CN114362510B - 可调电容电路和延时调节电路 - Google Patents

可调电容电路和延时调节电路 Download PDF

Info

Publication number
CN114362510B
CN114362510B CN202111564399.2A CN202111564399A CN114362510B CN 114362510 B CN114362510 B CN 114362510B CN 202111564399 A CN202111564399 A CN 202111564399A CN 114362510 B CN114362510 B CN 114362510B
Authority
CN
China
Prior art keywords
capacitance
circuit
adjusting
capacitor
adjusting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111564399.2A
Other languages
English (en)
Other versions
CN114362510A (zh
Inventor
许强
严波
罗浚洲
王悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puyuan Jingdian Technology Co ltd
Original Assignee
Puyuan Jingdian Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puyuan Jingdian Technology Co ltd filed Critical Puyuan Jingdian Technology Co ltd
Priority to CN202111564399.2A priority Critical patent/CN114362510B/zh
Publication of CN114362510A publication Critical patent/CN114362510A/zh
Priority to PCT/CN2022/120595 priority patent/WO2023116094A1/zh
Application granted granted Critical
Publication of CN114362510B publication Critical patent/CN114362510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/284Modifications for introducing a time delay before switching in field effect transistor switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)

Abstract

本发明公开了一种可调电容电路和延时调节电路。该可调电容电路包括至少一个电容调节单元;电容调节单元包括两个调节子单元,每个调节子单元包括电容、电力单向导通管和回路模块,电容的第一极作为调节子单元的第一端,电容的第二极与电力单向导通管的第一极和回路模块的第二端连接,电力单向导通管的第二极与控制信号端连接,并作为调节子单元的第二端,回路模块的第一端与第一电压端连接,两个调节子单元以控制信号端呈镜像设置;其中,回路模块用于为单向导通管提供回路。单向导通管的寄生电容很小,可以增加可调电容电路的变容比,使得可调电容电路可以用于高速电路中。同时可以增加可调电容电路的使用范围。

Description

可调电容电路和延时调节电路
技术领域
本发明实施例涉及电子电路的技术领域,尤其涉及一种可调电容电路和延时调节电路。
背景技术
可调电容电路作为一种基础电路结构,可广泛用于需要改变节点时间常数或者延时时长的电路中。例如,在延时电路中,通过设置可调电容电路,用于调节延时电路的等效电容值,可以实现延时电路的延时时长的改变。
现有技术中,可调电容电路可以包括可调电容器件,用于实现电容值的调节,例如,可调电容器件可以为压控可调电容。可调电容器件的电容值调节范围比较小,不利于实现大范围的电容值调节。或者,可调电容电路还可以由多个支路组成,每个支路通过金属氧化物半导体场效应晶体管(metal oxide semiconductor,MOS管)控制该支路中的电容是否接入可调电容电路,从而通过MOS管调节可调电容电路中电容的数量,实现可调电容电路的电容值调节。由于MOS管存在较大的寄生电容,使得可调电容电路的变容比比较小,从而限制了可调电容电路的使用范围。
发明内容
本发明提供一种可调电容电路和延时调节电路,以提高可调电容电路的变容比,增加了可调电容电路的使用范围。
第一方面,本发明实施例提供了一种可调电容电路,包括至少一个电容调节单元;
所述电容调节单元包括两个调节子单元,每个所述调节子单元包括电容、电力单向导通管和回路模块,所述电容的第一极作为所述调节子单元的第一端,所述电容的第二极与所述电力单向导通管的第一极和所述回路模块的第二端连接,所述电力单向导通管的第二极与控制信号端连接,并作为所述调节子单元的第二端,所述回路模块的第一端与第一电压端连接,两个所述调节子单元以所述控制信号端呈镜像设置;其中,所述回路模块用于为所述单向导通管提供回路。
可选地,所述电力单向导通管包括电力二极管;所述电力二极管的正极与所述电容的第二极连接,所述电力二极管的负极与所述控制信号端连接;
或者,所述电力单向导通管包括三极管,所述三极管的基极和集电极与所述电容的第二极连接,所述三极管的发射极与所述控制信号端连接。
可选地,所述回路模块包括第一电阻;所述第一电阻的第一端与所述第一电压端连接,所述第一电阻的第二端与所述电容的第二极连接。
可选地,所述可调电容电路包括至少两个电容调节单元;至少两个所述电容调节单元并联连接。
可选地,不同所述电容调节单元内的单向导通管的第二极与不同的控制信号端连接。
可选地,任意两个所述电容调节单元的电容最大值的比值为2n;其中,n为大于或等于1的整数。
可选地,可调电容电路还包括压控电容调节单元;所述压控电容调节单元与所述电容调节单元并联,所述压控电容调节单元用于连续调节所述电容调节单元电容值调节范围内的电容值。
可选地,所述压控电容调节单元包括第一可变电容和第二可变电容;所述第一可变电容的第一极与所述电容调节单元中的一个调节子单元的第一端连接,所述第一可变电容的第二极和所述第二可变电容的第一极与电压控制端连接,所述第二可变电容的第二极与所述电容调节单元中的另一个调节子单元的第一端连接。
可选地,所述可调电容电路包括至少两个电容调节单元时,至少两个所述电容调节单元的电容最大值中的最小值对应的电容调节单元为第一电容调节单元;所述压控电容调节单元的电容最小值等于所述第一电容调节单元的电容最小值,所述压控电容调节单元的电容最大值等于所述第一电容调节单元的电容最大值。
第二方面,本发明实施例还提供了一种延时调节电路,包括高速数据接口电路和第一方面提供的可调电容电路;所述高速数据接口电路的输出端与所述可调电容电路连接,所述高速数据接口电路用于输出待延时信号,所述可调电容电路用于对所述待延时信号延时。
本发明实施例的技术方案,通过设置电容调节单元包括单向导通管,单向导通管的寄生电容很小,使得电容调节单元的电容最小值比较小,从而可以降低电容调节单元的电容值调节范围的最小值,增加了电容调节单元的变容比,从而可以增加可调电容电路的变容比,使得可调电容电路可以用于高速电路中。同时,增加了可调电容电路用于改变节点时间常数时时间常数的取值范围,或者增加了可调电容电路用于延时电路时延时时长的取值范围,增加了可调电容电路的使用范围。
附图说明
图1为现有技术提供的一种可调电容电路的结构示意图;
图2为本发明实施例提供的一种可调电容电路的结构示意图;
图3为本发明实施例提供的另一种可调电容电路的结构示意图;
图4为本发明实施例提供的另一种可调电容电路的结构示意图;
图5为本发明实施例提供的另一种可调电容电路的结构示意图;
图6为本发明实施例提供的另一种可调电容电路的结构示意图;
图7为本发明实施例提供的另一种可调电容电路的结构示意图;
图8为本发明实施例提供的一种延时调节电路的结构示意图;
图9为本发明实施例提供的另一种延时调节电路的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
图1为现有技术提供的一种可调电容电路的结构示意图。如图1所示,该可调电容电路包括三个支路,每个支路由两个定容电容和一个MOS管形成全差分开关电容。示例性地,图1提供的可调电容电路包括三个支路,第一个支路到第三个支路上分别包括第一MOS管S1、第二MOS管S2和第三MOS管S3。通过分别控制第一MOS管S1、第二MOS管S2和第三MOS管S3的导通或关断,可以控制MOS管所在支路的电容是否接入可调电容电路。例如,当第一MOS管S1导通时,第一MOS管S1所在的第一个支路上的电容接入可调电容电路。当第一MOS管S1关断时,第一MOS管S1所在的第一个支路上的电容断路。由此可以通过控制第一MOS管S1的导通或关断控制可调电容电路中的电容数量,进而可以控制可调电容电路的电容值。MOS管导通时,MOS管所在支路的导通电容值为两个电容的串联等效电容值。MOS管关断时,MOS管所在支路的关断电容值为MOS管的寄生电容值。由于MOS管存在较大的寄生电容,使得MOS管关断时,MOS管所在支路的关断电容值比较大。从而使得MOS管所在支路的导通电容值与关断电容值的比值比较小,即MOS管所在支路的变容比比较小,限制了可调电容电路的使用范围。
针对上述技术问题,本发明实施例提供了一种可调电容电路。图2为本发明实施例提供的一种可调电容电路的结构示意图。如图2所示,可调电容电路包括至少一个电容调节单元10;电容调节单元10包括两个调节子单元110,每个调节子单元110包括电容C1、电力单向导通管D1和回路模块111,电容C1的第一极作为调节子单元110的第一端,电容C1的第二极与电力单向导通管D1的第一极和回路模块111的第二端连接,电力单向导通管D1的第二极与控制信号端CTRL连接,并作为调节子单元110的第二端,回路模块111的第一端与第一电压端V1连接,两个调节子单元110以控制信号端CTRL呈镜像设置;其中,回路模块111用于为单向导通管D1提供回路。
具体地,图2中示例性示出了可调电容电路包括一个电容调节单元10。在电容调节单元10内,两个调节子单元110以控制信号端CTRL呈镜像设置,即两个调节子单元110中的电力单向导通管D1的第二极均与控制信号端CTRL连接。同时可以使得电容调节单元10形成完整的全差分电容调节单元,提高了电容调节单元10的抗共模干扰的效果。在两个调节子单元110以控制信号端CTRL呈镜像设置后,两个调节子单元110的第一端分别作为可调电容电路的两个端口。如图2所示,两个调节子单元110分别为第一调节子单元101和第二调节子单元102,第一调节子单元101的第一端作为可调电容电路的第一端口P1,第二调节子单元102的第一端作为可调电容电路的第二端口P2。两个调节子单元110中的电力单向导通管D1的第一极均与回路模块111的第二端连接,通过控制信号端CTRL提供的控制信号电压与回路模块111的第二端电位的差值控制电力单向导通管D1的导通或关断。其中,回路模块111的第一端与第一电压端V1连接,第一电压端V1提供第一电压,并通过回路模块111传输至电力单向导通管D1的第一极。当第一电压与控制信号电压具有较大的压差时,可以使得电力单向导通管D1导通,并通过第一电压端V1、回路模块111、电力单向导通管D1和控制信号端CTRL形成导通回路。此时调节子单元110内的电容C1通过电力单向导通管D1形成导通回路,电容C1接入可调电容电路,用于调节可调电容电路的电容值。第一电压与控制信号电压的压差比较小,电力单向导通管D1关断时,两个调节子单元110处于断路状态,此时调节子单元110内的电容C1无法接入可调电容电路。当电力单向导通管D1关断时,电容调节单元10上的等效电容值为电力单向导通管D1的寄生电容,当电力单向导通管D1导通时,电容调节单元10上的等效电容值为两个调节子单元110中的第一电容C1的串联等效电容。
电容调节单元10的变容比为电容调节单元10的电容值调节范围的最大值与电容调节单元10的电容值调节范围的最小值的比值。电容调节单元10的电容值调节范围的最大值为电容调节单元10的导通电容值,即为两个调节子单元110中的电容C1接入可调电容电路时的等效电容值,电容调节单元10的电容值调节范围的最小值为电容调节单元10的关断电容值,即为电力单向导通管D1的寄生电容。电力单向导通管D1关断时,电力单向导通管D1的寄生电容通过一个PN结形成,使得电力单向导通管D1具有很小的寄生电容,使得电容调节单元10上的关断电容值比较小,从而可以降低电容调节单元10的电容值调节范围的最小值,增加了电容调节单元10的变容比,从而可以增加可调电容电路的变容比,使得可调电容电路可以用于高速电路中。同时,增加了可调电容电路用于改变节点时间常数时时间常数的取值范围,或者增加了可调电容电路用于延时电路时延时时长的取值范围,增加了可调电容电路的使用范围。
需要说明的是,电力单向导通管D1为单向导通管,当电力单向导通管D1的正极电压与负极电压的压差大于电力单向导通管D1的阈值电压时,电力单向导通管D1导通。示例性地,电力单向导通管D1的第一极可以为阳极,电力单向导通管D1的第二极可以为阴极。此时可以设置第一电压端V1提供的第一电压为高电压,示例性地,第一电压端V1为电源端。当控制信号端CTRL提供的控制信号为低电压时,电力单向导通管D1导通。当控制信号端CTRL提供的控制信号为高电压时,电力单向导通管D1关断。在其他实施例中,还可以设置电力单向导通管D1的第一极可以为阴极,电力单向导通管D1的第二极可以为阳极,适应性的改变第一电压端V1提供的第一电压和控制信号端CTRL提供的控制信号,同样可以控制电力单向导通管D1的导通或关断。
图3为本发明实施例提供的另一种可调电容电路的结构示意图。如图3所示,电力单向导通管D1包括电力二极管DT;电力二极管DT的正极与电容C1的第二极连接,电力二极管DT的负极与控制信号端CTRL连接;
具体地,电力二极管DT可以为垂直导电结构,在电力二极管DT关断时,电力二极管DT的寄生电容由一个PN结形成,使得电力二极管DT具有很小的寄生电容。当电力二极管DT关断时,电容调节单元10上的关断电容值为电力二极管DT的寄生电容,即电容调节单元10上的关断电容值比较小,从而可以降低电容调节单元10的电容值调节范围的最小值,增加了电容调节单元10的变容比,从而可以增加可调电容电路的变容比。示例性地,第一电压端V1提供的第一电压为电源电压,当控制信号端CTRL提供的控制信号为低电平时,电力二极管DT正向导通,电容调节单元10的导通电容值为两个调节子单元110中的电容C1串联的等效电容值。当控制信号端CTRL提供的控制信号为高电平时,电力二极管DT关断,电容调节单元10的关断电容值为电力二极管DT的寄生电容。从而通过控制信号端CTRL提供的控制信号控制电容调节单元10为可调电容电路提供的电容值,实现了可调电容电路的电容值调节。
图4为本发明实施例提供的另一种可调电容电路的结构示意图。如图4所示,电力单向导通管D1包括三极管Q1,三极管Q1的基极和集电极与电容C1的第二极连接,三极管Q1的发射极与控制信号端CTRL连接。
具体地,三极管Q1的基极和集电极连接,可以实现三极管Q1的二极管连接方式。在三极管Q1关断时,三极管Q1的寄生电容也可以由一个PN结形成,使得三极管Q1具有很小的寄生电容。当三极管Q1关断时,电容调节单元10上的关断电容值为三极管Q1的寄生电容,即电容调节单元10上的关断电容值比较小,从而可以降低电容调节单元10的电容值调节范围的最小值,增加了电容调节单元10的变容比,从而可以增加可调电容电路的变容比。示例性地,三极管Q1为N型三极管,第一电压端V1提供的第一电压为电源电压,当控制信号端CTRL提供的控制信号为低电平时,三极管Q1导通,电容调节单元10的导通电容值为两个调节子单元110中的电容C1串联的等效电容值。当控制信号端CTRL提供的控制信号为高电平时,三极管Q1关断,电容调节单元10的关断电容值为三极管Q1的寄生电容。从而通过控制信号端CTRL提供的控制信号控制电容调节单元10为可调电容电路提供的电容值,实现了可调电容电路的电容值调节。
需要说明的是,图4中示例性地示出了三极管Q1为N型三极管。在其他实施例中,三极管Q1还可以为P型三极管,可以根据需要适应性的调整第一电压端V1的第一电压和控制信号端CTRL提供的控制信号,用于控制三极管Q1的导通或关断状态,此处不作限定。
图5为本发明实施例提供的另一种可调电容电路的结构示意图。如图5所示,回路模块111包括第一电阻R1;第一电阻R1的第一端与第一电压端V1连接,第一电阻R1的第二端与电容C1的第二极连接。
具体地,第一电阻R1可以为第一电压端V1和电力单向导通管D1的第一极之间提供回路,在控制信号端CTRL提供的控制信号控制电力单向导通管D1导通时,第一电压端V1、第一电阻R1、电力单向导通管D1和控制信号端CTRL之间形成导通回路,从而使得调节子单元110内的电容C1通过电力单向导通管D1形成导通回路,电容C1接入可调电容电路,用于调节可调电容电路的电容值。
需要说明的是,电容调节单元10的时间常数与电容调节单元10的等效电容和等效电阻相关,当回路模块111包括第一电阻R1时,第一电阻R1影响电容调节单元10的时间常数,通过设置第一电阻R1的阻值很小,从而可以降低第一电阻R1对电容调节单元10的时间常数的影响。
图6为本发明实施例提供的另一种可调电容电路的结构示意图。如图6所示,可调电容电路包括至少两个电容调节单元10;至少两个电容调节单元10并联连接。
具体地,至少两个电容调节单元10并联连接,每个电容调节单元10中两个调节子单元110的第一端分别作为可调电容电路的两个端口。图6中示例性地示出了可调电容电路包括三个电容调节单元10。三个电容调节单元10并联连接。通过设置至少两个电容调节单元10并联连接,可以通过多个电容调节单元10内的电容C1增加可调电容电路的电容值调节范围,从而可以进一步地增加可调电容电路的变容比,增加了可调电容电路的使用范围。
需要说明的是,图6中示例性地示出了电容调节单元10中的单向导通管D1为二极管连接方式的三极管Q1。在其他实施例中,单向导通管D1还可以为电力二极管。
继续参考图6,不同电容调节单元10内的单向导通管D1的第二极与不同的控制信号端CTRL连接。
具体地,不同的控制信号端CTRL提供的控制信号可以单独控制不同电容调节单元10内的单向导通管D1的导通或关断,从而可以分别控制不同的电容调节单元10内的电容C1接入可调电容电路,进一步地增加可调电容电路的电容值调节范围。示例性地,如图6所示,可调电容电路包括三个电容调节单元10,每个电容调节单元10中的单向导通管D1的第二极分别与第一控制信号端CTRL1、第二控制信号端CTRL2和第三控制信号端CTRL3连接,第一控制信号端CTRL1提供的第一控制信号、第二控制信号端CTRL2提供的第二控制信号和第三控制信号端CTRL3提供的第三控制信号可以分别控制三个电容调节单元10中的电容C1是否接入可调电容电路,可以使可调电容电路的电容值调节范围增加,从而可以进一步地提高可调电容电路的变容比,增加可调电容电路的使用范围。
示例性地,当第一控制信号端CTRL1提供的第一控制信号控制第一个电容调节单元10中的单向导通管D1关断,第二控制信号端CTRL2提供的第二控制信号控制第二个电容调节单元10中的单向导通管D1关断,第三控制信号端CTRL3提供的第三控制信号控制第三个电容调节单元10中的单向导通管D1关断时,可调电容电路的电容值为第一个电容调节单元10中的单向导通管D1的寄生电容与第二个电容调节单元10中的单向导通管D1的寄生电容和第三个电容调节单元10中的单向导通管D1的寄生电容之和,并且为可调电容电路的电容值调节范围的最小值。当第一控制信号端CTRL1提供的第一控制信号控制第一个电容调节单元10中的单向导通管D1导通,第二控制信号端CTRL2提供的第二控制信号控制第二个电容调节单元10中的单向导通管D1关断,第三控制信号端CTRL3提供的第三控制信号控制第三个电容调节单元10中的单向导通管D1关断时,可调电容电路的电容值为第一个电容调节单元10中的两个电容C1的等效电容值与第二个电容调节单元10中的单向导通管D1的寄生电容和第三个电容调节单元10中的单向导通管D1的寄生电容之和。当第一控制信号端CTRL1提供的第一控制信号控制第一个电容调节单元10中的单向导通管D1导通,第二控制信号端CTRL2提供的第二控制信号控制第二个电容调节单元10中的单向导通管D1导通,第三控制信号端CTRL3提供的第三控制信号控制第三个电容调节单元10中的单向导通管D1关断时,可调电容电路的电容值为第一个电容调节单元10中的两个电容C1的等效电容值与第二个电容调节单元10中的两个电容C1的等效电容值和第三个电容调节单元10中的单向导通管D1的寄生电容之和。当第一控制信号端CTRL1提供的第一控制信号控制第一个电容调节单元10中的单向导通管D1导通,第二控制信号端CTRL2提供的第二控制信号控制第二个电容调节单元10中的单向导通管D1导通,第三控制信号端CTRL3提供的第三控制信号控制第三个电容调节单元10中的单向导通管D1导通时,可调电容电路的电容值为第一个电容调节单元10中的两个电容C1的等效电容值与第二个电容调节单元10中的两个电容C1的等效电容值和第三个电容调节单元10中的两个电容C1的等效电容值之和,并且为可调电容电路的电容值调节范围的最大值。
在上述各技术方案的基础上,任意两个电容调节单元的电容最大值的比值为2n;其中,n为大于或等于1的整数。
具体地,单向导通管具有导通和关断状态,使得电容调节单元的电容值调节范围只包括两个数值,分别为单向导通管导通时电容调节单元中电容的等效电容值,以及单向导通管关断时电容调节单元中单向导通管的寄生电容值。当可调电容电路包括至少两个电容调节单元时,至少两个电容调节单元的电容最小值均为单向导通管的寄生电容值,设置任意两个电容调节单元的电容最大值的比值为2n,可以使得不同的电容调节单元的电容值调节范围的关系为2n,从而有利于电容调节单元实现模拟信号与数字信号的转换对应。示例性地,当可调电容电路包括三个电容调节单元时,相邻两个电容调节单元的电容最大值的比值为21,此时第一个电容调节单元与第三个电容调节单元的电容最大值的比为22,有利于电容调节单元实现模拟信号与数字信号的转换对应。
图7为本发明实施例提供的另一种可调电容电路的结构示意图。如图7所示,可调电容电路还包括压控电容调节单元20;压控电容调节单元20与电容调节单元10并联,压控电容调节单元20用于连续调节电容调节单元10电容值调节范围内的电容值。
具体地,压控电容调节单元20可以根据电压调节电容值,电压为模拟信号,从而可以使得压控电容调节单元20实现电容值的连续调节,满足模拟信号的应用场合。另外,压控电容调节单元20与电容调节单元10并联,可以使得可调电容电路的电容值为压控电容调节单元20的电容值与电容调节单元10的电容值之和。压控电容调节单元20连续调节电容调节单元10电容值调节范围内的电容值时,可以通过压控电容调节单元20与电容调节单元10的配合实现电容调节单元10的电容值范围内的电容值连续调节,实现可调电容电路在模拟信号的应用场合,进一步地增加了可调电容电路的使用范围。
继续参考图7,压控电容调节单元20包括第一可变电容Ct1和第二可变电容Ct2;第一可变电容Ct1的第一极与电容调节单元10中的一个调节子单元110的第一端连接,第一可变电容Ct1的第二极和第二可变电容Ct2的第一极与电压控制端CV连接,第二可变电容Ct2的第二极与电容调节单元10中的另一个调节子单元110的第一端连接。
具体地,如图7所示,第一可变电容Ct1和第二可变电容Ct2背接,通过电压控制端CV提供的电压控制信号控制第一可变电容Ct1和第二可变电容Ct2的电容值,进而调节压控电容调节单元20的电容值。第一可变电容Ct1和第二可变电容Ct2可以连续变容,从而使得压控电容调节单元20实现在电容值调节范围内的全数值调节,满足模拟信号的应用场合。
在上述各技术方案的基础上,可调电容电路包括至少两个电容调节单元时,至少两个电容调节单元的电容最大值中的最小值对应的电容调节单元为第一电容调节单元;压控电容调节单元的电容最小值等于第一电容调节单元的电容最小值,压控电容调节单元的电容最大值等于第一电容调节单元的电容最大值。
具体地,当可调电容电路包括至少两个电容调节单元时,不同的电容调节单元的电容最小值相等,不同的电容调节单元的电容最大值可以不等。示例性地,任意两个电容调节单元的电容最大值的比值为2n,此时可以设置压控电容调节单元的电容最小值等于电容调节单元的电容最小值,压控电容调节单元的电容最大值等于不同的电容调节单元的电容最大值中的最小值,即为第一电容调节单元的电容最大值,从而使得压控电容调节单元可以实现连续调节第一电容调节单元的电容值调节范围。同时,通过控制不同电容调节单元中的单向导通管的导通或关断状态,可以使得不同的电容调节单元的电容值调节范围与压控电容调节单元的电容值调节范围配合,实现所有电容调节单元的电容值调节范围内的电容值连续调节,进一步地增加了可调电容电路的电容调节范围,增加了可调电容电路的使用范围。
示例性地,图7中示例性地示出了可调电容电路包括三个电容调节单元10和一个压控电容调节单元20。任意两个电容调节单元10的电容最大值的比值为2n,例如,第一个电容调节单元11的电容最大值小于第二个电容调节单元12的电容最大值,且第二个电容调节单元12的电容最大值与第一个电容调节单元11的电容最大值的比值为2。第二个电容调节单元12的电容最大值小于第三个电容调节单元13的电容最大值,且第三个电容调节单元13的电容最大值与第二个电容调节单元12的电容最大值的比值为2。压控电容调节单元20的电容值调节范围的电容最小值为电容调节单元10的电容值调节范围的电容最小值,即为单向导通管D1的寄生电容值。压控电容调节单元20的电容值调节范围的电容最大值为第一个电容调节单元11的电容最大值。
在可调电容电路调节电容值时,可以控制第一个电容调节单元11至第三个电容调节单元13内的单向导通管D1关断,使得可调电容电路的电容值为压控电容调节单元20的电容值调节范围与三个导向导通管D1的寄生电容值之和,此时可调电容电路的电容值调节范围大于第一个电容调节单元11的电容值调节范围,并在第一个电容调节单元11的电容值调节范围内实现连续调节。或者,可以控制第一个电容调节单元11内的单向导通管D1导通,第二个电容调节单元12和第三个电容调节单元13内的单向导通管D1关断,压控电容调节单元20与第一个电容调节单元11配合,使得可调电容电路的电容值为压控电容调节单元20的电容值与第一个电容调节单元11内两个电容C1的等效电容值,以及两个导向导通管D1的寄生电容值之和,此时可调电容电路的电容值调节范围大于第二个电容调节单元12的电容值调节范围,并在第一个电容调节单元11的电容值调节范围以外,且在第二个电容调节单元11的电容值调节范围以内实现连续调节。或者,可以控制第一个电容调节单元11内的单向导通管D1导通,第二个电容调节单元12内的单向导通管D1导通,第三个电容调节单元13内的单向导通管D1关断,压控电容调节单元20与第一个电容调节单元11和第二个电容调节单元12配合,使得可调电容电路的电容值为压控电容调节单元20的电容值与第一个电容调节单元11内两个电容C1的等效电容值、第二个电容调节单元12内两个电容C1的等效电容值以及一个导向导通管D1的寄生电容值之和,此时可调电容电路的电容值调节范围大于第三个电容调节单元13的电容值调节范围,并在第二个电容调节单元12的电容值调节范围以外,且在第三个电容调节单元13的电容值调节范围以内实现连续调节。或者,可以控制第一个电容调节单元11内的导向导通管D1导通,第二个电容调节单元12内的导向导通管D1导通,第三个电容调节单元13内的导向导通管D1导通,压控电容调节单元20与第一个电容调节单元11、第二个电容调节单元12和第三个电容调节单元13配合,使得可调电容电路的电容值为压控电容调节单元20的电容值与第一个电容调节单元11内两个电容C1的等效电容值、第二个电容调节单元12内两个电容C1的等效电容值以及第三个电容调节单元13内两个电容C1的等效电容值之和,此时可调电容电路的电容值调节范围大于第三个电容调节单元13的电容值调节范围的两倍,并在第三个电容调节单元13的电容值调节范围以外,且在第三个电容调节单元13的电容值调节范围的两倍以内实现连续调节。由此可以实现可调电容电路在电容值调节范围内电容值的连续调节,进一步地增加了可调电容电路的电容调节范围,增加了可调电容电路的使用范围。
需要说明的是,上述过程仅是可调电容电路调节电容值的一种示例。在其他实施例中,可调电容电路还可以包括多个电容调节单元,可调电容电路的电容值调节范围以及调节过程可以适应性的变化,此处不做限定。
另外,上述各实施例提供的可调电容电路具有多种应用场景,示例性地,可调电容电路可以集成于功能芯片上或者集成于集成电路内,用于实现功能芯片或集成电路的电容可调,以提高功能芯片或集成电路的性能。
本发明实施例还提供一种延时调节电路。图8为本发明实施例提供的一种延时调节电路的结构示意图。如图8所示,延时调节电路包括高速数据接口电路200和本发明任意实施例提供的可调电容电路100;高速数据接口电路200的输出端与可调电容电路100连接,高速数据接口电路200用于输出待延时信号,可调电容电路100用于对待延时信号延时。
具体地,如图8所示,高速数据接口电路200的输出端包括两个输出端口,分别与可调电容电路100的两个端口连接。高速数据接口电路200为可调电容电路100提供待延时信号,该待延时信号传输至可调电容电路100的两个端口时,可调电容电路100根据延时调节电路的延时需求调节调节子单元中的第一三极管的导通或关断状态,从而可以实现对待延时信号的延时。
本实施例的技术方案,由于可调电容电路中的电容调节单元包括单向导通管,单向导通管的寄生电容很小,使得电容调节单元的电容最小值比较小,从而可以降低电容调节单元的电容值调节范围的最小值,增加了电容调节单元的变容比,从而可以增加可调电容电路的变容比,使得可调电容电路可以用于高速电路中。同时可以增加延时调节电路的延时时长的取值范围,进而增加了可调电容电路的使用范围。
继续参考图8,高速数据接口电路200为电流模式逻辑电平接口电路。
具体地,电流模式逻辑(current mode logic,CML)电平接口电路包括电流源、两个三极管和两个电阻,两个三极管的发射极与电流源的正极连接,电流源的负极与接地端连接,两个三极管的集电极分别通过一电阻与电源连接,并分别作为CML电平接口电路的两个输出端,两个三极管的基极分别与高电平输入端VIN和低电平输入端VIP连接,用于分别控制两个三极管分时导通。由于CML电平接口电路简单,可以简化延时调节电路的结构。
需要说明的是,图8中示例性地示出了可调电容电路100仅包括电容调节单元10,在其他实施例中,可调电容电路100还可以包括压控电容调节单元。图9为本发明实施例提供的另一种延时调节电路的结构示意图。如图9所示,可调电容电路100还包括压控电容调节单元20,通过压控电容调节单元20可以实现可调电容电路100在电容值调节范围内电容值的连续调节,使得延时调节电路能够在延时时长的调节范围内实现延时时长的连续调节。
另外,上述各实施例提供的延时调节电路具有多种应用场景,示例性地,延时调节电路可以集成于功能芯片上或者集成于集成电路内,用于实现功能芯片或集成电路的电容可调,以提高功能芯片或集成电路的性能。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (8)

1.一种可调电容电路,其特征在于,包括至少一个电容调节单元;
所述电容调节单元包括两个调节子单元,每个所述调节子单元包括电容、电力单向导通管和回路模块,所述电容的第一极作为所述调节子单元的第一端,所述电容的第二极与所述电力单向导通管的第一极和所述回路模块的第二端连接,所述电力单向导通管的第二极与控制信号端连接,并作为所述调节子单元的第二端,所述回路模块的第一端与第一电压端连接,两个所述调节子单元以所述控制信号端呈镜像设置;其中,所述回路模块用于为所述单向导通管提供回路;
所述回路模块包括第一电阻;所述第一电阻的第一端与所述第一电压端连接,所述第一电阻的第二端与所述电容的第二极连接;
所述的可调电容电路还包括压控电容调节单元;所述压控电容调节单元与所述电容调节单元并联,所述压控电容调节单元用于连续调节所述电容调节单元电容值调节范围内的电容值。
2.根据权利要求1所述的可调电容电路,其特征在于,所述电力单向导通管包括电力二极管;所述电力二极管的正极与所述电容的第二极连接,所述电力二极管的负极与所述控制信号端连接;
或者,所述电力单向导通管包括三极管,所述三极管的基极和集电极与所述电容的第二极连接,所述三极管的发射极与所述控制信号端连接。
3.根据权利要求1所述的可调电容电路,其特征在于,所述可调电容电路包括至少两个电容调节单元;至少两个所述电容调节单元并联连接。
4.根据权利要求3所述的可调电容电路,其特征在于,不同所述电容调节单元内的单向导通管的第二极与不同的控制信号端连接。
5.根据权利要求3所述的可调电容电路,其特征在于,任意两个所述电容调节单元的电容最大值的比值为2n;其中,n为大于或等于1的整数。
6.根据权利要求1所述的可调电容电路,其特征在于,所述压控电容调节单元包括第一可变电容和第二可变电容;所述第一可变电容的第一极与所述电容调节单元中的一个调节子单元的第一端连接,所述第一可变电容的第二极和所述第二可变电容的第一极与电压控制端连接,所述第二可变电容的第二极与所述电容调节单元中的另一个调节子单元的第一端连接。
7.根据权利要求1所述的可调电容电路,其特征在于,所述可调电容电路包括至少两个电容调节单元时,至少两个所述电容调节单元的电容最大值中的最小值对应的电容调节单元为第一电容调节单元;所述压控电容调节单元的电容最小值等于所述第一电容调节单元的电容最小值,所述压控电容调节单元的电容最大值等于所述第一电容调节单元的电容最大值。
8.一种延时调节电路,其特征在于,包括高速数据接口电路和权利要求1-7任一项所述的可调电容电路;所述高速数据接口电路的输出端与所述可调电容电路连接,所述高速数据接口电路用于输出待延时信号,所述可调电容电路用于对所述待延时信号延时。
CN202111564399.2A 2021-12-20 2021-12-20 可调电容电路和延时调节电路 Active CN114362510B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111564399.2A CN114362510B (zh) 2021-12-20 2021-12-20 可调电容电路和延时调节电路
PCT/CN2022/120595 WO2023116094A1 (zh) 2021-12-20 2022-09-22 可调电容电路和延时调节电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111564399.2A CN114362510B (zh) 2021-12-20 2021-12-20 可调电容电路和延时调节电路

Publications (2)

Publication Number Publication Date
CN114362510A CN114362510A (zh) 2022-04-15
CN114362510B true CN114362510B (zh) 2023-04-11

Family

ID=81102032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111564399.2A Active CN114362510B (zh) 2021-12-20 2021-12-20 可调电容电路和延时调节电路

Country Status (2)

Country Link
CN (1) CN114362510B (zh)
WO (1) WO2023116094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362510B (zh) * 2021-12-20 2023-04-11 普源精电科技股份有限公司 可调电容电路和延时调节电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI266472B (en) * 2002-04-25 2006-11-11 Amic Technology Corp Voltage-controlled capacitor circuit and related circuitry with diode and MOS varactors
JP2007048901A (ja) * 2005-08-09 2007-02-22 Sanyo Electric Co Ltd 可変容量ダイオード
EP1962420B1 (en) * 2007-02-23 2010-04-07 STMicroelectronics Srl High-precision calibration circuit calibrating an adjustable capacitance of an integrated circuit having a time constant depending on said capacitance
US8106714B2 (en) * 2008-12-19 2012-01-31 Samsung Electronics Co., Ltd. Adjustable capacitor, digitally controlled oscillator, and all-digital phase locked loop
CN213990607U (zh) * 2020-12-31 2021-08-17 锐石创芯(深圳)科技有限公司 可调电容元件和低噪声放大电路
CN114362510B (zh) * 2021-12-20 2023-04-11 普源精电科技股份有限公司 可调电容电路和延时调节电路

Also Published As

Publication number Publication date
WO2023116094A1 (zh) 2023-06-29
CN114362510A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US6956442B2 (en) Ring oscillator with peaking stages
CN114362510B (zh) 可调电容电路和延时调节电路
US10116263B1 (en) Method and device for TIA overload control in low power applications
CN111665898B (zh) 一种基于GaAs HBT工艺的功放芯片偏置电路
CN111313228B (zh) 激光驱动电路及光发射系统
CN114362511B (zh) 可调电容电路和延时调节电路
CN114400991A (zh) 可调电容电路和延时调节电路
CN214959460U (zh) 一种功率放大器偏置电位瞬态补偿电路结构
CN102109869B (zh) 驱动电路
CN108365823B (zh) 一种基于场效应管的大变容比压控变容电路
US6683505B2 (en) High speed voltage controlled oscillator
CN203774608U (zh) 采用负电容中和技术的高速激光二极管驱动器集成电路
Borah et al. Ferroelectric capacitor based adaptive differential equalizer
CN112886929B (zh) 一种宽调谐范围的分布式振荡器电路
AU2022290931B2 (en) Method of use for photoelectric unit and amplification apparatus thereof
CN110838844B (zh) 差分信号转单端信号电路、锁相环和serdes电路
CN214125258U (zh) 一种基于三极管的数字步进衰减器
CN112987842B (zh) 一种带隙基准电压源电路
CN220359396U (zh) 一种过温补偿电路及led线性恒流驱动系统
CN218918000U (zh) 一种恒流电路
WO2024080122A1 (ja) 増幅回路および通信装置
CN116582122B (zh) 一种数字信号双向传输低电平转换电路
US11837847B2 (en) DFB laser DC-coupled output power configuration scheme
CN213585580U (zh) 一种改善llc谐振变换器大动态响应的iii型补偿电路
CN116938225A (zh) 电平转换电路、电平转换电路实现方法及开关电源电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant