CN114361275A - 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法 - Google Patents

基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法 Download PDF

Info

Publication number
CN114361275A
CN114361275A CN202111558649.1A CN202111558649A CN114361275A CN 114361275 A CN114361275 A CN 114361275A CN 202111558649 A CN202111558649 A CN 202111558649A CN 114361275 A CN114361275 A CN 114361275A
Authority
CN
China
Prior art keywords
semiconductor film
lead salt
room temperature
infrared detector
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111558649.1A
Other languages
English (en)
Inventor
王启胜
王立
吴形
吴识腾
王震东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202111558649.1A priority Critical patent/CN114361275A/zh
Publication of CN114361275A publication Critical patent/CN114361275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法,包括基底、半导体薄膜、两个电极,基底贴合在半导体薄膜下方,半导体薄膜上左右两端各有一电极,半导体薄膜为单晶且有晶界的铅盐半导体薄膜,半导体薄膜形成光热电转化层。探测器受光激发,电子跃迁到光热电转化层导带边上方,具有过剩能量的热载流子在皮秒量级时间内通过电子‑电子相互作用产生热电子,电极两端形成较稳定的温度梯度,以纳秒尺度的时间量级在材料两端形成稳定的电场,从而实现材料无需外部供电的自驱动超快探测。相比于现有光热电探测器,本发明不仅简化了制备工艺,缩小了器件体积,降低了大规模集成的难度,还提高了量子效率,缩短了响应时间。

Description

基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探 测方法
技术领域
本发明属于电子信息技术领域,具体涉及一种基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法。
背景技术
红外探测器是一种将红外辐射转换成便于测量的电信号光电元件。近红外、中波红外和长波红外波段是重要的大气窗口,具有极高的光透过率;因而红外探测器在极端天气条件具有远比可见光探测器突出的优势。除满足军事需求外,其在工业和民用领域的应用不断增大,如监控环境污染和气候变化,傅里叶变换红外光谱技术,红外驾驶,医学诊断等。
传统的探测器按照对探测源的能量转化方式,分作两种:
一种是基于热电变换来探测辐射的热电探测器。通过辐射使响应元温度升高,从而使响应元的某一物理特性发生变化,利用不同的物理效应(如电阻温度效应,温差电效应或热释电效应等)制成不同的热电探测器。虽然热电探测器的光谱响应范围较宽,但基于声子的输运方式明显要慢的多,通常的响应时间是毫秒级,因此无法适应高速,快捷,准确的测量要求。
另一种是目前最常用的光电探测器,通过光子与响应元直接作用产生内光电效应来探测信号。相较于热电探测器,光电探测器的响应速度明显要快得多,可以达到微秒级甚至是纳秒级。但该器件类型不仅需要时刻制冷以防止热激发产生暗电流影响测量结果;还受限于器件材料的带隙宽度,无法探测波长比带隙宽度更宽的光信号。这极大限制了该器件类型的使用条件。
此外,近年来,一种新的红外探测技术进入人们的视野,即光热电探测法。利用半导体的光热效应和热电效应进行自驱动探测,但现有的光热电探测器,往往需要几种材料才能完成由光信号到热信号(光热转化层),再由热信号到电信号(热电转化层)的转化过程。这种设计方案不仅加大了生长的工艺难度,而且增大了器件的体积,不便于器件的大面积集成封装,还面临量子效率低,响应时间长的问题。
鉴于以上背景,寻找和开发一种光谱响应范围宽,具有超高响应速度的探测方法和器件具有重要意义。
发明内容
针对现有技术中的不足与难题,本发明旨在提供基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法。本发明提供的方法,属于超快动力学的前沿理论,机制新颖且可靠。本发明提供的红外探测器能利用该原理实现单层的光热电转化机制,不仅灵敏度高,探测性能好,适用于大面积的集成封装,且制备方法简单,成本低,效率高。
本发明通过以下技术方案予以实现:
本发明一方面提供基于带晶界的铅盐半导体薄膜的室温超快红外探测器,包括基底、半导体薄膜、两个电极,基底贴合在半导体薄膜下方,半导体薄膜上左右两端各有一电极,半导体薄膜为单晶且有晶界的铅盐半导体薄膜,半导体薄膜形成光热电转化层。
上述探测器的制备方法包括如下步骤:
(1)基底准备:将基底清洗干净,并用氮气吹干;
(2)在400℃-800℃的高温环境下制备出单晶且有晶界的铅盐半导体薄膜,基底上沉积一层铅盐半导体薄膜形成光热电转化层;
(3)在光热电转化层沿中线左右各沉积一层电极,两电极间具有一定间距;具体为:
3-1)旋涂一层光刻胶,设计好电极形状后选择性曝光;
3-2)显影,去除曝光区域;
3-3)利用电子束蒸镀在样品表面沉积一层厚度为50-200nm的金属电极;
3-4)离未曝光区域的光刻胶及其上方的金属薄膜,得到一对光热电转化层上的电极。
制备得到的探测器不需要外部制冷和供电,能实现在室温下的自驱动超快探测。
进一步地,半导体薄膜的材料为具有热电子效应的半导体材料,半导体薄膜的材料为PbS、 Pb1-xSnxS、PbSe及相关固溶体,x代表原子百分比
进一步地,电极的材料为导电的金属,所述金属包括金、银、铜、铬、铝或铂,更优选地,选用金或铜。
进一步地,两个所述电极为分布在光热电转化层中心线两端的对称或非对称金属电极。
进一步地,所述基底采用与所述半导体薄膜热失配大的材料
本发明另一方面提供基于带晶界的铅盐半导体薄膜的室温超快红外探测器的探测方法,上述探测器在受到光信号照射时受光激发,电子跃迁到光热电转化层的导带边上方,具有过剩能量的热载流子在皮秒量级时间内通过电子-电子相互作用产生热电子,在宏观上表现为局域的加热现象;利用光热电转化层的慢电子-声子驰豫过程,在两端的电极处形成温度梯度,利用赛贝克效驱动热载流子应沿温度梯度方向堆积,形成电势差,进而在纳秒时间尺度上形成可被探测的电压,从而实现材料无需外部供电的自驱动超快探测。
上述室温超快红外探测器的探测范围为紫外光、可见光、短波红外或远红外,探测器的响应范围为100nm~10μm;响应速度大于微秒量级,其对光信号的响应时间范围为1μs~1ns;工作温度在77-400K;响应度在1mV/W到1000V/W;室温超快红外探测器在室温的探测率为1×108~1×1013cm·Hz1/2·W-1
与现有技术相比,本发明有益效果包括:
(1)利用热电子超快产生过程,对现有光热电探测器进行重新设计,本发明以单晶且有晶界的铅盐半导体薄膜作为光热电转化层,相比于现有光热电探测器,提供的器件不仅简化了制备工艺,缩小了器件体积,降低了大规模集成的难度,还提高了量子效率,缩短了响应时间。
(2)本发明不仅克服了传统光电探测器无法兼顾宽响应光谱和高探测率的缺点,而且克服了红外探测器室温噪音大、响应速度慢的不足。
(3)本发明的自驱动室温超快红外探测器制造方法简单,无需外部驱动,结构简单,成本低,适合大规模红外焦平面阵列集成。
(4)以本发明的自驱动室温超快红外探测器作为宽光谱高速传感器在自动驾驶、大气监测、红外成像等领域具有重要的应用前景。
附图说明
图1是本发明提供的室温超快红外探测器侧面结构图;
图2是本发明半导体薄膜的平面结构示意图,
图3是本发明提供的自驱动宽光谱超快探测方法的示意图;
图4是实施例1的硫化铅单晶薄膜的结构示意图;
图5是本发明实施例1提供的光热电探测器对信号的响应速度;
图6是本发明实施例1提供的硫化铅光热电探测器响应度随入射光波长变化图;副图为 980nm激光照射下响应度与入射光功率的关系图;
图7是本发明实施例1提供的硫化铅光热电探测器在辐射波长405nm到2300nm周期性激光辐照下的光响应;
图8是本发明实施例1提供的硫化铅光热电探测器噪声谱密度。
具体实施方式
下面结合附图,对本发明作进一步地说明。
图1为本发明提供的室温超快红外探测器侧面结构图,室温超快红外探测器包括基底1、一个设置于基底1上的光热电转化层2,沿光热电转化层2的中线左右两端各设有一组金属材料的电极3。如图2所示,光热电转化层2采用铅盐半导体薄膜201,铅盐半导体薄膜201 为单晶且有晶界202。铅盐半导体薄膜201的材料包括但不限于硫化铅、硒化铅、硫硒铅及相关固溶体;基底1采用与铅盐半导体薄膜201热失配大的材料,例如对于硫化铅(PbS)薄膜,则选用钛酸锶(SrTiO3)为基底。
图3为本发明提供的自驱动宽光谱超快探测方法的示意图,本发明方法采用光激发半导体的电子,通过电子-电子、电子-声子相互作用,光热电转化层2经过入射光照射升温,在照射区域4产生热电子,热电子使得两端的电极3处形成温度梯度5,利用赛贝克效应沿温度梯度方向形成电势差,从而完成无需外部供电的自驱动探测。
实施例1硫化铅薄膜非对称电极光热电探测器及其制备方法
本实施例的室温超快红外探测器为硫化铅薄膜对称电极光热电探测器,其制备方法包括如下步骤:
1、制备硫化铅(PbS)单晶薄膜:
(1)制备前对SrTiO3基底进行去污处理保持表面清洁,放入无水乙醇中超声清洗,再放入去离子水中超声清洗,吹干;
(2)配制PbS粉末以及硫粉按1:3配比分别放入石英舟中备用;
(3)石英管上游处外加加热环,设置温度在150-250℃并放置硫粉,设置管式炉温度为 400-800℃,PbS粉末置于炉中央最高温度区域,基底置于靠近管口的相对低温区域;
(4)药品放置完成后封闭系统,并使用机械泵抽真空,以150sccm通入高纯氩气,待温度达到设定温度后将装有药品的石英舟推入相应区域,反应时间控制在5-10分钟;
(5)反应结束后关闭加热装置,约30分钟后冷却至室温后,停止通入氩气并关闭机械泵,打开装置取出样品,制备得到的硫化铅(PbS)单晶薄膜如图4所示。
2、制备对称铜(Cu)电极:
(1)制备前,使用光刻胶对样品进行旋涂。加热烘干后按照预先设计好的形状进行蚀刻。蚀刻完毕后,先后交替用显影液与去离子水进行清洗,直到能在样品表面上观察到预留的镀膜位置;
(2)打开冷却水,并启动总电源。在插板阀和预抽阀关闭的情况下打开充气阀,向仓内充气,充气完成后打开仓门放置预备镀膜的样品和靶材,随后锁死仓门;
(3)对仓内抽真空到3×10-3-4×10-3Pa,打开电子枪总开关。设置高压允许,加高压到 9.06左右时打开枪灯丝;缓慢增加灯丝电流到0.6mA左右时,预热2分钟以上,再继续增加速流到200mA附近;设置镀膜厚度为150nm,镀膜速率为
Figure RE-GDA0003528100870000041
对样品进行镀膜,镀膜完成后,取出样品并用丙酮洗去剩余光刻胶,得到分布于硫化铅薄膜中线两侧的非对称电极。
经过上述步骤最后得到的基于硫化铅薄膜的非对称电极光热电探测器。基底1为钛酸锶基底晶片;光热电转化层2的材料为硫化铅。对所得的硫化铅光热电探测器进行光电性质测量。
如图5所示,用示波器测量探测器对光信号的响应速度,经测量,本实施例提供的探测器可以达到900ns的超高速响应时间;
如图6和7所示,利用半导体参数分析仪测量探测器响应度与入射光波长关系,以及对不同波长入射光的响应情况,可以看出,本实施例制备的探测器的光谱响应范围已覆盖到中红外附近;
如图8所示,测量探测器噪声谱密度随周期信号频率的变化曲线,测量发现,在频率为 1Hz时的噪声谱密度仅有2.7×10-22V2/Hz,说明本实施例提供的探测器具有超高的探测率。
实施例2硒硫铅薄膜对称电极光热电探测器及其制备方法
本实施例的室温超快红外探测器为硒硫铅薄膜非对称电极光热电探测器,其制备方法包括如下步骤:
1、制备PbSe1-xSx薄膜(x代表原子百分比):
(1-1)将SrTiO3基底先后放入无水乙醇和离子水中进行超声清洗,然后吹干,以备后用;
(1-2)按PbS粉末、硫粉、硒粉按1:3:3配比分别放入石英舟中备用;
(1-3)在石英管上游处外置一加热环并将温度设置在150-250℃内,分别放置硫粉和硒粉。将管式炉温度设置为400-800℃。放置PbS粉末于炉中央最高温度区域,基底置于靠近管口的相对低温区域;
(1-4)封闭系统并使用机械泵抽真空,以150sccm通入高纯氩气,待温度达到设定温度后将装有药品的石英舟推入相应区域;
(1-5)反应时间控制在5-10分钟,反应结束后关闭加热装置,约30分钟后冷却至室温后,停止通入氩气并关闭机械泵,打开装置取出样品。
2、制备对称铜(Cu)电极(矩形):
(2-1)在样品上旋涂一层光刻胶并加热烘干,使用光刻工艺按照预先设计好的形状进行蚀刻。蚀刻完毕后,先后交替用显影液与去离子水进行清洗,直到能在样品表面上观察到预留的镀膜位置;
(2-2)打开冷却水,并启动总电源。在插板阀和预抽阀关闭的情况下打开充气阀,向仓内充气,充气完成后打开仓门放置预备镀膜的样品和靶材,随后锁死仓门;
(2-3)利用电子束蒸镀在样品表面沉积一层高质量的金属铜薄膜电极。对仓内抽真空到 3×10-3-4×10-3Pa,打开电子枪总开关;设置高压允许,加高压到9.06左右时打开枪灯丝;缓慢增加灯丝电流到0.6mA左右时,预热2分钟以上,再继续增加速流到200mA附近;设置镀膜厚度为150nm,镀膜速率为
Figure RE-GDA0003528100870000051
对样品进行镀膜;镀膜完成后,使用丙酮剥离剩余区域的光刻胶,得到一对分布于PbSe1-xSx薄膜表面且沿中线对称的矩形电极。
经过上述步骤最后得到的基于PbSe1-xSx薄膜的同形电极对光热电探测器,基底1为钛酸锶基底晶片;光热电转化层2的材料为PbSe1-xSx
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.基于带晶界的铅盐半导体薄膜的室温超快红外探测器,所述探测器包括基底、半导体薄膜、两个电极,所述基底贴合在所述半导体薄膜下方,所述半导体薄膜上左右两端各有一电极,其特征在于:所述半导体薄膜为单晶且有晶界的铅盐半导体薄膜,所述半导体薄膜形成光热电转化层。
2.根据权利要求1所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器,其特征在于,所述探测器的制备方法包括如下步骤:
(1)基底准备:将基底清洗干净,并用氮气吹干;
(2)在400℃-800℃的高温环境下制备出单晶且有晶界的铅盐半导体薄膜,基底上沉积一层铅盐半导体薄膜形成光热电转化层;
(3)在光热电转化层沿中线左右各沉积一层电极,两电极间具有一定间距;具体为:
3-1)旋涂一层光刻胶,设计好电极形状后选择性曝光;
3-2)显影,去除曝光区域;
3-3)利用电子束蒸镀在样品表面沉积一层厚度为50-200nm的金属电极;
3-4)离未曝光区域的光刻胶及其上方的金属薄膜,得到一对光热电转化层上的电极。
3.根据权利要求1所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器,其特征在于:所述半导体薄膜的材料为PbS、Pb1-xSnxS、PbSe及相关固溶体,x代表原子百分比。
4.根据权利要求1所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器,其特征在于:所述电极的材料为导电的金属,所述金属包括金、银、铜、铬、铝或铂。
5.根据权利要求1所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器,其特征在于:两个所述电极为分布在光热电转化层中心线两端的对称或非对称金属电极。
6.根据权利要求1所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器,其特征在于:所述基底采用与所述半导体薄膜热失配大的材料。
7.采用如权利要求1至6任一所述的基于带晶界的铅盐半导体薄膜的室温超快红外探测器的探测方法,其特征在于:所述探测器不需要外部制冷和供电,在室温下自驱动超快探测;所述探测器在受到光信号照射时受光激发,电子跃迁到光热电转化层的导带边上方,具有过剩能量的热载流子在皮秒量级时间内通过电子-电子相互作用产生热电子;利用光热电转化层的慢电子-声子驰豫过程,在两端的电极处形成温度梯度,利用赛贝克效驱动热载流子应沿温度梯度方向堆积,形成电势差,进而在纳秒时间尺度上形成可被探测的电压,从而实现材料无需外部供电的自驱动超快探测。
8.根据权利要求7所述的探测方法,其特征在于:所述光信号为紫外光、可见光、短波红外或远红外,所述室温超快红外探测器的响应范围为100nm~10μm。
CN202111558649.1A 2021-12-17 2021-12-17 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法 Pending CN114361275A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111558649.1A CN114361275A (zh) 2021-12-17 2021-12-17 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111558649.1A CN114361275A (zh) 2021-12-17 2021-12-17 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法

Publications (1)

Publication Number Publication Date
CN114361275A true CN114361275A (zh) 2022-04-15

Family

ID=81099179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111558649.1A Pending CN114361275A (zh) 2021-12-17 2021-12-17 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法

Country Status (1)

Country Link
CN (1) CN114361275A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923751A (zh) * 2005-12-19 2007-03-07 昆明理工大学 一种快响应光热辐射感生电压材料及制备方法和应用
DE102012006825A1 (de) * 2012-04-04 2013-10-10 Forschungszentrum Jülich GmbH Reproduzierbarerer Stufen-Josephson-Kontakt
CN108842185A (zh) * 2018-06-06 2018-11-20 太原理工大学 一种用于光电探测的甲胺铅碘钙钛矿单晶薄片
US10297707B1 (en) * 2009-02-23 2019-05-21 Tatiana Globus Thin film photovoltaic cell system and method of manufacture
CN110137300A (zh) * 2019-05-15 2019-08-16 苏州大学 一种超薄膜红外宽带热电子光电探测器
CN111235635A (zh) * 2020-03-02 2020-06-05 广西大学 一种宽禁带半导体衬底上旋涂单晶的生长方法
CN111826713A (zh) * 2020-06-29 2020-10-27 南京大学 制备大面积过渡金属硫族化合物单晶的方法及其所得产品
CN113206184A (zh) * 2021-04-30 2021-08-03 河北大学 一种基于硒化铅薄膜的自驱动紫外光探测器
CN113279063A (zh) * 2021-04-23 2021-08-20 南昌大学 一种ⅳ-ⅵ族红外半导体薄膜及其制备方法
CN113299777A (zh) * 2021-04-21 2021-08-24 江苏大学 一种铅盐红外探测器芯片结构及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923751A (zh) * 2005-12-19 2007-03-07 昆明理工大学 一种快响应光热辐射感生电压材料及制备方法和应用
US10297707B1 (en) * 2009-02-23 2019-05-21 Tatiana Globus Thin film photovoltaic cell system and method of manufacture
DE102012006825A1 (de) * 2012-04-04 2013-10-10 Forschungszentrum Jülich GmbH Reproduzierbarerer Stufen-Josephson-Kontakt
CN108842185A (zh) * 2018-06-06 2018-11-20 太原理工大学 一种用于光电探测的甲胺铅碘钙钛矿单晶薄片
CN110137300A (zh) * 2019-05-15 2019-08-16 苏州大学 一种超薄膜红外宽带热电子光电探测器
CN111235635A (zh) * 2020-03-02 2020-06-05 广西大学 一种宽禁带半导体衬底上旋涂单晶的生长方法
CN111826713A (zh) * 2020-06-29 2020-10-27 南京大学 制备大面积过渡金属硫族化合物单晶的方法及其所得产品
CN113299777A (zh) * 2021-04-21 2021-08-24 江苏大学 一种铅盐红外探测器芯片结构及其制备方法
CN113279063A (zh) * 2021-04-23 2021-08-20 南昌大学 一种ⅳ-ⅵ族红外半导体薄膜及其制备方法
CN113206184A (zh) * 2021-04-30 2021-08-03 河北大学 一种基于硒化铅薄膜的自驱动紫外光探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊飞;张辉;杨有利;张鹏翔;: "激光感生热电电压信号的衰减时间研究", 激光技术, no. 03, pages 307 - 332 *
郅惠博等: "热电材料塞贝克系数测试影响因素的研究", 《材料导报B(研究篇)》, vol. 28, no. 8, pages 90 - 116 *

Similar Documents

Publication Publication Date Title
Liu et al. A 1300 mm2 ultrahigh‐performance digital imaging assembly using high‐quality perovskite single crystals
US8084743B2 (en) Sensor and image pickup device
Gopalan et al. Mid-infrared pyro-resistive graphene detector on LiNbO3
Sun et al. The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response
Priya et al. The fabrication and characterization of thermal evaporated n-ZnS/p-Si heterojunction and ZnS-Au Schottky photodiodes
Yadav et al. Highly responsive WO3 based UV-Vis photodetector
Luo et al. Enhanced performance in uncooled n-CdSe/p-PbSe photovoltaic detectors by high-temperature chloride passivation
CN114361275A (zh) 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法
Acosta-Osorno et al. Characterization of ZnO thin films obtained by ultrasonic spray pyrolysis for application in UV photoconductive detectors
Cheng et al. High infrared responsivity of silicon photodetector with titanium-hyperdoping
Chopra et al. Thin film thermal device applications
Salman et al. Optical and electrical properties of CU doped CdO thin films for detector applications,”
Wang et al. Laser sintering method induced c-axis growth of Mg 0.2 Zn 0.8 O nano-film for ultraviolet photodetector
Roland et al. Photoluminescence spectroscopy of Cadmium Telluride deep defects
Wang et al. Modification of electrical properties of amorphous vanadium oxide (a-VOx) thin film thermistor for microbolometer
Al-Kabbi et al. Determination of the transport parameters of nanocrystalline CdSe: Cu thin films
Ahmed et al. Near room temperature, SMT and visible photo-response in pulsed laser deposited VO2 (M1) thin films
Kumar Thin Film Linear Array Bolometer Devices as Thermal Detectors
Colburn et al. Photocurrents through thin polymer films
US20220173303A1 (en) Flexo-electric broadband photo-detectors and electrical energy generators
Li et al. Performance of ultraviolet photodetectors based on sputtered CdZnTe films
Crisman et al. Observation of large, anomalous pyroelectric response in AlN thin films
Ferhati et al. Effects of annealing on the structural and optical properties of sputtered SiC/Ag/SiC multilayer
Hammoodi et al. Synthesis and studying of some properties of CdO: in thin films
Saiz et al. Electron Spin Resonance Investigations on Perovskite Solar Cell Materials Deposited on Glass Substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination