CN114329923A - 基于自适应迭代步的自然循环系统特性多尺度模拟方法 - Google Patents

基于自适应迭代步的自然循环系统特性多尺度模拟方法 Download PDF

Info

Publication number
CN114329923A
CN114329923A CN202111516242.2A CN202111516242A CN114329923A CN 114329923 A CN114329923 A CN 114329923A CN 202111516242 A CN202111516242 A CN 202111516242A CN 114329923 A CN114329923 A CN 114329923A
Authority
CN
China
Prior art keywords
dimensional
program
natural circulation
adaptive
pressure drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111516242.2A
Other languages
English (en)
Other versions
CN114329923B (zh
Inventor
孙建闯
蔡伟华
李智明
张文超
李伟超
侯延栋
杜立鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202111516242.2A priority Critical patent/CN114329923B/zh
Priority claimed from CN202111516242.2A external-priority patent/CN114329923B/zh
Publication of CN114329923A publication Critical patent/CN114329923A/zh
Application granted granted Critical
Publication of CN114329923B publication Critical patent/CN114329923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明是一种基于自适应迭代步的自然循环系统特性多尺度模拟方法,其特点是,包括建立自然循环系统、设计交互参数自适应收敛判据、构建自适应收敛阈值函数。采用自然循环系统的驱动压头和总阻力压降间的定量关系更新交互流速;将一维和三维程序交互参数的方差作为判断三维程序计算参数是否达到稳定的收敛阈值;基于历史交互流速构建收敛阈值的自适应函数,实现耦合程序快速收敛至精确值。本发明具有自适应能力强、高效易行和不依赖经验等优点。特别适用于分析具有复杂结构热源的自然循环系统流动与换热特性。

Description

基于自适应迭代步的自然循环系统特性多尺度模拟方法
技术领域
本发明涉及流动与换热数值计算领域,是一种基于自适应迭代步的自然循环系统特性多尺度模拟方法,特别适用于具有一维和三维流动特征的自然循环系统热工水力特性的定量分析。
背景技术
由于自然循环系统具有结构简单,固有安全性好等优点,自然循环式非能动安全系统在第三代核电厂中得到普遍应用。因此,研究基于自然循环式非能动安全系统的热工水力特性对核电厂的安全设计至关重要。
目前,本领域技术人员针对自然循环系统热工水力特性的研究主要采用基于集总参数法的一维分析程序,该程序具有计算流速快、参数调节灵活等优点。然而,对于具有复杂结构的热源如反应堆热源和列管式换热器,其内部存在显著的三维流动特征,如二次流、涡流等。因此,采用传统一维分析程序无法模拟其内部复杂的三维流场。同时,如果仅采用三维程序对整个自然循环系统模拟则需要庞大的网格量,时间成本极高。因此,本发明结合一维程序和三维程序软件的优点,开发了一维程序和三维程序的自适应耦合计算方法,实现了对具有一维和三维流动特征的自然循环系统热工水力特性的快速和准确模拟,可为研究人员提供极具价值的研究工具。
在现有的文献中,针对一维程序和三维程序自适应多尺度耦合的研究很少,其中张银星等提出一维用户程序和三维程序STAR-CCM+的多尺度耦合方法(张银星,高璞珍,何晓强,等.STAR-CCM+与一维用户程序耦合方法[J].哈尔滨工程大学学报,2020,41(11):1669-1674.)。该方法讲述了一维用户程序和三维程序STAR-CCM+的数据交互方法。通过STAR-CCM+预设固定迭代步数,使其计算参数稳定,然后与一维用户程序进行数据交互。然而,实际应用中发现,当固定迭代步数选取过大时,会导致耦合收敛的时间显著增加。当固定迭代步数选取过小时,交互参数未达到稳态或接近稳态,数据交互会导致耦合程序计算发散。因此,固定迭代步数的预设值依赖数值模拟经验,通常采用试算法求得。
综上分析可知,采用固定迭代步的一维和三维多尺度耦合方法具有自适应能力、普适性和鲁棒性较差的缺点。
发明内容
鉴于现有技术基于固定迭代步的一维和三维程序耦合方法的局限性,本发明的目的是,提出一种科学合理,自适应能力强,应用价值高的基于自适应迭代步的自然循环系统特性多尺度模拟方法,本发明的方法能够实现一维和三维耦合程序的快速、准确收敛,同时该方法也可用于计算分析含其它复杂热源的自然循环系统特性。
实现本发明目的采用的技术方案是,一种基于自适应迭代步的自然循环系统特性多尺度模拟方法,其特征是,它包括以下步骤:
1)建立自然循环系统的第一管路、第二管路、第三管路和第四管路的一维流动阻力与换热计算程序和热源的三维流动与换热计算程序;
2)设初速流速为vi,并将vi作为三维计算程序的入口流速边界条件,采用三维程序计算热源的压降ΔP和出口温度Tout
3)计算三维程序得到的出口温度Tout和压降ΔPre的收敛阈值δ,将三维程序计算的热源出口温度Tout和热源压降ΔPre,根据连续n次迭代步的历史值求方差,并作为热源出口温度和压降的参数收敛判据,具体为
Figure BDA0003399675620000021
Figure BDA0003399675620000022
I为三维程序迭代步,n为间隔迭步数;
4)当出口温度Tout和压降ΔPre的方差均小于收敛阈值δ,将三维程序计算的出口温度Tout和压降ΔPre传递给一维计算程序,并计算驱动压头ΔPd和总阻力压降ΔPz
5)根据驱动压头ΔPd和总阻力压降ΔPz的定量关系更新流速vi,得到更新后的流速vi+1,具体为:vi+1=vi[1+(ΔPd-ΔPz)/(ΔPd+ΔPz)];
6)根据历史交互流速vi和vi+1更新步骤4)中的收敛阈值δ,具体为δ=arctan{[|vi+1-vi|/max(vi+1,vi)]C},其中,C为常数,取值为0.3,i为数据交互次数,max()为取最大值函数,δ根据一维和三维程序的交互流速对收敛阈值进行自适应更新,并实现耦合程序的快速、准确收敛;
7)将更新后的流速vi+1传递给三维计算程序,并转到步骤3),直至vi与vi+1相同,完成一维程序和三维程序的自适应多尺度耦合。
本发明一种用于分析自然循环系统热工水力特性的自适应多尺度耦合方法的有益效果是:
1、建立了一个高效、准确的一维和三维程序的自适应多尺度耦合方法,用以计算和分析含复杂热源的自然循环系统的热工水力特性;
2、基于耦合流速构建三维程序计算参数收敛的自适应判据,并提出一维和三维程序的自适应耦合计算方法,实现耦合程序的自适应迭代收敛,在保证精度的前提下,提高了耦合程序的高效性;
3、构造的自适应函数使收敛阈值δ的取值范围在[0,π/2)之间,这样避免收敛阈值过大使得三维程序计算参数不稳定导致耦合发散的问题。
4、可用于自然循环系统的流动与换热特性的定量分析,可以代替人为实验测量的复杂流程,并能实时获得具有三维流动特征的复杂结构热源内冷却剂的三维流场和温度场,并可为自然循环系统的优化设计提供指导;
5、本发明在任意工况下均无需修改自适应函数参数,不依赖模拟经验,提高了多尺度耦合模拟方法的普适性;
6、其方法科学合理,自适应能力强,应用价值高。
附图说明
图1为一种自然循环系统结构示意图;
图2为一维用户程序和三维程序的自适应耦合程序框图;
图3为本发明结果与实验结果对比结果;
图4为固定迭代步方法和本发明方法对比结果;
图5为花瓣形燃料元件结构示意图;
图6为3×3花瓣形燃料组件示意图;
图7为花瓣形燃料组件耦合流速收敛结果;
图8为花瓣形燃料组件中心截面流速矢量图;
图9中花瓣形燃料组件中心截面温度等值线图。
具体实施方式
下面结合附图和实施例进一步说明本发明的实质内容,但本发明的内容并不限于此。
图1展示了一种自然循环系统结构示意图,包括:热源1、第一管路2、冷源3、第二管路4、第三管路6、预热器7和第四管路8相连接,在第二管路4与第三管路6相连接上设置稳压器5。
参照图2,本发明的一种基于自适应迭代步的自然循环系统特性多尺度模拟方法,包括以下步骤:
1)建立如图1中的自然循环系统的第一管路2、第二管路4、第三管路6和第四管路8的一维流动阻力与换热计算程序和热源1的三维流动与换热计算程序。
2)设初速流速为vi,并将vi作为三维计算程序的入口流速边界条件,采用三维程序计算热源1的压降ΔP和出口温度Tout
3)计算三维程序得到的出口温度Tout和压降ΔPre的收敛阈值δ。
将三维程序计算的热源出口温度Tout和热源压降ΔPre,根据连续n次迭代步的历史值求方差,并作为热源出口温度和压降的参数收敛判据,具体为
Figure BDA0003399675620000031
Figure BDA0003399675620000032
I为三维程序迭代步,n为间隔迭步数。
4)当出口温度Tout和压降ΔPre的方差均小于收敛阈值δ,将三维程序计算的出口温度Tout和压降ΔPre传递给一维计算程序,并计算驱动压头ΔPd和总阻力压降ΔPz
5)根据驱动压头ΔPd和总阻力压降ΔPz的定量关系更新流速vi,得到更新后的流速vi+1,具体为:vi+1=vi[1+(ΔPd-ΔPz)/(ΔPd+ΔPz)]。
6)根据历史交互流速vi和vi+1更新步骤4)中的收敛阈值δ:
根据交互流速建立自适应收敛阈值表达式,具体为δ=arctan{|vi+1-vi|/max(vi+1,vi)]C},其中,C为常数,取值为0.3,i为数据交互次数,max()为取最大值函数。δ根据一维和三维程序的交互流速对收敛阈值进行自适应更新,并实现耦合程序的快速、准确收敛。
7)将更新后的流速vi+1传递给三维计算程序,并转到步骤3),直至vi与vi+1相同,完成一维程序和三维程序的自适应多尺度耦合。
验证1:实验验证
采用单相条件下含3×3棒束通道的自然循环系统流量测定实验验证本发明的正确性,图3是该发明的耦合计算结果和实验结果的对比图。从图3可以看出,本发明得到的结果与实验测量的结果趋于一致,在相同几何和热工参数条件下,采用本发明一维和三维自适应耦合程序计算得到的自然循环流量与实验结果最大偏差在10%以内。这表明该发明能够准确地模拟自然循环下的自然循环流动。
验证2:固定迭代步法和本发明方法对比验证
在一维程序和三维程序进行数据传递过程中,采用文献给出的固定迭代步法对相同几何和热工参数下的自然循环系统进行一维和三维耦合数值模拟。由于现有文献方法的收敛性受初始速度影响较大,因此需要通过式算法获得满足耦合收敛的最小固定迭代步。实验工况为:运行压力为0.3MPa,初始速度为0.25m/s,加热功率为14kW,加热段为3×3棒束通道,入口过冷度为50℃。在满足能够收敛的条件下,通过试算法得到固定迭代步法的相邻两次数据交互所需最小迭代步长为450步。本发明提出的自适应耦合计算方法,可以根据耦合速度大小自适应改变步长。图4是固定迭代步计算方法和本发明方法对比图。上述两种方法采用的三维几何和数值模型是相同的,耦合计算所耗费时间主要在三维计算上,因此三维程序计算迭代步与实际运行时间呈正相关。从图4中可以看出,固定迭代步计算方法完成耦合收敛需6151步。然后,采用本发明方法仅需713步实现耦合模拟收敛。本发明方法的一维和三维耦合收敛速度是固定迭代步法的8.627倍,这充分体现了本发明的高效性。此外,本发明不仅适用于含棒束热源组件的自然循环系统一维和三维耦合计算,同时适用于含其它复杂热源(如花瓣形热源组件等)的自然循环系统。
实施例1:
为了进一步验证本发明的普适性,采用本发明对自然循环下花瓣形堆燃料组件的流动特性进行一维和三维耦合模拟。图5为花瓣形燃料元件的结构示意图,这种燃料元件相较于圆形燃料元件结构更加复杂。首先采用三维程序建立如图6所示的3×3花瓣形燃料组件几何模型。然后,设置物理模型和初始参数,其中运行压力为0.3MPa,加热功率为2kW,入口过冷度为50℃。
图7给出了本发明耦合计算方法的自然循环流速收敛曲线。从图7中可知,初始假定流速为0.15m/s,通过一维和三维耦合计算,最终收敛流速为0.181m/s,进而得到了系统的自然循环流量。
此外,花瓣形热源三维程序模拟结果如图8和图9所示。从图8中可以看出,由于花瓣形棒束通道的螺旋几何结构,加强冷却剂的横向搅混,可以起到强化换热的作用。这导致中心子通道的冷却剂温度较低;边通道的冷却剂流速较低,换热能力较弱,导致边通道的冷却剂温度较高,如图9所示。
本发明的具体实施方式只是一个实例,但本发明的适用范围不仅仅局限于此,任何熟悉该领域技术的人员根据本发明的技术方案得出的其他实施方式也同样属于本发明权利要求所保护的范围。

Claims (1)

1.一种基于自适应迭代步的自然循环系统特性多尺度模拟方法,其特征是,它包括以下步骤:
1)建立自然循环式非能动安全系统的第一管路、第二管路、第三管路和第四管路的一维流动阻力与换热计算程序和热源的三维流动与换热计算程序;
2)设初速流速为vi,并将vi作为三维计算程序的入口流速边界条件,采用三维程序计算热源的压降ΔP和出口温度Tout
3)计算三维程序得到的出口温度Tout和压降ΔPre的收敛阈值δ,将三维程序计算的热源出口温度Tout和热源压降ΔPre,根据连续n次迭代步的历史值求方差,并作为热源出口温度和压降的参数收敛判据,具体为
Figure FDA0003399675610000011
Figure FDA0003399675610000012
I为三维程序迭代步,n为间隔迭步数;
4)当出口温度Tout和压降ΔPre的方差均小于收敛阈值δ,将三维程序计算的出口温度Tout和压降ΔPre传递给一维计算程序,并计算驱动压头ΔPd和总阻力压降ΔPz
5)根据驱动压头ΔPd和总阻力压降ΔPz的定量关系更新流速vi,得到更新后的流速vi+1,具体为:vi+1=vi[1+(ΔPd-ΔPz)/(ΔPd+ΔPz)];
6)根据历史交互流速vi和vi+1更新步骤4)中的收敛阈值δ,具体为δ=arctan{[|vi+1-vi|/max(vi+1,vi)]C},其中,C为常数,取值为0.3,i为数据交互次数,max()为取最大值函数,δ根据一维和三维程序的交互流速对收敛阈值进行自适应更新,并实现耦合程序的快速、准确收敛;
7)将更新后的流速vi+1传递给三维计算程序,并转到步骤3),直至vi与vi+1相同,完成一维程序和三维程序的自适应多尺度耦合。
CN202111516242.2A 2021-12-08 基于自适应迭代步的自然循环系统特性多尺度模拟方法 Active CN114329923B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111516242.2A CN114329923B (zh) 2021-12-08 基于自适应迭代步的自然循环系统特性多尺度模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111516242.2A CN114329923B (zh) 2021-12-08 基于自适应迭代步的自然循环系统特性多尺度模拟方法

Publications (2)

Publication Number Publication Date
CN114329923A true CN114329923A (zh) 2022-04-12
CN114329923B CN114329923B (zh) 2024-07-02

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2795835A1 (en) * 2010-04-30 2011-11-03 Exxonmobil Upstream Research Company Method and system for finite volume simulation of flow
US20180017345A1 (en) * 2016-07-12 2018-01-18 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a heat sink
CN108875212A (zh) * 2018-06-19 2018-11-23 哈尔滨工程大学 核动力装置主冷却剂系统热工水力多尺度分区仿真方法
US20190021186A1 (en) * 2017-07-17 2019-01-17 Fractal Heatsink Technologies, LLC Multi-fractal heatsink system and method
CN111291494A (zh) * 2020-02-21 2020-06-16 西安交通大学 用于核反应堆triso燃料颗粒的多尺度多物理场耦合模拟方法
US20210049245A1 (en) * 2019-08-16 2021-02-18 Thomas Wetteland Baehr-Jones Void space domain decomposition for simulation of physical processes
CN113642105A (zh) * 2021-08-03 2021-11-12 中国船舶重工集团公司第七一九研究所 船舶动力系统的多尺度模型构建方法、装置及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2795835A1 (en) * 2010-04-30 2011-11-03 Exxonmobil Upstream Research Company Method and system for finite volume simulation of flow
US20180017345A1 (en) * 2016-07-12 2018-01-18 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a heat sink
US20190021186A1 (en) * 2017-07-17 2019-01-17 Fractal Heatsink Technologies, LLC Multi-fractal heatsink system and method
CN108875212A (zh) * 2018-06-19 2018-11-23 哈尔滨工程大学 核动力装置主冷却剂系统热工水力多尺度分区仿真方法
US20210049245A1 (en) * 2019-08-16 2021-02-18 Thomas Wetteland Baehr-Jones Void space domain decomposition for simulation of physical processes
CN111291494A (zh) * 2020-02-21 2020-06-16 西安交通大学 用于核反应堆triso燃料颗粒的多尺度多物理场耦合模拟方法
CN113642105A (zh) * 2021-08-03 2021-11-12 中国船舶重工集团公司第七一九研究所 船舶动力系统的多尺度模型构建方法、装置及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAI, WEIHUA等: "A new multi-scale coupling simulation of natural circulation system based on self-adaption data interaction method", 《ANNALS OF NUCLEAR ENERGY》, 30 June 2023 (2023-06-30), pages 1 - 12 *
唐振浩;张宝凯;曹生现;王恭;赵波;: "基于多模型智能组合算法的锅炉炉膛温度建模", 化工学报, no. 2, 15 September 2019 (2019-09-15), pages 310 - 319 *

Similar Documents

Publication Publication Date Title
Giles et al. Two-dimensional transonic aerodynamic design method
CN112084589B (zh) 基于轴面流速控制的轴贯流式水轮机转轮叶片优化方法
CN110083968B (zh) 基于修正气封泄露量影响数值模型的压气机特性预测方法
CN105631140A (zh) 一种变循环发动机稳态性能分析及优化方法
CN111414722A (zh) 一种核反应堆堆芯物理与热工耦合的模拟方法
CN108490790A (zh) 一种基于多目标优化的过热汽温自抗扰串级控制方法
CN105299612A (zh) 基于多模型切换的主蒸汽温度控制方法及控制系统
CN111859824B (zh) 一种稳压器泄压阀开启过程的流固耦合方法
CN110196987B (zh) 基于代理模型的风道结构尺寸优化方法
CN113935259A (zh) 一种反应堆一回路系统瞬态水锤波的计算方法及系统
CN114329923A (zh) 基于自适应迭代步的自然循环系统特性多尺度模拟方法
CN114329923B (zh) 基于自适应迭代步的自然循环系统特性多尺度模拟方法
CN114117961A (zh) 一种基于计算流体动力学的涡轮机械优化方法及系统
Lu et al. Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method
CN105736455A (zh) 提高初生空化性能的水泵叶片厚度设计方法、叶片、叶轮
CN114201871A (zh) 用于分析自然循环系统热工水力特性的自适应多尺度耦合方法
Yuan et al. A CFD approach to fluid dynamic optimum design of steam turbine stages with stator and rotor blades
CN114201870B (zh) 用于分析核动力装置非能动特性的自适应多尺度耦合方法
CN114021497A (zh) 一种基于自动微分的可压缩湍流流体拓扑优化方法
CN111637435B (zh) 基于sarsa的核动力系统蒸汽发生器水位控制方法
CN110970936B (zh) 一种深度调峰机组一次调频性能计算方法
CN111413867B (zh) 一种在Flowmaster平台上液压控制机构等效控制器快速建模及优化方法
CN108108548B (zh) 一种双向贯流式水轮机尾水管的优化设计方法
CN113255185A (zh) 一种阀门调节特性自动仿真方法
CN108984979B (zh) 基于多变量频域法和启发式搜索算法结合的超超临界机组深度调峰控制器设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant