CN114326760A - 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法 - Google Patents

一种针对干扰与无角速度反馈的姿态协同跟踪控制方法 Download PDF

Info

Publication number
CN114326760A
CN114326760A CN202110941077.9A CN202110941077A CN114326760A CN 114326760 A CN114326760 A CN 114326760A CN 202110941077 A CN202110941077 A CN 202110941077A CN 114326760 A CN114326760 A CN 114326760A
Authority
CN
China
Prior art keywords
spacecraft
attitude
angular velocity
representing
state observer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110941077.9A
Other languages
English (en)
Inventor
高直
朱志浩
张春富
王建冈
辅小荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202110941077.9A priority Critical patent/CN114326760A/zh
Publication of CN114326760A publication Critical patent/CN114326760A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,综合考虑干扰、无角速度反馈以及只有部分跟随者航天器能够获得领航者航天器信息的航天器编队的工况,针对复杂干扰、通信资源、观测时间、无法获取角速度信息的考虑更为完善,构建了固定时间扩张状态观测器、分布式固定时间状态观测器、滤波辅助系统,并获得针对干扰和无角度反馈的姿态协同跟踪控制器,然后采用该姿态协同跟踪控制器使航天器编队姿态进行协同跟踪控制,实现仅有部分跟随者航天器可获得领航者航天器信息的通信拓扑下的干扰、无角速度反馈的姿态协同控制方法,且能够使航天器协同跟踪误差系统快速的收敛,进一步提高了控制系统的鲁棒性和实用性。

Description

一种针对干扰与无角速度反馈的姿态协同跟踪控制方法
技术领域
本发明涉及航天系统技术领域,更确切地说,涉及一种针对干扰与无角速度反馈的姿态 协同跟踪控制方法。
背景技术
基于不同航天任务的要求,由单一航天器独自完成任务的工作方式已经难以满足一些实 际工程的需求,多航天器编队协同工作模式应运而生。姿态协同控制作为多航天器编队飞行 的关键技术,且由于其在合成孔径成像、重力场测量、三维立体成像、卫星捕捉、空基干涉 测量和远程通信等编队任务中的重要作用而备受关注。
由于航天器编队所处太空环境复杂,航天器在飞行过程中,不可避免地会受到各种太空 环境干扰力矩的影响,较为常见的是重力梯度力矩、气动力矩、地磁力矩、太阳光压力矩和 电磁力矩,这些干扰会对航天器编队姿态产生较大的影响,导致姿态产生偏差,进而影响航 天器编队系统的稳定性和相对指向精度。同时,由于航天器长期处于高低温、强辐射的太空 环境下,角速率陀螺不可避免的会出现故障,导致无法准确获取角速度信息。目前,姿态协 同控制技术得到了快速发展,但是尚未综合考虑太空未知时变干扰和无角速度反馈对编队航 天器稳定性的影响。因此,为了提高航天器姿态控制系统的鲁棒性,有必要考虑未知时变干 扰和无法获取角速度信息的情况,研究一种针对干扰和无角速度反馈的姿态协同跟踪控制方 法,具有重大的现实意义和实用价值。
发明内容
本发明正是为了解决上述技术问题而设计的一种针对干扰与无角速度反馈的姿态协同跟 踪控制方法,综合考虑干扰、无角速度反馈及只有部分跟随者能够获得领航者信息的编队航 天器工况,构建了固定时间扩张状态观测器、分布式固定时间状态观测器及滤波辅助系统, 获得针对干扰和无角度反馈的姿态协同跟踪控制器,然后采用该姿态协同跟踪控制器使航天 器编队姿态进行协同跟踪控制,进一步提高了控制系统的鲁棒性和实用性。
本发明解决其技术问题所采用的技术方案是:
一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:针对由n个跟随 者航天器和1个领航者航天器组成的航天器编队,执行如下步骤,构建固定时间扩张状态观 测器、分布式固定时间状态观测器、滤波辅助系统,获得针对干扰和无角度反馈的姿态协同 跟踪控制器,然后采用该姿态协同跟踪控制器使航天器编队姿态进行协同跟踪控制:
步骤1:通过建立航天器编队的惯量坐标系和航天器编队中各航天器分别对应的本体坐 标系,确定航天器编队中各航天器分别所对应的运动学方程和动力学方程;
步骤2:利用代数图论,描述航天器编队所对应以领航者航天器为根节点的树形通信拓 扑结构;
步骤3:根据航天器编队所对应的树形通信拓扑结构,针对领航者航天器相邻相连的各 跟随者航天器,设计分布式固定时间状态观测器,确定该各跟随者航天器分别观测领航者航 天器的姿态观测值、角速度观测值和角加速度观测值;
步骤4:根据所述相应跟随者航天器对领航者航天器的姿态观测值、角速度观测值和角 加速度观测值,分别定义姿态跟踪误差估计值和角速度跟踪误差估计值;
步骤5:根据所述姿态跟踪误差估计值和角速度跟踪误差估计值,设计固定时间扩张状 态观测器对跟踪者航天器的干扰项进行观测;
步骤6:根据所述姿态跟踪误差估计值设计滤波辅助系统;
步骤7:根据所述分布式固定时间状态观测器、所述姿态跟踪误差估计值、所述固定时 间扩张状态观测器以及所述滤波辅助系统,设计获得针对干扰和无角速度反馈的姿态协同跟 踪控制器。
作为本发明的一种优选技术方案,所述步骤1中航天器编队中各航天器的运动学方程为:
Figure BDA0003214982510000021
航天器编队中各航天器的动力学方程为:
Figure BDA0003214982510000022
其中,i=0,1,…,n,i=0表示领航者航天器,其它的为跟随者航天器,跟随者跟踪领航者 航天器,
Figure BDA0003214982510000023
Figure BDA0003214982510000024
分别为矢量和标量,R4表示四维实数列向量,
Figure BDA0003214982510000025
是以单位四元数形 式表示航天器编队中第i个航天器的姿态,I是单位矩阵,ωi∈R3表示航天器的角速度,R3表 示三维实数列向量,·代表变量的导数,即
Figure BDA0003214982510000026
分别为航天器姿态和航天器角速度的导数, 上标T表示转置,×表示斜对称矩阵含义,即
Figure BDA0003214982510000027
是ωi=[ωi1,ωi2,ωi3]T的斜对称矩阵
Figure BDA0003214982510000028
ωi1、ωi2、ωi3为ωi的元素,Ji∈R3×3是航天器转动惯量矩阵,R3×3表示三 行三列的实数矩阵,τi∈R3和di∈R3分别表示航天器的执行机构控制力矩和干扰力矩。
作为本发明的一种优选技术方案,所述步骤2中航天器编队的树形拓扑结构中只有领航 者航天器相邻相连的各跟随者航天器可以获得领航者航天器的信息。
作为本发明的一种优选技术方案,所述步骤3中所述分布式固定时间状态观测器为:
Figure BDA0003214982510000031
Figure BDA0003214982510000032
Figure BDA0003214982510000033
Figure BDA0003214982510000034
其中,
Figure BDA0003214982510000035
σi和ρi分别为第i个航天器对领航者状态
Figure BDA0003214982510000036
ω0
Figure BDA0003214982510000037
的观测值,r1、r2、 r3、r4、r5、r6、r7、r8和θi均为正常数且
Figure BDA0003214982510000038
Figure BDA0003214982510000039
是ω0的二阶导数,aij是邻接矩阵元素, 用于表述第i个航天器和第j个航天器之间的通信状况,如果存在从航天器j到i的通信,aij>0;相反,如果不存在从航天器j到i的通信,aij=0;ai0为领航者邻接矩阵元素,当j≠0时, 第j个航天器对领航者的姿态观测值为
Figure BDA00032149825100000310
角速度观测值为σj∈R3和角加速度观测值 为ρj∈R3,当j=0时,
Figure BDA00032149825100000311
σ0和ρ0分别表述的是领航者状态
Figure BDA00032149825100000312
ω0
Figure BDA00032149825100000313
sigα()为 幂函数,对于任意变量xi=[xi1,xi2,xi3]T而言,其幂函数sigα(xi)为 sigα(xi)=[sign(xi1)|xi1|α,sign(xi2)|xi2|α,sign(xi3)|xi3|α]T,sign()为标准的符号函数,幂函数sigp(xi)为 sigp(xi)=[sign(xi1)|xi1|p,sign(xi2)|xi2|p,sign(xi3)|xi3|p]T
Figure BDA00032149825100000314
为σi的导数,
Figure BDA00032149825100000315
Figure BDA00032149825100000316
的导数,
Figure BDA00032149825100000317
Figure BDA00032149825100000318
的导数, n为跟随航天器的数量。
作为本发明的一种优选技术方案,所述步骤4中所述姿态跟踪误差估计值
Figure BDA00032149825100000319
为:
Figure BDA00032149825100000320
Figure BDA00032149825100000321
角速度跟踪误差估计值ωie为:
ωie=ωi-Ciσi
式中
Figure BDA00032149825100000322
为旋转矩阵,
Figure BDA00032149825100000323
Figure BDA00032149825100000324
分别为姿态跟踪误差矢量部分和标 量部分。
作为本发明的一种优选技术方案,所述步骤5中所述固定时间扩张状态观测器为:
Figure BDA0003214982510000041
Figure BDA0003214982510000042
Figure BDA0003214982510000043
式中,0<αi<1、pi>1、γi1>0、γi2>0、γi3>0、γi4>0、γi5>0和γi6>0为所述固定时间扩 张状态观测器参数,ξi1、ξi2和ξi3为所述固定时间扩张状态观测器状态,
Figure BDA0003214982510000044
作为本发明的一种优选技术方案,所述步骤6中所述滤波辅助系统为:
Figure BDA0003214982510000045
Figure BDA0003214982510000046
式中,
Figure BDA0003214982510000047
表示所述滤波辅助系统四元数矢量,
Figure BDA0003214982510000048
表示所述滤波辅助系统四元数标量,
Figure BDA0003214982510000049
Figure BDA00032149825100000410
分别表示单位四元数矢量和标量,上标T表示转置,
Figure BDA00032149825100000411
表示
Figure BDA00032149825100000412
的导数,
Figure BDA00032149825100000413
表示
Figure BDA00032149825100000414
的导数,ci为正实数。
作为本发明的一种优选技术方案,所述步骤7中所述姿态协同跟踪控制器τi包括:
Figure BDA00032149825100000415
式中,k1i为正实数,
Figure BDA00032149825100000416
Figure BDA00032149825100000417
分别表示所述姿态跟踪误差估计值的矢量部分和标量部分, ρi和σi为所述分布式固定时间状态观测器的状态变量,k2i为正实数,
Figure BDA00032149825100000418
Figure BDA00032149825100000419
为所述滤波辅助 系统的状态变量,Ci表示旋转矩阵
Figure BDA00032149825100000420
上标×表示斜对称算子矩阵, Ji表示所述航天器的惯量矩阵,k3i为正实数,ξi2和ξi3为所述固定时间扩张状态观测器的状态 变量。
本发明的有益效果是:所述一种针对干扰和无角速度反馈的姿态协同跟踪控制方法,针 对复杂干扰、通信资源、观测时间、无法获取角速度信息的考虑更为完善,具体优点包括:
(1)综合考虑干扰、无角速度反馈及只有部分跟随者航天器能够获得领航者航天器信息 的航天器编队工况,分别设计了固定时间扩张状态观测器、分布式固定时间状态观测器及滤 波辅助系统;
(2)所述固定时间扩张状态观测器与传统渐近稳定扩张状态观测器相比,观测时间更短, 观测精度更高,可以在固定观测时间内使所述固定时间扩张状态观测器观测值趋近于被观测 干扰项的真实值,所述固定时间扩张状态观测器与传统有限时间扩张状态观测器相比,可以 在固定观测时间内使所述观测值趋近于真实值且所述固定时间不依赖于所述航天器编队系统 的状态初始值;
(3)所述分布式固定时间状态观测器可以使只有部分跟随者航天器能够获得领航者航天 器信息的航天器编队在固定时间内观测到所述领航者航天器状态的真实值,与传统分布式渐 近稳定观测器和传统分布有限时间扩张状态观测器相比,具有所述观测时间短和所述固定时 间不依赖于所述分布式固定时间状态观测器的状态初始值;
(4)根据所述固定时间扩张状态观测器、所述分布式固定时间状态观测器及所述滤波辅 助系统,设计了一种针对干扰和无角速度反馈的姿态协同跟踪控制方法,提高了编队航天器 姿态控制系统的鲁棒性。
本发明完善了干扰、无角速度反馈的航天器姿态协同跟踪控制策略,通过合理的观测器 设计和滤波辅助系统设计,实现仅有部分跟随者可获得领航者信息的通信拓扑下的干扰、无 角速度反馈的姿态协同控制方法,且能够使航天器协同跟踪误差系统快速的收敛,同时,设 计滤波辅助系统补偿了无角速度信息反馈的影响,进一步提高了控制系统的鲁棒性和实用性。
附图说明
图1为一种针对干扰和无角速度反馈的姿态协同跟踪控制方法流程图;
图2为一种针对干扰和无角速度反馈的姿态协同跟踪控制示意图;
图3为航天器编队中各航天器之间的通信拓扑图。
具体实施方式
以下结合附图对本发明进一步详细说明。
如图1所示,一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,针对由n个跟随 者航天器和1个领航者航天器组成的航天器编队,执行如下步骤,构建固定时间扩张状态观 测器、分布式固定时间状态观测器、滤波辅助系统,获得针对干扰和无角度反馈的姿态协同 跟踪控制器,然后采用该姿态协同跟踪控制器使航天器编队姿态进行协同跟踪控制:
步骤1:通过建立航天器编队的惯量坐标系和航天器编队中各航天器分别对应的本体坐 标系,确定航天器编队中各航天器分别所对应的运动学方程和动力学方程;
航天器编队中各航天器的运动学方程为:
Figure BDA0003214982510000051
航天器编队中各航天器的动力学方程为:
Figure BDA0003214982510000061
其中,i=0,1,…,n,i=0表示领航者航天器,其它的为跟随者航天器,跟随者跟踪领航者 航天器,
Figure BDA0003214982510000062
Figure BDA0003214982510000063
分别为矢量和标量,R4表示四维实数列向量,
Figure BDA0003214982510000064
是以单位四元数形 式表示航天器编队中第i个航天器的姿态,I是单位矩阵,ωi∈R3表示航天器的角速度,R3表 示三维实数列向量,·代表变量的导数,即
Figure BDA0003214982510000065
分别为航天器姿态和航天器角速度的导数, 上标T表示转置,×表示斜对称矩阵含义,即
Figure BDA0003214982510000066
是ωi=[ωi1,ωi2,ωi3]T的斜对称矩阵
Figure BDA0003214982510000067
ωi1、ωi2、ωi3为ωi的元素,Ji∈R3×3是航天器转动惯量矩阵,R3×3表示三 行三列的实数矩阵,τi∈R3和di∈R3分别表示航天器的执行机构控制力矩和干扰力矩。
步骤2:利用代数图论,描述航天器编队所对应以领航者航天器为根节点的树形通信拓 扑结构;为减少通信路径和避免资源浪费,本发明采用通信量较少的通信拓扑结构,其包括 一个领航者为根节点的有向生成树,航天器编队的树形拓扑结构中只有领航者航天器相邻相 连的各跟随者航天器可以获得领航者航天器的信息。aij是邻接矩阵元素,用于表述第i个航天 器和第j个航天器之间的通信状况,如果存在从航天器j到i的通信,aij>0;相反,aij=0; bi=ai0为领航者邻接矩阵元素。
如图3所示,航天器编队系统中航天器之间的通信拓扑图为:以一个领航者为根节点的 有向生成树且仅有部分跟随者航天器可以获得领航者航天器信息,航天器0为领航者航天器, 航天器1、2、3、4、5为跟随者航天器,且只有航天器1、2能够获得领航者航天器0的信息, 航天器4仅与航天器5有通信,航天器1与航天器2和3进行通信。
步骤3:根据航天器编队所对应的树形通信拓扑结构,针对领航者航天器相邻相连的各 跟随者航天器,设计分布式固定时间状态观测器,确定该各跟随者航天器分别观测领航者航 天器的姿态观测值、角速度观测值和角加速度观测值;
分布式固定时间状态观测器为:
Figure BDA0003214982510000068
Figure RE-GDA0003550143200000071
Figure BDA0003214982510000072
Figure BDA0003214982510000073
其中,
Figure BDA0003214982510000074
σi和ρi分别为第i个航天器对领航者状态
Figure BDA0003214982510000075
ω0
Figure BDA0003214982510000076
的观测值,r1、r2、 r3、r4、r5、r6、r7、r8和θ1均为正常数且
Figure BDA0003214982510000077
Figure BDA0003214982510000078
是ω0的二阶导数,aij是邻接矩阵元素, 用于表述第i个航天器和第j个航天器之间的通信状况,如果存在从航天器j到i的通信, aij>0;相反,如果不存在从航天器j到i的通信,aij=0;ai0为领航者邻接矩阵元素,当j≠0时, 第j个航天器对领航者的姿态观测值为
Figure BDA0003214982510000079
角速度观测值为σj∈R3和角加速度观测值 为ρj∈R3,当j=0时,
Figure BDA00032149825100000710
σ0和ρ0分别表述的是领航者状态
Figure BDA00032149825100000711
ω0
Figure BDA00032149825100000712
sigα()为 幂函数,对于任意变量xi=[xi1,xi2,xi3]T而言,其幂函数sigα(xi)为 sigα(xi)=[sign(xi1)|xi1|α,sign(xi2)|xi2|α,sign(xi3)|xi3|α]T,sign()为标准的符号函数,幂函数sigp(xi)为 sigp(xi)=[sign(xi1)|xi1|p,sign(xi2)|xi2|p,sign(xi3)|xi3|p]T
Figure BDA00032149825100000713
为σi的导数,
Figure BDA00032149825100000714
Figure BDA00032149825100000715
的导数,
Figure BDA00032149825100000716
Figure BDA00032149825100000717
的导数, n为跟随航天器的数量
步骤4:根据所述相应跟随者航天器对领航者航天器的姿态观测值、角速度观测值和角 加速度观测值,分别定义姿态跟踪误差估计值和角速度跟踪误差估计值;
姿态跟踪误差估计值
Figure BDA00032149825100000718
为:
Figure BDA00032149825100000719
Figure BDA00032149825100000720
角速度跟踪误差估计值ωie为:
ωie=ωi-Ciσi
式中
Figure BDA00032149825100000721
为旋转矩阵,
Figure BDA00032149825100000722
Figure BDA00032149825100000723
分别为姿态跟踪误差矢量部分和标 量部分。
步骤5:根据所述姿态跟踪误差估计值和角速度跟踪误差估计值,设计固定时间扩张状 态观测器对跟踪者航天器的干扰项进行观测;
固定时间扩张状态观测器为:
Figure BDA0003214982510000081
Figure BDA0003214982510000082
Figure BDA0003214982510000083
式中,0<αi<1、pi>1、γi1>0、γi2>0、γi3>0、γi4>0、γi5>0和γi6>0为所述固定时间扩 张状态观测器参数,ξi1、ξi2和ξi3为所述固定时间扩张状态观测器状态,
Figure BDA0003214982510000084
步骤6:根据所述姿态跟踪误差估计值设计滤波辅助系统;
滤波辅助系统为:
Figure BDA0003214982510000085
Figure BDA0003214982510000086
式中,
Figure BDA0003214982510000087
表示所述滤波辅助系统四元数矢量,
Figure BDA0003214982510000088
表示所述滤波辅助系统四元数标量,
Figure BDA0003214982510000089
Figure BDA00032149825100000810
分别表示单位四元数矢量和标量,上标T表示转置,
Figure BDA00032149825100000811
表示
Figure BDA00032149825100000812
的导数,
Figure BDA00032149825100000813
表示
Figure BDA00032149825100000814
的导数,ci为正实数。
步骤7:根据所述分布式固定时间状态观测器、所述姿态跟踪误差估计值、所述固定时 间扩张状态观测器以及所述滤波辅助系统,设计获得针对干扰和无角速度反馈的姿态协同跟 踪控制器。
如图2所示,姿态协同跟踪控制器τi包括:
Figure BDA00032149825100000815
式中,k1i为正实数,
Figure BDA00032149825100000816
Figure BDA00032149825100000817
分别表示所述姿态跟踪误差估计值的矢量部分和标量部分, ρi和σi为所述分布式固定时间状态观测器的状态变量,k2i为正实数,
Figure BDA00032149825100000818
Figure BDA00032149825100000819
为所述滤波辅助 系统的状态变量,Ci表示旋转矩阵
Figure BDA00032149825100000820
上标×表示斜对称算子矩阵, Ji表示所述航天器的惯量矩阵,k3i为正实数,ξi2和ξi3为所述固定时间扩张状态观测器的状态 变量。
上述步骤中,航天器姿态可以通过航天器自身所配备的传感器来测量的。
上述技术方案所设计的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,综合考 虑干扰、无角速度反馈以及只有部分跟随者航天器能够获得领航者航天器信息的航天器编队 的工况,针对复杂干扰、通信资源、观测时间、无法获取角速度信息的考虑更为完善,构建 了固定时间扩张状态观测器、分布式固定时间状态观测器、滤波辅助系统,并获得针对干扰 和无角度反馈的姿态协同跟踪控制器,然后采用该姿态协同跟踪控制器使航天器编队姿态进 行协同跟踪控制,实现仅有部分跟随者航天器可获得领航者航天器信息的通信拓扑下的干扰、 无角速度反馈的姿态协同控制方法,且能够使航天器协同跟踪误差系统快速的收敛,进一步 提高了控制系统的鲁棒性和实用性。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式, 在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种 变化。

Claims (8)

1.一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:针对由n个跟随者航天器和1个领航者航天器组成的航天器编队,执行如下步骤,构建固定时间扩张状态观测器、分布式固定时间状态观测器、滤波辅助系统,获得针对干扰和无角度反馈的姿态协同跟踪控制器,然后采用该姿态协同跟踪控制器使航天器编队姿态进行协同跟踪控制:
步骤1:通过建立航天器编队的惯量坐标系和航天器编队中各航天器分别对应的本体坐标系,确定航天器编队中各航天器分别所对应的运动学方程和动力学方程;
步骤2:利用代数图论,描述航天器编队所对应以领航者航天器为根节点的树形通信拓扑结构;
步骤3:根据航天器编队所对应的树形通信拓扑结构,针对领航者航天器相邻相连的各跟随者航天器,设计分布式固定时间状态观测器,确定该各跟随者航天器分别观测领航者航天器的姿态观测值、角速度观测值和角加速度观测值;
步骤4:根据所述相应跟随者航天器对领航者航天器的姿态观测值、角速度观测值和角加速度观测值,分别定义姿态跟踪误差估计值和角速度跟踪误差估计值;
步骤5:根据所述姿态跟踪误差估计值和角速度跟踪误差估计值,设计固定时间扩张状态观测器对跟踪者航天器的干扰项进行观测;
步骤6:根据所述姿态跟踪误差估计值设计滤波辅助系统;
步骤7:根据所述分布式固定时间状态观测器、所述姿态跟踪误差估计值、所述固定时间扩张状态观测器以及所述滤波辅助系统,设计获得针对干扰和无角速度反馈的姿态协同跟踪控制器。
2.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤1中航天器编队中各航天器的运动学方程为:
Figure FDA0003214982500000011
航天器编队中各航天器的动力学方程为:
Figure FDA0003214982500000012
其中,i=0,1,…,n,i=0表示领航者航天器,其它的为跟随者航天器,跟随者跟踪领航者航天器,
Figure FDA0003214982500000013
Figure FDA0003214982500000014
分别为矢量和标量,R4表示四维实数列向量,
Figure FDA0003214982500000015
是以单位四元数形式表示航天器编队中第i个航天器的姿态,I是单位矩阵,ωi∈R3表示航天器的角速度,R3表示三维实数列向量,·代表变量的导数,即
Figure FDA0003214982500000016
分别为航天器姿态和航天器角速度的导数,上标T表示转置,
Figure FDA0003214982500000017
表示斜对称矩阵含义,即
Figure FDA0003214982500000018
是ωi=[ωi1i2i3]T的斜对称矩阵
Figure FDA0003214982500000021
ωi1、ωi2、ωi3为ωi的元素,Ji∈R3×3是航天器转动惯量矩阵,R3×3表示三行三列的实数矩阵,ηi∈R3和di∈R3分别表示航天器的执行机构控制力矩和干扰力矩。
3.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤2中航天器编队的树形拓扑结构中只有领航者航天器相邻相连的各跟随者航天器可以获得领航者航天器的信息。
4.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤3中所述分布式固定时间状态观测器为:
Figure FDA0003214982500000022
Figure FDA0003214982500000023
Figure FDA0003214982500000024
Figure FDA0003214982500000025
其中,
Figure FDA0003214982500000026
σi和ρi分别为第i个航天器对领航者状态
Figure FDA0003214982500000027
ω0
Figure FDA0003214982500000028
的观测值,r1、r2、r3、r4、r5、r6、r7、r8
Figure FDA0003214982500000029
均为正常数且
Figure FDA00032149825000000210
Figure FDA00032149825000000211
是ω0的二阶导数,aij是邻接矩阵元素,用于表述第i个航天器和第j个航天器之间的通信状况,如果存在从航天器j到i的通信,aij>0;相反,如果不存在从航天器j到i的通信,aij=0;ai0为领航者邻接矩阵元素,当j≠0时,第j个航天器对领航者的姿态观测值为
Figure FDA00032149825000000212
角速度观测值为σj∈R3和角加速度观测值为ρj∈R3,当j=0时,
Figure FDA00032149825000000213
σ0和ρ0分别表述的是领航者状态
Figure FDA00032149825000000214
ω0
Figure FDA00032149825000000215
sigα()为幂函数,对于任意变量xi=[xi1,xi2,xi3]T而言,其幂函数sigα(xi)为sigα(xi)=[sign(xi1)|xi1|α,sign(xi2)|xi2|α,sign(xi3)|xi3|α]T,sign()为标准的符号函数,幂函数sigp(xi)为sigp(xi)=[sign(xi1)|xi1|p,sign(xi2)|xi2|p,sign(xi3)|xi3|p]T
Figure FDA00032149825000000216
为σi的导数,
Figure FDA00032149825000000217
Figure FDA00032149825000000218
的导数,
Figure FDA00032149825000000219
Figure FDA00032149825000000220
的导数,n为跟随航天器的数量。
5.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤4中所述姿态跟踪误差估计值
Figure FDA0003214982500000031
为:
Figure FDA0003214982500000032
Figure FDA0003214982500000033
角速度跟踪误差估计值ωie为:
ωie=ωi-Ciσi
式中
Figure FDA0003214982500000034
为旋转矩阵,
Figure FDA0003214982500000035
Figure FDA0003214982500000036
分别为姿态跟踪误差矢量部分和标量部分。
6.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤5中所述固定时间扩张状态观测器为:
Figure FDA0003214982500000037
Figure FDA0003214982500000038
Figure FDA0003214982500000039
式中,0<αi<1、pi>1、γi1>0、γi2>0、γi3>0、γi4>0、γi5>0和γi6>0为所述固定时间扩张状态观测器参数,ξi1、ξi2和ξi3为所述固定时间扩张状态观测器状态,
Figure FDA00032149825000000310
7.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤6中所述滤波辅助系统为:
Figure FDA00032149825000000311
Figure FDA00032149825000000312
式中,
Figure FDA00032149825000000313
表示所述滤波辅助系统四元数矢量,
Figure FDA00032149825000000314
表示所述滤波辅助系统四元数标量,
Figure FDA00032149825000000315
Figure FDA00032149825000000316
分别表示单位四元数矢量和标量,上标T表示转置,
Figure FDA00032149825000000317
表示
Figure FDA00032149825000000318
的导数,
Figure FDA00032149825000000319
表示
Figure FDA00032149825000000320
的导数,ci为正实数。
8.根据权利要求1所述的一种针对干扰与无角速度反馈的姿态协同跟踪控制方法,其特征在于:所述步骤7中所述姿态协同跟踪控制器ηi包括:
Figure FDA0003214982500000041
式中,k1i为正实数,
Figure FDA0003214982500000042
Figure FDA0003214982500000043
分别表示所述姿态跟踪误差估计值的矢量部分和标量部分,ρi和σi为所述分布式固定时间状态观测器的状态变量,k2i为正实数,
Figure FDA0003214982500000044
Figure FDA0003214982500000045
为所述滤波辅助系统的状态变量,Ci表示旋转矩阵
Figure FDA0003214982500000046
上标
Figure FDA0003214982500000047
表示斜对称算子矩阵,Ji表示所述航天器的惯量矩阵,k3i为正实数,ξi2和ξi3为所述固定时间扩张状态观测器的状态变量。
CN202110941077.9A 2021-08-17 2021-08-17 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法 Pending CN114326760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110941077.9A CN114326760A (zh) 2021-08-17 2021-08-17 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110941077.9A CN114326760A (zh) 2021-08-17 2021-08-17 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法

Publications (1)

Publication Number Publication Date
CN114326760A true CN114326760A (zh) 2022-04-12

Family

ID=81044256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110941077.9A Pending CN114326760A (zh) 2021-08-17 2021-08-17 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法

Country Status (1)

Country Link
CN (1) CN114326760A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117311375A (zh) * 2023-10-16 2023-12-29 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 有向通信多航天器分布式容错姿态协同控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913724A1 (en) * 2014-02-25 2015-09-02 Abb Ag PLC with a finite horizon optimization control program
CN112000117A (zh) * 2020-08-17 2020-11-27 盐城工学院 无角速度反馈的航天器姿态协同跟踪控制方法
CN112363524A (zh) * 2020-11-20 2021-02-12 中国运载火箭技术研究院 一种基于自适应增益扰动补偿的再入飞行器姿态控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913724A1 (en) * 2014-02-25 2015-09-02 Abb Ag PLC with a finite horizon optimization control program
CN112000117A (zh) * 2020-08-17 2020-11-27 盐城工学院 无角速度反馈的航天器姿态协同跟踪控制方法
CN112363524A (zh) * 2020-11-20 2021-02-12 中国运载火箭技术研究院 一种基于自适应增益扰动补偿的再入飞行器姿态控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUIFEN HONG: "Distributed Fixed-Time Attitude Tracking Consensus for Rigid Spacecraft Systems Under Directed Graphs", 《IEEE CONTROL SYSTEMS LETTERS》, 31 July 2020 (2020-07-31), pages 698 - 702 *
隋维舜: "航天器编队飞行分布式固定时间协同控制", 《中国优秀硕博士论文全文数据库》, 15 January 2021 (2021-01-15) *
高直: "Distributed Global Velocity-free Attitude Coordination Control for Multiple Spacecraft without Unwinding", 《INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION AND SYSTEMS》, 4 February 2022 (2022-02-04) *
高直: "Distributed velocitiy-free attitude coordination control with torque constraint", 《WORLD SCIENTITIC》, 18 March 2021 (2021-03-18), pages 5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117311375A (zh) * 2023-10-16 2023-12-29 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 有向通信多航天器分布式容错姿态协同控制方法

Similar Documents

Publication Publication Date Title
Cichella et al. Cooperative path following of multiple multirotors over time-varying networks
CN110161847B (zh) 一种基于分布式奇异观测器的无人机编队系统传感器故障估计方法
CN111752292B (zh) 一种分布式航天器的姿态协同跟踪控制方法
Zou et al. Velocity-free leader–follower cooperative attitude tracking of multiple rigid bodies on SO (3)
CN115639841B (zh) 一种基于鲁棒牵制的无人机集群编队控制系统及控制方法
CN111857181B (zh) 分布式航天器编队自适应有限时间姿态协同跟踪控制方法
Zhang et al. Decentralized coordinated control for multiple spacecraft formation maneuvers
Min et al. Distributed six degree-of-freedom spacecraft formation control with possible switching topology
CN112904723A (zh) 非匹配干扰下的空地固定时间协同容错编队控制方法
CN112000117A (zh) 无角速度反馈的航天器姿态协同跟踪控制方法
CN112357119A (zh) 一种输入受限的有限时间姿态协同跟踪容错控制方法
Xu et al. Affine formation maneuver control of multi-agent systems with directed interaction graphs
Haghighi et al. Robust concurrent attitude-position control of a swarm of underactuated nanosatellites
Cheng et al. Fixed-time formation tracking for heterogeneous multiagent systems under actuator faults and directed topologies
CN114326760A (zh) 一种针对干扰与无角速度反馈的姿态协同跟踪控制方法
Li et al. Predefined-time formation control of the quadrotor-UAV cluster’position system
Xu et al. Distributed fixed-time time-varying formation-containment control for networked underactuated quadrotor UAVs with unknown disturbances
Vu et al. Distributed consensus-based Kalman filter estimation and control of formation flying spacecraft: Simulation and validation
Ma et al. Velocity-free finite-time relative 6-DOF control for rigid spacecraft
Bezouska et al. Decentralized cooperative localization with relative pose estimation for a spacecraft swarm
CN111949040B (zh) 高效利用空间无线资源的卫星编队姿态协同跟踪控制方法
Cheng et al. Data-driven optimal formation-containment control for a group of spacecrafts subject to switching topologies
Abbas et al. Formation tracking for multiple quadrotor based on sliding mode and fixed communication topology
Liu et al. Distributed state estimation for networked spacecraft thermal experiments over sensor networks with randomly varying transmission delays
Zhang et al. Distributed tracking control of unmanned aerial vehicles under wind disturbance and model uncertainty

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination