(I2C)等耦合到外围设备总线138。
在各个实施例中,系统总线132可以包括AMBA高性能总线(AHB)、并且外围总线138可以包括高级外围总线(APB)。另外,在一些实施例中,取决于设备的各种特性(诸如带宽要求、等待时间要求等),以上描述的任何设备可以耦合至系统总线132或外围总线138中的任一个。例如,多媒体卡控制器可以耦合到外围总线138。
相机(未示出)可以耦合到相机处理器120。相机处理器120包括接口,例如
Figure BDA0003263780960000061
相机串行接口(CSI)。相机处理器120还可包括配置为处理从相机接收的图像的编码器预处理器(EPP)和图像信号处理器(ISP)。相机处理器120可以进一步配置为经由系统总线132将已处理和/或未处理的图像转发到显示控制器111。
在一些实施例中,GPU 112是图形子系统的一部分,该图形子系统为显示设备110渲染像素,该显示设备110可以是任何常规的阴极射线管、液晶显示器、发光二极管显示器等。在这样的实施例中,GPU 112和/或显示控制器111并入了针对图形和视频处理而优化的电路,视频处理包括例如视频输出电路,诸如高清多媒体接口(HDMI)控制器、
Figure BDA0003263780960000071
显示器串行接口(DSI)控制器、显示端口控制器等。在一些实施例中,GPU 112并入了为通用和/或计算处理而优化的电路。可以在GPU 112内包括的一个或更多个通用处理集群(GPC)中并入这样的电路,该通用处理集群配置为执行这样的通用和/或计算操作。系统存储器104包括至少一个设备驱动器103,其被配置为管理GPU 112的处理操作。
在各种实施例中,GPU 112可以与图1的一个或更多个其他元件集成以形成单个硬件块。例如,GPU 112可以与显示控制器111、相机处理器120、视频编码器/解码器122、音频设备126和/或计算机系统100中包含的其他连接电路一起集成。
另外,系统存储器104包括但不限于无线测试应用程序144。如本文进一步描述,无线测试应用程序144当由一个或更多个处理器执行时,执行一个或更多个操作以测试无线通信信道上的干扰。更具体地说,无线控制器140可以执行无线测试应用程序144以执行本文描述的一种或更多种技术。附加地或替代地,无线接口142、CPU 102和/或GPU 112可以执行无线测试应用程序144以执行本文描述的一种或更多种技术。当在无线通信信道上执行与测试干扰相关联的操作时,无线测试应用程序144可以在存储设备114中存储数据并从存储设备114中检索数据。
在运行中,当电缆安装在计算机系统100中时,无线测试应用程序144测试与有线通信电缆关联的电缆。该测试确定电缆是否正在产生干扰无线通信信道上的通信的辐射发射,在此也称为噪声。这样的干扰会降低无线通信信道的性能。
无线测试应用程序144选择用于测量无线通信信道上的噪声的有线接口和无线接口。无线通信信道上的噪声是以来自与有线接口关联的电缆的辐射发射形式存在的。有线接口可以与诸如HDMI电缆、USB电缆、显示端口电缆等电缆相关联。通过电缆传输的信号的格式可以是任何技术上可行的格式,例如1080p视频、1080i视频、720p视频、4k HD视频、8kHD视频、USB 3.1等。该无线接口可以与5GHz WiFi、2.4GHz WiFi、蓝牙、移动宽带等兼容。
无线测试应用程序144确定用于测量对与有线通信信道关联的电缆的无线通信信道产生影响的频率和带宽。在一些实施例中,无线测试应用程序144表格查找,其中无线测试应用程序144基于与有线接口相关联的频率在表中选择表条目。该表条目包括相应的测试频率,该测试频率可以是与有线接口关联的频率或该频率的谐波。该表条目还包括要测试的带宽,其中该带宽表示包括测试频率的频率范围。
然后,无线测试应用程序144禁用所选的有线接口。结果,没有信号通过与所选有线接口关联的电缆传输。无线测试应用程序144禁用所选的有线接口,以在没有与所选的有线接口关联的电缆的任何发射辐射的情况下测量本底噪声。无线测试应用程序144将无线接口142设置为监控模式。当处于监控模式时,无线接口142不将提取的数据发送到无线控制器140。相反,无线接口142发送所接收的无线信号的数字样本。在一些实施例中,数字样本采取正交信号样本的形式,包括同相(I)样本和正交(Q)波形样本。
无线测试应用程序144经由无线接口142收集波形样本。无线测试应用程序144确定波形样本的快速傅立叶变换(FFT)以生成频谱。无线测试应用程序144重复收集波形样本和经过预定数量的样本通过确定波形样本的FFT的过程。样本通过的数量足够大以产生足够的置信度,所述置信度为频谱包括代表本底噪声的实际噪声信号,而不是短时间内发生的瞬态噪声。此外,样本通过的数量足够小以允许在相对短的时间量内完成测试。通过的数量可以是5次、10次等。然后,无线测试应用程序144基于完成的样本通过的平均值来确定本底噪声。无线测试应用程序144确定本底噪声是否在预期范围内。预期范围可以基于有线接口和无线接口之一或两者的特性。如果本底噪声不在预期范围内,无线测试应用程序144然后重复确定本底噪声的过程,可能以不同的频率和带宽来测量对与有线通信信道相关的电缆的无线通信信道的影响。
一旦本底噪声在预期范围内,则无线测试应用程序144启用所选的有线接口。结果,信号经由与所选有线接口关联的电缆进行传输。无线测试应用程序144启用所选的有线接口,以测量本底噪声加上从与所选的有线接口相关联的电缆发出的任何发射辐射。无线测试应用程序144经由无线接口142收集波形样本。无线测试应用程序144确定波形样本的FFT以生成频谱。无线测试应用程序144重复收集波形样本和经过预定数量的样本通过确定波形样本的FFT的过程。样本通过的数量足够大以产生足够的置信度,所述置信度为频谱包括来自劣质电缆的实际噪声信号,而不是短时间内发生的瞬态噪声。此外,样本通过的数量足够小以允许在相对短的时间量内完成测试。通过的数量可以是5次、10次等。无线测试应用程序144基于完成的样本通过的平均值来确定噪声功率。
无线测试应用程序144将噪声功率与本底噪声进行比较。无线测试应用程序144确定噪声功率是否超过本底噪声。在一些实施例中,无线测试应用程序144确定噪声功率是否超过本底噪声至少阈值量。如果噪声功率未超过本底噪声,无线测试应用程序144然后生成指示电缆通过测试的输出。可以将该输出定向到计算机系统100的用户,诸如文本消息、听觉消息、视觉图标等。
如果噪声功率超过本底噪声,无线测试应用程序144然后生成指示电缆未通过测试的输出。可以将该输出定向到计算机系统100的用户,诸如文本消息、听觉消息、视觉图标等。无线测试应用程序144还生成指示计算机系统100的用户可以执行的一个或更多个纠正动作的输出。输出可以指导用户执行各种纠正措施,例如使用更优质的电缆替换电缆的指令,使用具有不同频率范围的不同无线通信信道的指令,更改经由有线接口传输的信号的格式以降低有线通信信道的传输速度的指令等。
应当理解的是,本文所示的系统是说明性的,并且可以进行变形和修改。可以根据需要修改连接拓扑,连接拓扑包括总线的数量和布置、CPU 102的数量以及GPU 112的数量。例如,系统可以实现具有不同数量的处理核、不同架构和/或不同数量的存储器的多个GPU112。在存在多个GPU 112的实施方式中,可以并行地运行那些GPU 112以比使用单个GPU112可能更高的吞吐量来处理数据。并入一个或更多个GPU 112的系统可以以各种配置和形式因素来实现,包括但不限于台式机、膝上型计算机、手持个人计算机或其他手持设备、服务器、工作站、游戏机、嵌入式系统等。在一些实施例中,一个或更多个CPU 102可以包括一个或更多个高性能核和一个或更多个低功率核。另外,一个或更多个CPU 102可以包括专用的引导处理器,当计算机系统100被上电或从低功率模式恢复时,引导处理器与内部存储器106通信以检索并执行引导代码。引导处理器还可以执行低功率音频操作、视频处理、数学函数、系统管理操作等。
本文描述的技术指的是在59.94Hz(1080p/59.94Hz)视频模式下以1080逐行扫描的HDMI信号。但是,该技术可以应用于非HDMI电缆类型,例如USB、显示端口等。此外,该技术可以应用于除1080p/59.94Hz之外的视频格式和/或非视频格式,例如1080p/50Hz、1080交互式(1080i)、720p、4000高清(4k HD)、8000高清(8k HD)、USB 3.1等。另外,本文描述的技术涉及5GHz WiFi信道。但是,该技术可以应用于其他无线通信信道、例如2.4GHz WiFi信道、蓝牙、移动宽带等等。
在各个实施例中,可以将计算机系统100实现为片上系统(SoC)。在一些实施例中,一个或更多个CPU 102可以经由一个或更多个开关或桥(未示出)连接到系统总线132和/或外围总线138。在一些实施例中,系统总线132和外围总线138可以集成到单个总线中,而不是作为一个或更多个离散总线存在。最后,在某些实施例中,可能不存在图1所示的一个或更多个组件。例如,可以省去I/O控制器124,并且存储设备114可以是直接连接到系统总线132的受管存储设备。此外,前述仅仅是可以对计算机系统100进行的一个示例修改。在各种实施方式中,可以将其他方面和元件添加到计算机系统100中或从计算机系统100中删除,并且本领域技术人员将理解的是,图1的描述本质上是示例性的,并且不旨在以任何方式限制本公开的实施例的范围。
应用本文公开的一种或更多种技术产生的图像可以显示在监视器或其他显示设备上。在一些实施例中,显示设备可以直接耦合到生成或渲染图像的系统或处理器上。在一些实施例中,显示设备可以例如经由网络间接地耦合到系统或处理器上。此类网络的示例包括因特网、移动电信网络、WIFI网络以及任何其他有线和/或无线联网系统。当显示设备间接耦合时,由系统或处理器生成的图像可以通过网络流传输到显示设备。这种流传输允许例如在服务器上或在数据中心中将执行渲染图像的视频游戏或其他应用程序,并且渲染的图像将在与服务器或数据中心物理上分开的一个或更多个用户设备(例如计算机、视频游戏控制台、智能手机、其他移动设备等)上被传输和显示。因此,本文公开的技术可以被应用以增强被流传输的图像以及增强流传输图像的服务,例如NVIDIAGeForce Now(GFN)、谷歌视距(Google Stadia)等。
从有线通信信道检测无线通信干扰
图2示出了根据各种实施例的、结合图1的计算机系统100部署的优质电缆200和劣质电缆250。如图所示,优质电缆200具有连接器,其中连接器的前侧202和后侧204经由金属表面、金属化塑料等被屏蔽。电缆部分210和212也经由金属箔护套、编织金属护套等被屏蔽。此外,连接器的前侧202和后侧204的屏蔽经由耦合器206和208连接到电缆部分210和212的屏蔽。连接器的前侧202和后侧204、电缆部分210和212或连接器206和208均没有明显的可见损坏。因此,沿着优质电缆200的导线传输的信号,例如时钟信号、数据信号、控制信号和/或诸如此类的信号通常被保留在优质电缆200内。结果,这些信号在优质电缆200外部几乎不引起可能干扰无线通信信道的辐射发射。
相反,劣质电缆250具有连接器,其中连接器的前侧252和后侧254是未屏蔽的,例如透明塑料连接器或其他非金属化的连接器。连接器的前侧252包括受损部分256。连接器的后侧254同样包括暴露劣质电缆250的内部电线的受损部分258。劣质电缆250的电缆部分可以是屏蔽的或非屏蔽的。如图所示,劣质电缆250的电缆部分包括损坏部分260,在损坏部分260处电缆部分中的任何屏蔽都可能受到损害。此外,劣质电缆250的电缆部分包括撕裂部分262,在撕裂部分262处劣质电缆250的屏蔽和内部线被暴露。劣质电缆250在连接器和电缆部分之间不包括任何耦合。结果,沿着优质电缆200的电线传输的信号,例如时钟信号、数据信号、控制信号等,可能会在劣质电缆250外部产生可能干扰无线通信信道的辐射干扰。
诸如图1的计算机系统100之类的系统的用户可能无法确定是否安装了优质电缆200或劣质电缆250。此外,无论是安装优质电缆200还是劣质电缆250,用户都可能无法分辨电缆是否正在产生正引起一个或更多个无线通信信道的性能下降的发射辐射。而是,用户可能会在一个或更多个无线通信信道上经历性能下降的情况,而不知道性能下降的根本原因是什么。经由本文描述的技术,计算机系统100可执行测试以确定是否安装了优质电缆200,从而几乎没有导致干扰一个或更多个无线通信信道的发射辐射。同样地,计算机系统100可以执行测试以确定是否安装了劣质电缆250,从而导致干扰一个或更多个无线通信信道的发射辐射。
图3示出了根据各种实施例的、经由图2的优质电缆200或劣质电缆250传输的典型信号的波形300。如图所示,波形300具有大约6.73纳秒(ns)的循环周期。因此,波形300具有大约1÷6.73ns=148.5MHz的频率。波形300具有大约800mV的峰对峰的幅度。波形300是在1080p/59.94Hz视频模式下经由HDMI电缆中的电线传输的时钟信号的典型。如果时钟信号是经由优质电缆200传输的,则时钟信号被保留在优质电缆200内,从而几乎不导致优质电缆200外部的可能会干扰无线通信信道的辐射发射。但是,如果时钟信号是经由劣质电缆250传输的,则时钟信号可能会在劣质电缆250外部产生发射辐射,导致劣质电缆250外部的可能干扰无线通信信道的辐射发射。
除了时钟信号之外,HDMI电缆还经由电缆的电线传输多个数据信号。如果一个或更多个数据信号也具有大约148.5MHz的频率,则时钟和数据信号可能会产生累加效应。因此,由时钟信号和数据信号引起的劣质电缆250外部的辐射发射可能大于由时钟信号单独引起的辐射发射。
波形300可能引起以148.5MHz基频的辐射发射。因此,无线通信信道在148.5MHz范围内的性能可能由于辐射发射而降级。附加地或替代地,波形300可以引起以148.5MHz的一个或更多个谐波的辐射发射,其中谐波是基频的整数倍。例如,148.5MHz的第35次谐波为35×148.5MHz=5197.5MHz,它位于5170.0至5250.0MHz WiFi频带内,在本文中也称为5GHzWiFi频带。因此,波形300的第35次谐波处的辐射可引起辐射发射,该辐射发射使5GHz WiFi频带的性能降级。
图4示出了根据各个实施例的、来自四个典型电缆(例如,图2的优质电缆200或劣质电缆250)的干扰信号的波形400。如图所示,波形400包括在5197.5MHz的频率下高于410(0)处的典型幅度的幅度,该幅度是148.5MHz的第35次谐波。该波形的典型幅度在本文中称为波形的本底噪声。通常,本底噪声是对环境中所有噪声源和其他无用信号的幅度的累积影响的度量,并不包括正被测量的信号。在所公开的技术中,本底噪声不包括被测的噪声源,即,来自与特定有线通信信道相关联的电缆的辐射发射。410(0)处的幅度表示由劣质电缆(例如,图2的劣质电缆250)产生的辐射发射。高于410(0)处的平均幅度的幅度位于5GHzWiFi频段405内,范围从5170.0MHz到5250.0MHz。412(0)处的幅度小于410(0)处的幅度,表示比在410(0)处产生振幅的电缆要稍微好一些的电缆产生的辐射发射。即使这样,在412(0)处的幅度也明显高于本底噪声。因此,在410(0)和412(0)处产生振幅的电缆产生了可能严重干扰5GHz WiFi频段405的辐射发射。
在414(0)处的幅度小于在410(0)和412(0)处的幅度,表示通过比在410(0)和412(0)处产生幅度的电缆要好的电缆产生的辐射发射。但是,在414(0)处的幅度也明显高于本底噪声。结果,在414(0)处产生幅度的电缆产生的辐射发射可能会适度干扰5GHz WiFi频段405。416(0)处的幅度小于在410(0)、412(0)和414(0)处的幅度,表示由比在410(0)、412(0)和414(0)处产生幅度的电缆要明显好的电缆产生的辐射发射。416(0)处的幅度表示由优质电缆(例如图2的优质电缆200)产生的辐射发射。在416(0)处的幅度相对接近于本底噪声。结果,在416(0)处产生幅度的电缆几乎不产生辐射发射,因此对5GHz WiFi频段405几乎不产生干扰。因为可以将生成波形400的任何电缆安装在系统中,所以无线测试应用程序144测量发射辐射以确定在5GHz WiFi频段405中由安装电缆引起的干扰级别。
如图所示,波形400还包括在36×148.5MHz=5346.0MHz处高于典型幅度的幅度,这是148.5MHz的第36次谐波。通常,辐射发射的幅度随着谐波数量的减少而降低。结果,在410(1)、412(1)、414(1)和416(1)处的振幅小于在410(0)、412(0)、414(0)和416(0)处的幅度。类似地,波形400包含比在37×148.5MHz=5494.5MHz处的典型幅度高的幅度,这是148.5MHz的第37次谐波。在410(2)、412(2)、414(2)和416(2)处的幅度分别小于在410(1)、412(1)、414(1)和416(1)处的幅度。如本文中进一步讨论的,无线测试应用程序144可以有利地测量不在诸如5GHz WiFi频带405之类的无线通信信道之内的谐波处的辐射发射。结果,无线测试应用程序144可以测量在第36次谐波、第37次谐波或其他一些谐波处的辐射发射,而不是测量在第35次谐波处的辐射发射。从第35次谐波到第36次谐波的幅度变化是可以预测的。同样,从第36次谐波到第37次谐波的幅度变化是可以预测的。在一些实施例中,可以基于驱动源的上升和下降特性来预测特定谐波的幅度。通过分析驱动源的上升特性和下降特性,无线测试应用程序144可以推断第35次谐波、第36次谐波和/或其他谐波的相对水平。通常,对于给定的处理器、计算机系统、产品等而言,第35次谐波、第36次谐波和/或其他谐波的相对水平可能保持恒定。因此,无线测试应用程序144可以测量第36次谐波、第37次谐波或一些其他谐波处的辐射发射,并计算第35次谐波的预测值。
图5示出了根据各个实施例的、在不包括其他无线设备的环境中,来自图2的劣质电缆250的干扰信号的波形500。如图所示,该波形包括在502、504、506和508处本底噪声之上的幅度。在502处的幅度是148.5MHz的第35次谐波,即35×148.5MHz=5197.5MHz。即使在502处的幅度在5GHz WiFi频带内,该频带中不存在其他信号,因为环境不包括其他无线设备。因此,无线测试应用程序144可以测试在第35谐波处的干扰,以确定502处的幅度是由于来自劣质HDMI电缆(例如图2的劣质电缆250)的辐射发射所致。同样地,在504、506和508处的幅度分别为148.5MHz的第36、37和38次谐波,分别为5346.0MHz、5494.5MHz和5646.0MHz。此外,由于环境不包括其他无线设备,因此不存在其他信号。因此,无线测试应用程序144可以测试第36、37和/或38次谐波的干扰,以确定分别在504、506和508处的幅度是由于来自劣质HDMI电缆(例如图2的劣质电缆250)的辐射发射造成的。
图6示出了根据各种实施例的、在包括其他无线设备的环境内,来自图2的劣质电缆250的干扰信号的波形600。如图所示,波形600包括在148.5MHz的第35个谐波处的602处的本底噪声以上的幅度,该幅度为35×148.5MHz=5197.5MHz。另外,其他WiFi设备、接入点和/或噪声源正在5GHz WiFi频带中传输,导致区域612处的幅度。因此,无线测试应用程序144可能无法区分来自劣质电缆的辐射发射和来自由5GHz WiFi频段中的无线设备、接入点和/或其他噪声源传输的信号。
类似地,波形600包括在148.5MHz的第37个谐波处的606处和在148.5MHz的第38个谐波处的608处的本底噪声之上的幅度。此外,其他无线设备、接入点和/或其他噪声源正在以与第37次谐波和第38次谐波的608处相同的频带中传输,分别导致区域616和618处的幅度。结果,无线测试应用程序144可能无法区分来自劣质电缆的辐射发射和由区域616和618中的无线设备、接入点和/或其他噪声源传输的信号。此外,波形600包括在148.5MHz的第36次谐波处的604处的本底噪声之上的振幅,其为36×148.5MHz=5346.0MHz。然而,没有其他无线设备、接入点和/或噪声源在604处的幅度的区域中以相同频带中正在传输。因此,无线测试应用程序144可以测试第36次谐波处的干扰以确定604处的振幅是由于来自劣质HDMI电缆(例如图2的劣质电缆250)的辐射发射所造成。
图7A-7C给出了根据各种实施例的、用于经由图1的计算机系统从有线通信信道检测无线通信干扰的方法步骤的流程图。尽管结合图1-6的系统描述了该方法步骤,但是本领域普通技术人员将理解的是,配置为以任何顺序执行方法步骤的任何系统都在本公开的范围内。
如图所示,方法700在步骤702处开始,在该步骤中,由一个或更多个处理器执行的无线测试应用程序144选择有线接口和无线接口以测量在无线通信信道上的噪声。无线测试应用程序144可以由无线控制器140、无线接口142、CPU 102、GPU 112和/或类似物执行。无线通信信道上的噪声是以来自与有线接口关联的电缆的辐射发射的形式存在。有线接口可以与诸如HDMI电缆、USB电缆、显示端口电缆等诸如此类的电缆相关联。通过电缆传输的信号的格式可以是任何技术上可行的格式,例如1080p视频、1080i视频、720p视频、4k HD视频、8k HD视频、USB 3.1等。该无线接口可以与5GHz WiFi、2.4GHz WiFi、蓝牙、移动宽带等兼容。
在步骤704中,无线测试应用程序144确定用于测量对与有线通信信道关联的电缆的无线通信信道的影响的频率和带宽。在一些实施例中,无线测试应用程序144执行表查找,其中无线测试应用程序144基于与有线接口相关联的频率在表中选择表条目。该表条目包括相应的测试频率,该测试频率可以是与有线接口关联的频率或该频率的谐波。该表条目还包括要测试的带宽,其中该带宽表示包括测试频率的频率范围。
在步骤706中,无线测试应用程序144禁用所选的有线接口。因此,没有信号经由与所选有线接口关联的电缆而被传输。无线测试应用程序144禁用所选的有线接口,以在没有与所选的有线接口关联的电缆的任何发射辐射的情况下测量本底噪声。在步骤708中,无线测试应用程序144将无线接口142设置为监控模式。当处于监控模式时,无线接口142不将提取的数据发送到无线控制器140。相反,无线接口142发送所接收的无线信号的数字样本。在一些实施例中,数字样本采取正交信号样本的形式,包括同相(I)样本和正交(Q)波形样本。
在步骤710中,无线测试应用程序144经由无线接口142收集波形样本。在步骤712中,无线测试应用程序144确定波形样本的快速傅立叶变换(FFT)以生成频谱。在步骤714中,无线测试应用程序144确定所有样本通过是否被完成。样本通过的数量足够大以产生足够的置信度,置信度为频谱中包括代表本底噪声的实际噪声信号,而不是在短时间内发生的瞬态噪声。此外,样本通过的数量足够小以允许在相对短的时间量内完成测试。通过的数量可以是5次、10次等。如果没有完成所有样品通过,方法700然后进行到如上所述的步骤710。
然而,如果所有样本通过均已完成,方法700然后前进至步骤716,其中无线测试应用程序144基于已完成的样本通过的平均值来确定本底噪声。在步骤718中,无线测试应用程序144确定本底噪声是否在预期范围内。预期范围可以基于有线接口和无线接口之一或两者的特性。如果本底噪声不在预期范围内,方法700然后进行到如上所述的步骤704。
然而,如果本底噪声在预期范围内,方法700然后前进至步骤720,在此无线测试应用程序144启用所选的有线接口。因此,信号经由与所选有线接口关联的电缆进行传输。无线测试应用程序144启用所选的有线接口,以测量本底噪声加上来自与所选的有线接口相关联的电缆的任何发射辐射。在步骤722中,无线测试应用程序144经由无线接口142收集波形样本。在步骤724中,无线测试应用程序144确定波形样本的FFT以生成频谱。在步骤726中,无线测试应用程序144确定所有样本通过是否被完成。样本通过的数量足够大以产生足够的置信度,置信度是频谱包括来自劣质电缆的实际噪声信号,而不是在短时间内发生的瞬态噪声。此外,样品通过的数量足够小以允许在相对短的时间量内完成测试。通过次数可以是5次、10次等。如果没有完成所有样本通过,方法700然后进行到如上所述的步骤722。
然而,如果所有样本通过均已完成,方法700然后前进至步骤728,其中无线测试应用程序144基于已完成的样本通过的平均值来确定噪声功率。在步骤730中,无线测试应用程序144将在步骤720至728中确定的噪声功率与在步骤706至716中确定的本底噪声进行比较。在步骤732中,无线测试应用程序144确定噪声功率是否超过本底噪声。在一些实施例中,无线测试应用程序144确定噪声功率是否超过本底噪声至少一阈值量。如果噪声功率未超过本底噪声,方法700然后进行到步骤734,其中无线测试应用程序144生成指示电缆通过测试的输出。该输出可以被定向到计算机系统100的用户,诸如文本消息、听觉消息、视觉图标等。然后,方法700终止。
返回到步骤732,如果噪声功率超过本底噪声,方法700然后进行到步骤736,其中无线测试应用程序144产生指示电缆未通过测试的输出。该输出可以被定向到计算机系统100的用户,诸如文本消息、听觉消息、视觉图标等。在步骤738中,无线测试应用程序144生成指示计算机系统100的用户可以执行的一个或更多个纠正动作的输出。该输出可以指导用户执行各种纠正措施,例如使用更优质的电缆替换电缆的指令,使用具有不同频率范围的不同无线通信信道的指令,为了降低有线通信信道的传输速度更改经由有线接口传输的信号的格式的指令等等诸如此类。然后,方法700终止。
总之,在一个或更多个处理器上执行的无线测试应用程序执行测试以确定与有线通信信道关联的电缆是否正在产生引起对无线通信信道的干扰的辐射发射。辐射发射的产生可能是由于屏蔽质量低或没有屏蔽的劣质电缆和/或已损坏的电缆造成的。当电缆安装在最终用户系统中时,无线测试应用程序将执行测试。在测试的第一阶段,无线测试应用程序禁用有线接口以测量本底噪声。无线测试应用程序将无线接口设置为监控模式,以便从无线通信信道收集数字化的波形样本。然后,无线测试应用程序会收集指定频率范围内的波形样本,并将时域中的波形样本转换为频域中的频谱。无线测试应用程序重复样本的收集和经过预定数量的通过转换频谱。然后,无线测试应用程序根据几次通过的平均值确定本底噪声。
在测试的第二阶段,无线测试应用程序启用有线接口以测量噪声功率,包括本底噪声加上来自电缆的辐射发射。然后,无线测试应用程序收集指定频率范围内的波形样本,并将时域中的波形样本转换为频域中的频谱。无线测试应用程序重复样本的收集和经过预定数量的通过转换为频谱。然后,无线测试应用程序根据几次通过的平均值确定噪声功率。如果噪声功率未超过本底噪声多于阈值量,无线测试应用程序然后确定电缆通过了测试。但是,如果噪声功率超过本底噪声多于阈值量,无线测试应用程序然后确定电缆未通过测试。
相对于现有技术,所公开的技术的至少一个技术优势在于,利用所公开的技术,可以在使用时对电缆进行测试而不会破坏电缆。另外,可以在不使用昂贵的专用测试设备的情况下对电缆进行测试,并且在这样的测试设备的操作中无需特殊的培训或技能。相反,没有经验的用户可以在安装电缆时通过执行简单的测试过程来测试电缆。因此,用户可以容易地识别电缆是否对无线通信信道造成干扰,并且作为响应,采取适当的措施。这些优点表示相对于现有技术方法的一项或更多项技术改进。
以任何方式,在任何权利要求中记载的任何权利要求要素和/或在本申请中描述的任何要素的任何一个以及所有组合都落入本公开内容和保护的预期范围内。
已经出于说明的目的给出了各种实施例的描述,但是这些描述并不旨在是穷举或限于所公开的实施例。在不脱离所描述的实施例的范围和精神的情况下,许多修改和变型对于本领域普通技术人员将是显而易见的。
本实施例的各方面可以体现为系统、方法或计算机程序产品。因此,本公开的各个方面可以采取以下形式:完全硬件实施例、完全软件实施例(包括固件、驻留软件、微代码和/或类似物)或结合软件和硬件方面的实施例,这些实施例通常可以全部在本文中被称为模块或系统。而且,本公开的方面可以采取体现在其上体现有计算机可读程序代码的一个或更多个计算机可读介质中体现的计算机程序产品的形式。
可以利用一个或更多个计算机可读介质的任何组合。所述计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质可以是例如但不限于电子、磁性、光学、电磁、红外或半导体系统、装置或设备、或前述的任何合适的组合。计算机可读存储介质的更具体示例(非详尽列表)将包括以下内容:具有一根或更多根电线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦可编程只读存储器(EPROM或闪存)、光纤、便携式光盘只读存储器(CD-ROM)、光学存储设备、磁存储设备或任何其他前述的任意适当组合。在本文的上下文中,计算机可读存储介质可以是任何有形介质,其可以包含或存储供指令执行系统、装置或设备使用或与其结合使用的程序。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。将理解的是,流程图图示和/或框图的每个框以及流程图图示和/或框图中的框的组合可以由计算机程序指令来实现。可以将这些计算机程序指令提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器以产生机器,从而使得经由计算机或其他可编程数据处理设备的处理器执行的指令使得能够执行流程图和/或框图的一个或多个框中规定的功能/行动。可以实现流程图和/或框图中指定的功能/动作。这样的处理器可以是但不限于通用处理器、专用处理器、特定应用程序处理器或现场可编程门阵列。
附图中的流程图和框图示出了根据本公开的各种实施例的系统、方法和计算机程序产品的可能的实现的架构、功能和操作。就这一点而言,流程图或框图中的每个框可以代表代码的模块、段或部分,其包括用于实现指定的逻辑功能的一个或更多个可执行指令。还应注意的是,在一些替代实施方式中,框中标注的功能可以不按图中标注的顺序发生。例如,取决于所涉及的功能,实际上可以基本上同时执行连续示出的两个框,或者有时可以以相反的顺序执行这些框。还应注意的是,框图和/或流程图说明的每个框以及框图和/或流程图说明中的框的组合可以由执行指定功能或动作的基于专用硬件的系统来实现,或由专用硬件和计算机指令的组合来实现。
尽管前述内容针对本公开的实施例,但是可以在不脱离本公开的基本范围的情况下设计本公开的其他和另外的实施例,并且本公开的范围由所附权利要求书确定。

Claims (20)

1.一种计算机实现的方法,用于从有线通信信道检测无线通信干扰,所述方法包括:
确定与无线通信信道相关联的本底噪声;
基于来自干扰所述无线通信信道的所述有线通信信道的辐射发射确定噪声功率;
对比所述噪声功率与本底噪声以生成比较;以及
基于所述比较将与所述有线通信信道相关联的电缆分类。
2.根据权利要求1所述的计算机实现的方法,其中确定所述本底噪声包括:
禁用所述有线通信信道发送数据;
经由与所述无线通信信道相关联的无线接口收集第一组波形样本;以及
基于所述第一组波形样本生成第一频谱,
其中所述噪声功率是基于所述第一频谱的。
3.根据权利要求2所述的计算机实现的方法,其中确定所述本底噪声进一步包括:
经由所述无线接口收集第二组波形样本;
基于所述第二组波形样本生成第二频谱,
其中所述噪声功率还基于所述第二频谱。
4.根据权利要求2所述的计算机实现的方法,其中确定所述本底噪声进一步包括设置所述无线接口为监控模式,其中,当在所述监控模式中时,所述无线接口被配置成生成所述第一组波形样本。
5.根据权利要求1所述的计算机实现的方法,其中确定所述噪声功率包括:
启用所述有线通信信道以发送数据;
经由与所述无线通信信道相关联的无线接口收集第一组波形样本;以及
基于所述第一组波形样本生成第一频谱,
其中所述噪声功率是基于所述第一频谱的。
6.根据权利要求5所述的计算机实现的方法,其中确定所述噪声功率进一步包括:
经由所述无线接口收集第二组波形样本;以及
基于所述第二组波形样本生成第二频谱,
其中所述噪声功率还基于所述第二频谱。
7.根据权利要求1所述的计算机实现的方法,其中将所述电缆分类包括:
确定所述噪声功率超出所述本底噪声至少一阈值量;以及
将所述电缆分类为劣质电缆。
8.根据权利要求1所述的计算机实现的方法,其中将所述电缆分类包括:
确定所述噪声功率不超出所述本底噪声至少一阈值量;以及
将所述电缆分类为优质电缆。
9.一种或更多种非暂时性计算机可读介质,其存储程序指令,当所述程序指令由一个或更多个处理器执行时,使所述一个或更多个处理器执行包括以下步骤的一个或多个步骤:
确定与无线通信信道相关联的本底噪声;
基于来自干扰所述无线通信信道的有线通信信道的辐射发射确定噪声功率;
对比所述噪声功率与本底噪声以生成比较;以及
基于所述比较将与所述有线通信信道相关联的电缆分类。
10.根据权利要求9所述的一种或更多种非暂时性计算机可读介质,其中确定所述本底噪声包括:
禁用所述有线通信信道发送数据;
经由与所述无线通信信道相关联的无线接口收集第一组波形样本;以及
基于所述第一组波形样本生成第一频谱,
其中所述噪声功率是基于所述第一频谱的。
11.根据权利要求10所述的一种或更多种非暂时性计算机可读介质,其中确定所述本底噪声进一步包括:
经由所述无线接口收集第二组波形样本;
基于所述第二组波形样本生成第二频谱,
其中所述噪声功率还基于所述第二频谱。
12.根据权利要求10所述的一种或更多种非暂时性计算机可读介质,其中确定所述本底噪声进一步包括:设置所述无线接口为监控模式,其中,当在所述监控模式中时,所述无线接口被配置成生成所述第一组波形样本。
13.根据权利要求9所述的一种或更多种非暂时性计算机可读介质,其中确定所述噪声功率包括:
启用所述有线通信信道以发送数据;
经由与所述无线通信信道相关联的无线接口收集第一组波形样本;以及
基于所述第一组波形样本生成第一频谱,
其中所述噪声功率是基于所述第一频谱的。
14.根据权利要求13所述的一种或更多种非暂时性计算机可读介质,其中确定所述噪声功率进一步包括:
经由所述无线接口收集第二组波形样本;以及
基于所述第二组波形样本生成第二频谱,
其中所述噪声功率还基于所述第二频谱。
15.根据权利要求9所述的一种或更多种非暂时性计算机可读介质,其中所述电缆包括高清晰度多媒体接口(HDMI)电缆、通用串行总线(USB)电缆、或显示端口电缆中的至少一者。
16.根据权利要求9所述的一种或更多种非暂时性计算机可读介质,其中所述无线通信信道包括无线保真(Wi-Fi)信道、蓝牙信道或移动宽带信道中的至少一个。
17.一种系统,包括:
存储指令的存储器;以及
耦合到所述存储器的处理器,并且当执行所述指令时:
确定与无线通信信道相关联的本底噪声;
基于来自干扰所述无线通信信道的有线通信信道的辐射发射确定噪声功率;
对比所述噪声功率与本底噪声以生成比较;以及
基于所述比较将与所述有线通信信道相关联的电缆分类。
18.根据权利要求17所述的系统,其中确定所述噪声功率包括:
启用所述有线通信信道以发送数据;
经由与所述无线通信信道相关联的无线接口收集第一组波形样本;以及
基于所述第一组波形样本生成第一频谱,
其中所述噪声功率是基于所述第一频谱的。
19.根据权利要求18所述的系统,其中确定所述噪声功率进一步包括:
经由所述无线接口收集第二组波形样本;以及
基于所述第二组波形样本生成第二频谱,
其中所述噪声功率还基于所述第二频谱。
20.根据权利要求18所述的系统,其中确定所述噪声功率进一步包括:设置所述无线接口为监控模式,其中,当在所述监控模式中时,所述无线接口被配置成生成所述第一组波形样本。
CN202111080431.XA 2020-10-14 2021-09-15 从有线通信信道检测无线通信干扰的技术 Active CN114362853B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/070,688 2020-10-14
US17/070,688 US11063629B1 (en) 2020-10-14 2020-10-14 Techniques for detecting wireless communications interference from a wired communications channel

Publications (2)

Publication Number Publication Date
CN114362853A true CN114362853A (zh) 2022-04-15
CN114362853B CN114362853B (zh) 2024-03-15

Family

ID=76764761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111080431.XA Active CN114362853B (zh) 2020-10-14 2021-09-15 从有线通信信道检测无线通信干扰的技术

Country Status (3)

Country Link
US (1) US11063629B1 (zh)
CN (1) CN114362853B (zh)
DE (1) DE102021126063A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12025678B2 (en) * 2021-04-29 2024-07-02 Ford Global Technologies, Llc Communication interference avoidance and prediction
CN113691754B (zh) * 2021-08-17 2023-04-21 浙江大华技术股份有限公司 一种信号传输控制方法、装置、电子设备和存储介质
CN114189297B (zh) * 2021-11-23 2024-05-28 上海移为通信技术股份有限公司 无线通信设备及其干扰检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023694A (zh) * 2004-09-17 2007-08-22 株式会社Ntt都科摩 移动通信方法、基站以及无线控制站
US20140348004A1 (en) * 2013-05-24 2014-11-27 Aruba Networks, Inc. Mitigating interference in wireless systems
US20150003226A1 (en) * 2013-06-28 2015-01-01 Rogers Communications Inc. Detection of cable network interference on wireless network
CN106771477A (zh) * 2016-11-28 2017-05-31 国网福建省电力有限公司 新型大口径高灵敏度的高压直流电缆泄漏电流检测传感器
US20180294837A1 (en) * 2017-04-10 2018-10-11 Cisco Technology, Inc. Interference group discovery for full duplex network architecture in cable network environment
CN109951198A (zh) * 2017-12-20 2019-06-28 三星电子株式会社 执行选择性噪声滤波的无线通信设备及操作该设备的方法
US20190349027A1 (en) * 2018-05-10 2019-11-14 Viavi Solutions, Inc. Instruments and methods of detecting intermittent noise in a cable network system
CN110870228A (zh) * 2017-06-30 2020-03-06 T移动美国公司 通过利用干扰信号来提高无线频谱效率

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995567A (en) * 1996-04-19 1999-11-30 Texas Instruments Incorporated Radio frequency noise canceller
US6625454B1 (en) * 2000-08-04 2003-09-23 Wireless Valley Communications, Inc. Method and system for designing or deploying a communications network which considers frequency dependent effects
US7522762B2 (en) * 2003-04-16 2009-04-21 Inverness Medical-Biostar, Inc. Detection, resolution, and identification of arrayed elements
US7443389B1 (en) * 2004-11-11 2008-10-28 Nvidia Corporation Pixel clock spread spectrum modulation
US7558348B1 (en) * 2005-01-24 2009-07-07 Nvidia Corporation Radio frequency antenna system and high-speed digital data link to reduce electromagnetic interference for wireless communications
US8021193B1 (en) * 2005-04-25 2011-09-20 Nvidia Corporation Controlled impedance display adapter
ATE476797T1 (de) * 2005-12-22 2010-08-15 Ericsson Telefon Ab L M Luftgestützte onboard-basissender-/ - empfängerstation für mobilkommunikation
US8126402B1 (en) * 2006-12-05 2012-02-28 Nvidia Corporation Transmission line common-mode filter
US7809070B2 (en) * 2007-05-24 2010-10-05 Alcatel-Lucent Usa Inc. Crosstalk estimation methods and apparatus using auxiliary time-domain signals
US8081560B2 (en) * 2007-08-31 2011-12-20 Alcatel Lucent Method and apparatus for self-tuning precoder
WO2009067653A2 (en) * 2007-11-21 2009-05-28 Aware, Inc. Stable low power mode for multicarrier transceivers
US8300518B2 (en) * 2008-04-01 2012-10-30 Alcatel Lucent Fast seamless joining of channels in a multi-channel communication system
GB0814483D0 (en) * 2008-08-07 2008-09-10 Cambridge Silicon Radio Ltd Uwb coexistence scheme
US20120306895A1 (en) * 2010-10-22 2012-12-06 Tollgrade Communications, Inc. Home wiring test systems and method
WO2012054918A2 (en) * 2010-10-22 2012-04-26 Tollgrade Communications, Inc. Communications wiring noise level monitor and alarm indicator
US8761350B2 (en) * 2010-10-22 2014-06-24 Tollgrade Communications, Inc. Home wiring test system with missing filter detection
US20120307982A1 (en) * 2010-10-22 2012-12-06 Tollgrade Communications, Inc. Home wiring test system using frequency-based measurement techniques
US8825823B2 (en) * 2011-01-06 2014-09-02 Nokomis, Inc System and method for physically detecting, identifying, diagnosing and geolocating electronic devices connectable to a network
US9178629B2 (en) * 2011-08-25 2015-11-03 Apple Inc. Non-synchronized radio-frequency testing
FR2985121B1 (fr) * 2011-12-22 2014-01-17 Astrium Sas Procede et systeme d'estimation d'une difference de marche d'un signal cible emis par un engin en orbite terrestre ou aerien
US8611437B2 (en) * 2012-01-26 2013-12-17 Nvidia Corporation Ground referenced single-ended signaling
US9338036B2 (en) * 2012-01-30 2016-05-10 Nvidia Corporation Data-driven charge-pump transmitter for differential signaling
US9729420B2 (en) * 2012-04-26 2017-08-08 Hewlett-Packard Development Company, L.P. Decreasing USB interference to adjacent wireless device
US9100290B2 (en) * 2012-05-24 2015-08-04 Comsonics, Inc. Characterizing cable leakage interference priorities on LTE
US8995594B2 (en) * 2012-08-22 2015-03-31 Intel Corporation Baseband cancellation of platform radio interference
WO2014082997A1 (en) * 2012-11-28 2014-06-05 Sony Corporation Receiver for receiving data in a broadcast system
WO2014180792A1 (en) * 2013-05-05 2014-11-13 Lantiq Deutschland Gmbh Training optimization of multiple lines in a vectored system using a prepared-to-join group
US10149309B2 (en) * 2013-08-07 2018-12-04 Sony Corporation Communication control device, communication control method, and communication device
US9451630B2 (en) * 2013-11-14 2016-09-20 Apple Inc. Dynamic configuration of wireless circuitry to mitigate interference among components in a computing device
US9337886B1 (en) * 2013-12-20 2016-05-10 Xilinx, Inc. Digital pre-distortion with shared observation path receiver
US9179337B2 (en) * 2013-12-20 2015-11-03 Arcom Digital, Llc Prioritizing repair of signal leakage in an HFC network
US9775164B2 (en) * 2014-01-28 2017-09-26 Netgear, Inc. Automatic wireless network channel selection
US10032710B2 (en) * 2015-07-23 2018-07-24 Nvidia Corporation Via pattern to reduce crosstalk between differential signal pairs
US10275387B2 (en) * 2015-08-10 2019-04-30 Mediatek Inc. Method and associated interface circuit for mitigating interference due to signaling of a bus
US9807646B1 (en) * 2015-09-21 2017-10-31 Amazon Technologies, Inc. Determining noise levels in electronic environments
EP3360261B1 (en) * 2015-10-08 2021-04-21 Telefonaktiebolaget LM Ericsson (PUBL) Reducing interference using interpolation/extrapolation
US10063369B1 (en) * 2015-12-16 2018-08-28 Verily Life Sciences Llc Time synchronization of multi-modality measurements
US10684906B2 (en) * 2016-06-15 2020-06-16 Microsoft Technology Licensing, Llc Monitoring peripheral transactions
US9935075B2 (en) * 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US11054457B2 (en) * 2017-05-24 2021-07-06 Cisco Technology, Inc. Safety monitoring for cables transmitting data and power
US10469109B2 (en) * 2017-09-19 2019-11-05 Qualcomm Incorporated Predistortion for transmitter with array
EP3575262B1 (en) * 2018-05-22 2021-04-14 Murata Manufacturing Co., Ltd. Reducing crosstalk in a mixed-signal multi-chip mems device package
KR102649194B1 (ko) * 2019-04-04 2024-03-20 삼성전자주식회사 외부 물체와의 거리를 측정하기 위한 전자 장치의 cross-talk 방지 구조
US10916841B2 (en) * 2019-06-28 2021-02-09 Nvidia Corporation Techniques to increase antenna-to-antenna isolation suitable for enhanced MIMO performance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023694A (zh) * 2004-09-17 2007-08-22 株式会社Ntt都科摩 移动通信方法、基站以及无线控制站
US20140348004A1 (en) * 2013-05-24 2014-11-27 Aruba Networks, Inc. Mitigating interference in wireless systems
US20150003226A1 (en) * 2013-06-28 2015-01-01 Rogers Communications Inc. Detection of cable network interference on wireless network
CN106771477A (zh) * 2016-11-28 2017-05-31 国网福建省电力有限公司 新型大口径高灵敏度的高压直流电缆泄漏电流检测传感器
US20180294837A1 (en) * 2017-04-10 2018-10-11 Cisco Technology, Inc. Interference group discovery for full duplex network architecture in cable network environment
CN110870228A (zh) * 2017-06-30 2020-03-06 T移动美国公司 通过利用干扰信号来提高无线频谱效率
CN109951198A (zh) * 2017-12-20 2019-06-28 三星电子株式会社 执行选择性噪声滤波的无线通信设备及操作该设备的方法
US20190349027A1 (en) * 2018-05-10 2019-11-14 Viavi Solutions, Inc. Instruments and methods of detecting intermittent noise in a cable network system

Also Published As

Publication number Publication date
DE102021126063A1 (de) 2022-04-14
CN114362853B (zh) 2024-03-15
US11063629B1 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
CN114362853B (zh) 从有线通信信道检测无线通信干扰的技术
JP6738135B2 (ja) 電気ケーブルの故障検出をコンピュータで実行する方法
JP7292502B6 (ja) 送信機テストパラメータを獲得するための方法および装置、ならびに記憶媒体
CN106951370B (zh) 虚拟现实设备程序运行延时的测评方法及装置
US10006964B2 (en) Chip performance monitoring system and method
US7595646B2 (en) System and method for information handling system peripheral EMC test
KR101525475B1 (ko) 케이블 고장 진단 장치 및 그 방법
US8756031B2 (en) Matched filter testing of data transmission cables
TW201333486A (zh) 通訊電力線狀態偵測方法及其系統
US20220383637A1 (en) Live streaming sampling method and apparatus, and electronic device
EP3190714A1 (en) Method and apparatus for acquiring channel transmission characteristics
US20240069094A1 (en) Test and measurement instrument accessory with reconfigurable processing component
WO2019037424A1 (zh) 一种频谱三维显示装置、方法及计算机可读存储介质
CN102427551A (zh) 数字高清源端接口传输品质测试系统
CN114615117B (zh) 用于经由有线通信信道的动态压摆率控制来优化无线通信的技术
US9775498B2 (en) Endoscope system
KR101403346B1 (ko) 도선의 결함을 진단하는 방법 및 시스템
KR101770743B1 (ko) 통신 노드에서의 임피던스 매칭 장치 및 방법
WO2022142172A1 (zh) 一种检测近场物体的方法、装置、介质和电子设备
US10036804B2 (en) Ultrasound scanning method and system
CN112946526A (zh) 电子器件断点检测方法、装置和电子设备
US10075286B1 (en) Equalizer for limited intersymbol interference
CN114844563B (zh) 光缆测试装置及方法
CN216795123U (zh) 多媒体信号传输电路、电子设备以及多媒体系统
JP2007028588A (ja) 映像伝送方法および映像伝送システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant