CN114323939B - Comprehensive experimental device for static and dynamic tension and shear of anchor rod - Google Patents
Comprehensive experimental device for static and dynamic tension and shear of anchor rod Download PDFInfo
- Publication number
- CN114323939B CN114323939B CN202111559069.4A CN202111559069A CN114323939B CN 114323939 B CN114323939 B CN 114323939B CN 202111559069 A CN202111559069 A CN 202111559069A CN 114323939 B CN114323939 B CN 114323939B
- Authority
- CN
- China
- Prior art keywords
- static
- shear
- anchor rod
- iron block
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 336
- 238000012360 testing method Methods 0.000 claims abstract description 64
- 238000010008 shearing Methods 0.000 claims abstract description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 286
- 229910052742 iron Inorganic materials 0.000 claims description 143
- 238000002474 experimental method Methods 0.000 claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- 230000000630 rising effect Effects 0.000 claims description 9
- 238000009864 tensile test Methods 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 239000011435 rock Substances 0.000 description 8
- 238000004880 explosion Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种锚杆静动拉剪综合实验装置,包括底座、静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构;静态拉伸执行机构、静态剪切执行机构及动态拉剪执行机构设置在底座上,剪切盒机构设置在静态拉伸执行机构上,静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构分布在同一条直线上。本发明的锚杆静动拉剪综合实验装置,能够在同一台设备内完成锚杆静态拉伸实验、锚杆静态剪切实验、锚杆动态拉伸实验、锚杆动态剪切实验、拉应力状态下的锚杆静态剪切实验、拉应力状态下的锚杆动态剪切实验,实现了一机多用,仅通过一台设备就可以满足锚杆综合性能指标的测试,有效节约了设备采购成本和实验成本。
A comprehensive static and dynamic tension and shearing test device for anchor rods, comprising a base, a static stretching actuator, a static shearing actuator, a dynamic tension and shearing actuator and a shear box mechanism; the static stretching actuator, the static shearing actuator and the dynamic tension and shearing actuator are arranged on the base, the shear box mechanism is arranged on the static stretching actuator, and the static stretching actuator, the static shearing actuator, the dynamic tension and shearing actuator and the shear box mechanism are distributed on the same straight line. The comprehensive static and dynamic tension and shearing test device for anchor rods of the present invention can complete the static stretching test, the static shear test, the dynamic stretching test, the dynamic shear test, the static shear test under tensile stress state and the dynamic shear test under tensile stress state of anchor rods in the same device, realizing one machine with multiple uses, and can meet the test of the comprehensive performance indicators of anchor rods by only one device, effectively saving the equipment procurement cost and the experimental cost.
Description
技术领域Technical Field
本发明属于锚杆拉剪实验技术领域,特别是涉及一种锚杆静动拉剪综合实验装置。The invention belongs to the technical field of anchor rod tension and shearing experiments, and in particular relates to an anchor rod static and dynamic tension and shearing comprehensive experimental device.
背景技术Background technique
随着浅部矿产资源的逐渐枯竭,深部矿床的开采是未来采矿的必然发展趋势,但处于深部高应力、强扰动环境下,开挖卸荷会引起深部岩体内部积聚的应变能突然释放,诱发岩爆、冒顶或围岩大变形等灾害,造成人员伤亡和设备损坏。With the gradual depletion of shallow mineral resources, the exploitation of deep deposits is an inevitable development trend of mining in the future. However, in the deep high stress and strong disturbance environment, excavation unloading will cause the strain energy accumulated inside the deep rock mass to be suddenly released, inducing disasters such as rock burst, roof fall or large deformation of surrounding rock, resulting in casualties and equipment damage.
抗爆支护是防止深部岩爆破坏的有效手段,很多矿用锚杆采用钢材的塑形变形来达到吸能作用。但是,岩石在发生岩爆破坏时,除了产生大量的体积膨胀,还会产生较大的剪切变形,当锚杆在拉应力超过钢材的屈服强度时,抗剪能力会有所下降,如果支护系统中的锚杆丧失了抗剪能力,岩爆支护系统将不再有效。因此,岩爆支护系统除了必须有很高的抗拉伸破坏能力,还要有足够的抗剪切破坏的能力,才能够有效地防止岩爆破坏。Anti-explosion support is an effective means to prevent deep rock burst damage. Many mining anchors use plastic deformation of steel to achieve energy absorption. However, when rock burst occurs, in addition to a large amount of volume expansion, it will also produce a large shear deformation. When the tensile stress of the anchor exceeds the yield strength of the steel, the shear resistance will decrease. If the anchor in the support system loses its shear resistance, the rock burst support system will no longer be effective. Therefore, in addition to having a high tensile resistance, the rock burst support system must also have sufficient shear resistance to effectively prevent rock burst damage.
近年来,虽然市面上出现了一些吸能抗爆锚杆,但这些吸能抗爆锚杆的吸能指标都是基于材料的抗拉特性,缺乏抗剪特性指标。目前,市面上能够单独进行锚杆静态拉伸测试的装置、能够单独测试锚杆拉伸或剪切性能的装置、能够单独进行锚杆静态剪切测试的装置有很多,但能够在拉力作用下进行静态及动态剪切测试的装置仍处于空白,并且现有的相关实验装置普遍功能单一,为了获取锚杆的综合性能指标,需要通过多台不同功能的实验装置才能实现,造成设备采购成本以及实验成本的增加。In recent years, although some energy-absorbing and explosion-resistant anchors have appeared on the market, the energy absorption indicators of these energy-absorbing and explosion-resistant anchors are based on the tensile properties of the material, and lack shear property indicators. At present, there are many devices on the market that can perform static tensile tests on anchors alone, devices that can test the tensile or shear properties of anchors alone, and devices that can perform static shear tests on anchors alone, but there is still a lack of devices that can perform static and dynamic shear tests under tension, and the existing related experimental devices generally have single functions. In order to obtain the comprehensive performance indicators of anchors, multiple experimental devices with different functions are required, resulting in an increase in equipment procurement costs and experimental costs.
发明内容Summary of the invention
针对现有技术存在的问题,本发明提供一种锚杆静动拉剪综合实验装置,能够在同一台设备内完成锚杆静态拉伸实验、锚杆静态剪切实验、锚杆动态拉伸实验、锚杆动态剪切实验、拉应力状态下的锚杆静态剪切实验、拉应力状态下的锚杆动态剪切实验,实现了一机多用,仅通过一台设备就可以满足锚杆综合性能指标的测试,有效节约了设备采购成本和实验成本。In view of the problems existing in the prior art, the present invention provides an anchor rod static and dynamic tension and shear comprehensive testing device, which can complete the anchor rod static tensile test, anchor rod static shear test, anchor rod dynamic tensile test, anchor rod dynamic shear test, anchor rod static shear test under tensile stress state, and anchor rod dynamic shear test under tensile stress state in the same device, realizing one machine for multiple uses. Only one device is needed to meet the test of the comprehensive performance indicators of the anchor rod, effectively saving equipment procurement cost and experimental cost.
为了实现上述目的,本发明采用如下技术方案:一种锚杆静动拉剪综合实验装置,包括底座、静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构;所述静态拉伸执行机构、静态剪切执行机构及动态拉剪执行机构设置在底座上,所述剪切盒机构设置在静态拉伸执行机构上,所述静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构分布在同一条直线上。In order to achieve the above-mentioned purpose, the present invention adopts the following technical scheme: an anchor bolt static and dynamic tension and shear comprehensive experimental device, comprising a base, a static stretching actuator, a static shear actuator, a dynamic tension and shear actuator and a shear box mechanism; the static stretching actuator, the static shear actuator and the dynamic tension and shear actuator are arranged on the base, the shear box mechanism is arranged on the static stretching actuator, and the static stretching actuator, the static shear actuator, the dynamic tension and shear actuator and the shear box mechanism are distributed on the same straight line.
所述静态拉伸执行机构包括静态拉伸框架、静态拉伸作动器、静态拉伸负荷传感器、静态拉伸夹具;所述静态拉伸框架采用矩形结构;在所述底座上表面水平设置有静态拉伸框架滑移导轨,所述静态拉伸框架滑移导轨采用平行双轨结构;所述静态拉伸框架设置在静态拉伸框架滑移导轨上,静态拉伸框架在静态拉伸框架滑移导轨上具有直线移动自由度;所述静态拉伸作动器水平固装在静态拉伸框架上,静态拉伸作动器的活塞杆与静态拉伸框架滑移导轨相平行;所述静态拉伸作动器的活塞杆延伸至静态拉伸框架内侧,所述静态拉伸负荷传感器同轴固装在静态拉伸作动器的活塞杆端部;所述静态拉伸夹具同轴安装在静态拉伸负荷传感器上;所述剪切盒机构设置在静态拉伸框架内侧中部,剪切盒机构与静态拉伸夹具正对设置;所述剪切盒机构包括下半剪切盒、上半剪切盒及位移传感器;所述下半剪切盒固定安装在静态拉伸框架上,所述上半剪切盒位于下半剪切盒上方,所述位移传感器连接在下半剪切盒与上半剪切盒之间。The static stretching actuator comprises a static stretching frame, a static stretching actuator, a static stretching load sensor, and a static stretching fixture; the static stretching frame adopts a rectangular structure; a static stretching frame sliding guide rail is horizontally arranged on the upper surface of the base, and the static stretching frame sliding guide rail adopts a parallel double-track structure; the static stretching frame is arranged on the static stretching frame sliding guide rail, and the static stretching frame has a linear movement degree of freedom on the static stretching frame sliding guide rail; the static stretching actuator is horizontally fixed on the static stretching frame, and the piston rod of the static stretching actuator is parallel to the static stretching frame sliding guide rail; The piston rod of the static stretching actuator extends to the inner side of the static stretching frame, and the static stretching load sensor is coaxially fixed on the end of the piston rod of the static stretching actuator; the static stretching fixture is coaxially installed on the static stretching load sensor; the shear box mechanism is arranged in the middle of the inner side of the static stretching frame, and the shear box mechanism and the static stretching fixture are arranged opposite to each other; the shear box mechanism includes a lower shear box, an upper shear box and a displacement sensor; the lower shear box is fixedly installed on the static stretching frame, the upper shear box is located above the lower shear box, and the displacement sensor is connected between the lower shear box and the upper shear box.
所述静态剪切执行机构包括静态剪切框架、静态剪切作动器及静态剪切负荷传感器;所述静态剪切框架采用龙门结构,静态剪切框架竖直固装在底座上,静态剪切框架跨装在静态拉伸框架滑移导轨上方;所述静态剪切作动器竖直固装在静态剪切框架的横梁上,静态剪切作动器的活塞杆竖直朝向延伸至静态剪切框架内侧;所述静态剪切负荷传感器同轴固装在静态剪切作动器的活塞杆端部。The static shear actuator includes a static shear frame, a static shear actuator and a static shear load sensor; the static shear frame adopts a gantry structure, the static shear frame is vertically fixed on the base, and the static shear frame is straddled above the sliding guide rail of the static stretching frame; the static shear actuator is vertically fixed on the crossbeam of the static shear frame, and the piston rod of the static shear actuator extends vertically to the inside of the static shear frame; the static shear load sensor is coaxially fixed on the end of the piston rod of the static shear actuator.
所述动态拉剪执行机构包括动态拉剪框架、电磁铁、配重铁块、动态拉剪负荷传感器、动态拉伸夹具及起吊钢索;所述动态拉剪框架采用龙门结构,动态拉剪框架竖直固装在底座上,动态拉剪框架跨装在静态拉伸框架滑移导轨上方;所述电磁铁固定吊装在动态拉剪框架的横梁下方,在电磁铁的中心开设有锚杆穿行孔;所述配重铁块位于电磁铁下方,配重铁块与电磁铁磁吸配合,在配重铁块的中心也开设有锚杆穿行孔;所述动态拉剪负荷传感器位于配重铁块下方,在动态拉剪负荷传感器的中心也开设有锚杆穿行孔;所述动态拉伸夹具同轴安装在动态拉剪负荷传感器上;所述起吊钢索连接在配重铁块顶端;在所述动态拉剪框架的立柱上竖直设置有配重铁块导向滑轨,配重铁块导向滑轨采用平行双轨结构,配重铁块沿配重铁块导向滑轨具有竖直移动自由度;在所述配重铁块导向滑轨的底部设置有配重缓冲块。The dynamic shearing actuator includes a dynamic shearing frame, an electromagnet, a counterweight iron block, a dynamic shearing load sensor, a dynamic stretching fixture and a lifting cable; the dynamic shearing frame adopts a gantry structure, the dynamic shearing frame is vertically fixed on the base, and the dynamic shearing frame is straddled above the sliding guide rail of the static stretching frame; the electromagnet is fixedly hoisted under the crossbeam of the dynamic shearing frame, and an anchor rod passage hole is opened in the center of the electromagnet; the counterweight iron block is located under the electromagnet, and the counterweight iron block cooperates with the electromagnet by magnetic attraction, and a hole is also opened in the center of the counterweight iron block Anchor rod passage hole; the dynamic tensile shear load sensor is located below the counterweight iron block, and an anchor rod passage hole is also opened in the center of the dynamic tensile shear load sensor; the dynamic stretching clamp is coaxially installed on the dynamic tensile shear load sensor; the lifting steel cable is connected to the top of the counterweight iron block; a counterweight iron block guide rail is vertically arranged on the column of the dynamic tensile shear frame, and the counterweight iron block guide rail adopts a parallel double-track structure, and the counterweight iron block has vertical movement freedom along the counterweight iron block guide rail; a counterweight buffer block is arranged at the bottom of the counterweight iron block guide rail.
当进行锚杆静态拉伸实验时,包括如下步骤:When conducting a static tensile test on an anchor rod, the following steps are included:
步骤一:将测试用的锚杆从剪切盒机构中穿过,剪切盒机构不启用,锚杆与下半剪切盒和上半剪切盒不接触;Step 1: Pass the anchor rod for testing through the shear box mechanism, the shear box mechanism is not activated, and the anchor rod does not contact the lower half shear box and the upper half shear box;
步骤二:将锚杆一端通过锁具固定在静态拉伸框架上,锚杆另一端由静态拉伸夹具夹持固定;Step 2: Fix one end of the anchor rod to the static stretching frame through a lock, and fix the other end of the anchor rod by clamping it with a static stretching clamp;
步骤三:启动静态拉伸作动器,控制静态拉伸作动器的活塞杆以0.1mm/min的速率回缩,对锚杆施加静态拉伸载荷,同步采集载荷数据和锚杆变形数据,直至锚杆断裂,保存实验数据,实验结束。Step 3: Start the static tensile actuator, control the piston rod of the static tensile actuator to retract at a rate of 0.1 mm/min, apply a static tensile load to the anchor rod, and synchronously collect load data and anchor rod deformation data until the anchor rod breaks. Save the experimental data and the experiment ends.
当进行锚杆静态剪切实验时,包括如下步骤:When conducting a static shear test on an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆从剪切盒机构中穿过,启用剪切盒机构,使锚杆与下半剪切盒和上半剪切盒充分接触;Step 1: Pass the anchor rod for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod fully contact with the lower half shear box and the upper half shear box;
步骤二:将锚杆一端通过锁具固定在静态拉伸框架上,锚杆另一端由静态拉伸夹具夹持固定;Step 2: Fix one end of the anchor rod to the static stretching frame through a lock, and fix the other end of the anchor rod by clamping it with a static stretching clamp;
步骤三:沿着静态拉伸框架滑移导轨移动静态拉伸框架,锚杆及剪切盒机构则随着静态拉伸框架同步移动,直到上半剪切盒位于静态剪切作动器及静态剪切负荷传感器的正下方,之后将静态拉伸框架锁定到底座上;Step 3: Move the static stretching frame along the static stretching frame sliding guide rail, and the anchor rod and the shear box mechanism move synchronously with the static stretching frame until the upper half shear box is located directly below the static shear actuator and the static shear load sensor, and then lock the static stretching frame to the base;
步骤四:启动静态剪切作动器,先控制静态剪切作动器的活塞杆以100mm/min的速率伸出,直到静态剪切负荷传感器与下方的上半剪切盒顶靠接触在一起,之后控制静态剪切作动器的活塞杆以0.1mm/min的速率伸出,对上半剪切盒施加竖直载荷,进而通过上半剪切盒及下半剪切盒对锚杆施加静态剪切载荷,同步采集载荷数据和锚杆变形数据,直至锚杆断裂,保存实验数据,实验结束。Step 4: Start the static shear actuator, first control the piston rod of the static shear actuator to extend at a rate of 100mm/min until the static shear load sensor is in contact with the upper shear box below, and then control the piston rod of the static shear actuator to extend at a rate of 0.1mm/min, apply a vertical load to the upper shear box, and then apply a static shear load to the anchor rod through the upper shear box and the lower shear box, and synchronously collect load data and anchor rod deformation data until the anchor rod breaks, save the experimental data, and end the experiment.
当进行锚杆动态拉伸实验时,包括如下步骤:When conducting a dynamic tensile test of an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆从动态拉剪框架的顶部横梁上竖直插入,使锚杆依次穿过电磁铁、配重铁块及动态拉剪负荷传感器中心处的锚杆穿行孔,之后将锚杆上端通过锁具固定在动态拉剪框架上,将动态拉伸夹具夹持固定在锚杆下端;Step 1: Insert the anchor rod for testing vertically from the top crossbeam of the dynamic shear frame, and make the anchor rod pass through the electromagnet, the counterweight iron block and the anchor rod passage hole at the center of the dynamic shear load sensor in sequence. Then fix the upper end of the anchor rod to the dynamic shear frame through a lock, and clamp the dynamic tensile clamp to the lower end of the anchor rod;
步骤二:将起吊钢索与配重铁块连接在一起,通过起吊钢索向上吊起配重铁块,配重铁块上升过程沿着配重铁块导向滑轨移动,直到配重铁块与上方的电磁铁顶靠接触在一起;Step 2: Connect the lifting cable and the counterweight iron block together, and lift the counterweight iron block upwards through the lifting cable. The counterweight iron block moves along the counterweight iron block guide rail during the rising process until the counterweight iron block contacts the electromagnet above;
步骤三:启动电磁铁,在电磁吸力作用下,配重铁块被吸附固定到电磁铁上,之后解除起吊钢索与配重铁块的连接;Step 3: Start the electromagnet. Under the action of electromagnetic suction, the counterweight iron block is adsorbed and fixed to the electromagnet, and then the connection between the lifting cable and the counterweight iron block is released;
步骤四:控制电磁铁断电,解除电磁吸力,配重铁块在重力作用下沿着配重铁块导向滑轨快速下坠,直至撞击到下方的动态拉剪负荷传感器,撞击力会依次通过动态拉剪负荷传感器和动态拉伸夹具传递至锚杆,进而通过撞击力对锚杆施加动态拉伸载荷,同步采集载荷数据和锚杆变形数据;Step 4: Control the electromagnet to cut off the power and release the electromagnetic suction. The counterweight iron block falls rapidly along the counterweight iron block guide rail under the action of gravity until it hits the dynamic tensile shear load sensor below. The impact force is transmitted to the anchor rod through the dynamic tensile shear load sensor and the dynamic tensile fixture in turn, and then the dynamic tensile load is applied to the anchor rod through the impact force, and the load data and anchor rod deformation data are collected synchronously;
步骤五:重复步骤二至步骤四,直至锚杆断裂,锚杆断裂后,配重铁块会带着断裂后的下半段锚杆、动态拉剪负荷传感器及动态拉伸夹具继续下坠,直到配重铁块撞击到配重缓冲块,保存实验数据,实验结束。Step 5: Repeat steps 2 to 4 until the anchor breaks. After the anchor breaks, the counterweight iron block will continue to fall with the broken lower half of the anchor, the dynamic shear load sensor and the dynamic tensile clamp until the counterweight iron block hits the counterweight buffer block, the experimental data is saved, and the experiment ends.
当进行锚杆动态剪切实验时,包括如下步骤:When conducting a dynamic shear test of an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆从剪切盒机构中穿过,启用剪切盒机构,使锚杆与下半剪切盒和上半剪切盒充分接触;Step 1: Pass the anchor rod for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod fully contact with the lower half shear box and the upper half shear box;
步骤二:将锚杆一端通过锁具固定在静态拉伸框架上,锚杆另一端由静态拉伸夹具夹持固定;Step 2: Fix one end of the anchor rod to the static stretching frame through a lock, and fix the other end of the anchor rod by clamping it with a static stretching clamp;
步骤三:将起吊钢索与配重铁块连接在一起,通过起吊钢索向上吊起配重铁块,配重铁块上升过程沿着配重铁块导向滑轨移动,直到配重铁块与上方的电磁铁顶靠接触在一起;Step 3: Connect the lifting steel cable and the counterweight iron block together, and lift the counterweight iron block upwards through the lifting steel cable. The counterweight iron block moves along the counterweight iron block guide rail during the rising process until the counterweight iron block contacts the electromagnet above;
步骤四:启动电磁铁,在电磁吸力作用下,配重铁块被吸附固定到电磁铁上,之后解除起吊钢索与配重铁块的连接;Step 4: Start the electromagnet. Under the action of electromagnetic suction, the counterweight iron block is adsorbed and fixed to the electromagnet, and then the connection between the lifting cable and the counterweight iron block is released;
步骤五:沿着静态拉伸框架滑移导轨移动静态拉伸框架,锚杆及剪切盒机构则随着静态拉伸框架同步移动,直到上半剪切盒位于配重铁块的正下方,之后将静态拉伸框架锁定到底座上;Step 5: Move the static stretching frame along the static stretching frame sliding guide rail, and the anchor rod and the shear box mechanism move synchronously with the static stretching frame until the upper half shear box is located directly below the counterweight iron block, and then lock the static stretching frame to the base;
步骤六:控制电磁铁断电,解除电磁吸力,配重铁块在重力作用下沿着配重铁块导向滑轨快速下坠,直至撞击到下方的上半剪切盒,撞击力会通过上半剪切盒及下半剪切盒对锚杆施加动态剪切载荷,同步采集载荷数据和锚杆变形数据;Step 6: Control the electromagnet to cut off the power and release the electromagnetic suction. The counterweight iron block falls rapidly along the counterweight iron block guide rail under the action of gravity until it hits the upper shear box below. The impact force will apply dynamic shear load to the anchor rod through the upper shear box and the lower shear box, and the load data and anchor rod deformation data will be collected synchronously.
步骤七:重复步骤三、步骤四及步骤六,直至锚杆断裂,锚杆断裂后,配重铁块会带着断裂后的前半段锚杆及上半剪切盒继续下坠,直到配重铁块撞击到配重缓冲块,保存实验数据,实验结束。Step 7: Repeat steps 3, 4 and 6 until the anchor rod breaks. After the anchor rod breaks, the counterweight iron block will continue to fall with the broken front half of the anchor rod and the upper shear box until the counterweight iron block hits the counterweight buffer block, save the experimental data, and the experiment ends.
当进行拉应力状态下的静态剪切实验时,包括如下步骤:When conducting a static shear test under tensile stress, the following steps are included:
步骤一:将测试用的锚杆从剪切盒机构中穿过,启用剪切盒机构,使锚杆与下半剪切盒和上半剪切盒充分接触;Step 1: Pass the anchor rod for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod fully contact with the lower half shear box and the upper half shear box;
步骤二:将锚杆一端通过锁具固定在静态拉伸框架上,锚杆另一端由静态拉伸夹具夹持固定;Step 2: Fix one end of the anchor rod to the static stretching frame through a lock, and fix the other end of the anchor rod by clamping it with a static stretching clamp;
步骤三:沿着静态拉伸框架滑移导轨移动静态拉伸框架,锚杆及剪切盒机构则随着静态拉伸框架同步移动,直到上半剪切盒位于静态剪切作动器及静态剪切负荷传感器的正下方,之后将静态拉伸框架锁定到底座上;Step 3: Move the static stretching frame along the static stretching frame sliding guide rail, and the anchor rod and the shear box mechanism move synchronously with the static stretching frame until the upper half shear box is located directly below the static shear actuator and the static shear load sensor, and then lock the static stretching frame to the base;
步骤四:启动静态拉伸作动器,控制静态拉伸作动器的活塞杆以1kN/s的速率回缩,对锚杆施加拉应力;Step 4: Start the static tensile actuator and control the piston rod of the static tensile actuator to retract at a rate of 1 kN/s to apply tensile stress to the anchor rod;
步骤五:启动静态剪切作动器,先控制静态剪切作动器的活塞杆以100mm/min的速率伸出,直到静态剪切负荷传感器与下方的上半剪切盒顶靠接触在一起,之后控制静态剪切作动器的活塞杆以0.1mm/min的速率伸出,对上半剪切盒施加竖直载荷,进而通过上半剪切盒及下半剪切盒对拉应力状态下的锚杆施加静态剪切载荷,同步采集载荷数据和锚杆变形数据,直至锚杆断裂,保存实验数据,实验结束。Step 5: Start the static shear actuator, first control the piston rod of the static shear actuator to extend at a rate of 100mm/min until the static shear load sensor is in contact with the upper shear box below, and then control the piston rod of the static shear actuator to extend at a rate of 0.1mm/min to apply a vertical load to the upper shear box, and then apply a static shear load to the anchor rod under tensile stress through the upper shear box and the lower shear box, and synchronously collect load data and anchor rod deformation data until the anchor rod breaks, save the experimental data, and end the experiment.
当进行拉应力状态下的动态剪切实验时,包括如下步骤:When conducting a dynamic shear test under tensile stress, the following steps are included:
步骤一:将测试用的锚杆从剪切盒机构中穿过,启用剪切盒机构,使锚杆与下半剪切盒和上半剪切盒充分接触;Step 1: Pass the anchor rod for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod fully contact with the lower half shear box and the upper half shear box;
步骤二:将锚杆一端通过锁具固定在静态拉伸框架上,锚杆另一端由静态拉伸夹具夹持固定;Step 2: Fix one end of the anchor rod to the static stretching frame through a lock, and fix the other end of the anchor rod by clamping it with a static stretching clamp;
步骤三:将起吊钢索与配重铁块连接在一起,通过起吊钢索向上吊起配重铁块,配重铁块上升过程沿着配重铁块导向滑轨移动,直到配重铁块与上方的电磁铁顶靠接触在一起;Step 3: Connect the lifting steel cable and the counterweight iron block together, and lift the counterweight iron block upwards through the lifting steel cable. The counterweight iron block moves along the counterweight iron block guide rail during the rising process until the counterweight iron block contacts the electromagnet above;
步骤四:启动电磁铁,在电磁吸力作用下,配重铁块被吸附固定到电磁铁上,之后解除起吊钢索与配重铁块的连接;Step 4: Start the electromagnet. Under the action of electromagnetic suction, the counterweight iron block is adsorbed and fixed to the electromagnet, and then the connection between the lifting cable and the counterweight iron block is released;
步骤五:沿着静态拉伸框架滑移导轨移动静态拉伸框架,锚杆及剪切盒机构则随着静态拉伸框架同步移动,直到上半剪切盒位于配重铁块的正下方,之后将静态拉伸框架锁定到底座上;Step 5: Move the static stretching frame along the static stretching frame sliding guide rail, and the anchor rod and the shear box mechanism move synchronously with the static stretching frame until the upper half shear box is located directly below the counterweight iron block, and then lock the static stretching frame to the base;
步骤六:启动静态拉伸作动器,控制静态拉伸作动器的活塞杆以1kN/s的速率回缩,对锚杆施加拉应力;Step 6: Start the static tensile actuator and control the piston rod of the static tensile actuator to retract at a rate of 1 kN/s to apply tensile stress to the anchor rod;
步骤七:控制电磁铁断电,解除电磁吸力,配重铁块在重力作用下沿着配重铁块导向滑轨快速下坠,直至撞击到下方的上半剪切盒,撞击力会通过上半剪切盒及下半剪切盒对拉应力状态下的锚杆施加动态剪切载荷,同步采集载荷数据和锚杆变形数据;Step 7: Control the electromagnet to cut off the power and release the electromagnetic suction. The counterweight iron block falls rapidly along the counterweight iron block guide rail under the action of gravity until it hits the upper shear box below. The impact force will apply dynamic shear load to the anchor rod under tensile stress state through the upper shear box and the lower shear box, and the load data and anchor rod deformation data will be collected synchronously.
步骤八:重复步骤三、步骤四及步骤七,直至锚杆断裂,锚杆断裂后,配重铁块会带着断裂后的前半段锚杆及上半剪切盒继续下坠,直到配重铁块撞击到配重缓冲块,保存实验数据,实验结束。Step 8: Repeat steps 3, 4 and 7 until the anchor rod breaks. After the anchor rod breaks, the counterweight iron block will continue to fall with the broken front half of the anchor rod and the upper shear box until the counterweight iron block hits the counterweight buffer block, save the experimental data, and the experiment ends.
本发明的有益效果:Beneficial effects of the present invention:
本发明的锚杆静动拉剪综合实验装置,能够在同一台设备内完成锚杆静态拉伸实验、锚杆静态剪切实验、锚杆动态拉伸实验、锚杆动态剪切实验、拉应力状态下的锚杆静态剪切实验、拉应力状态下的锚杆动态剪切实验,实现了一机多用,仅通过一台设备就可以满足锚杆综合性能指标的测试,有效节约了设备采购成本和实验成本。The anchor bolt static and dynamic tension and shear comprehensive test device of the present invention can complete the anchor bolt static tension test, anchor bolt static shear test, anchor bolt dynamic tension test, anchor bolt dynamic shear test, anchor bolt static shear test under tensile stress state, and anchor bolt dynamic shear test under tensile stress state in the same device, realizing one machine for multiple uses. Only one device is needed to meet the test of the comprehensive performance indicators of the anchor bolt, effectively saving equipment procurement cost and experimental cost.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的一种锚杆静动拉剪综合实验装置的立体图;FIG1 is a perspective view of a static and dynamic tension-shear comprehensive experimental device for anchor bolts according to the present invention;
图2为本发明的一种锚杆静动拉剪综合实验装置的侧视图;FIG2 is a side view of an anchor bolt static and dynamic tension-shear comprehensive experimental device of the present invention;
图3为本发明的一种锚杆静动拉剪综合实验装置的正视图;FIG3 is a front view of an anchor bolt static and dynamic tension-shear comprehensive experimental device of the present invention;
图4为本发明的剪切盒机构的结构示意图;FIG4 is a schematic structural diagram of a shear box mechanism of the present invention;
图中,1—底座,2—静态拉伸框架,3—静态拉伸作动器,4—静态拉伸负荷传感器,5—静态拉伸夹具,6—静态拉伸框架滑移导轨,7—下半剪切盒,8—上半剪切盒,9—位移传感器,10—静态剪切框架,11—静态剪切作动器,12—静态剪切负荷传感器,13—动态拉剪框架,14—电磁铁,15—配重铁块,16—动态拉剪负荷传感器,17—动态拉伸夹具,18—起吊钢索,19—配重铁块导向滑轨,20—配重缓冲块,21—锚杆。In the figure, 1 is a base, 2 is a static stretching frame, 3 is a static stretching actuator, 4 is a static stretching load sensor, 5 is a static stretching fixture, 6 is a static stretching frame sliding guide rail, 7 is a lower shear box, 8 is an upper shear box, 9 is a displacement sensor, 10 is a static shear frame, 11 is a static shear actuator, 12 is a static shear load sensor, 13 is a dynamic shear frame, 14 is an electromagnet, 15 is a counterweight iron block, 16 is a dynamic shear load sensor, 17 is a dynamic stretching fixture, 18 is a lifting cable, 19 is a counterweight iron block guide rail, 20 is a counterweight buffer block, and 21 is an anchor rod.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。The present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1~4所示,一种锚杆静动拉剪综合实验装置,包括底座1、静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构;所述静态拉伸执行机构、静态剪切执行机构及动态拉剪执行机构设置在底座1上,所述剪切盒机构设置在静态拉伸执行机构上,所述静态拉伸执行机构、静态剪切执行机构、动态拉剪执行机构及剪切盒机构分布在同一条直线上。As shown in Figures 1 to 4, an anchor bolt static and dynamic tension and shear comprehensive experimental device includes a base 1, a static stretching actuator, a static shear actuator, a dynamic tension and shear actuator and a shear box mechanism; the static stretching actuator, the static shear actuator and the dynamic tension and shear actuator are arranged on the base 1, and the shear box mechanism is arranged on the static stretching actuator, and the static stretching actuator, the static shear actuator, the dynamic tension and shear actuator and the shear box mechanism are distributed on the same straight line.
所述静态拉伸执行机构包括静态拉伸框架2、静态拉伸作动器3、静态拉伸负荷传感器4、静态拉伸夹具5;所述静态拉伸框架2采用矩形结构;在所述底座1上表面水平设置有静态拉伸框架滑移导轨6,所述静态拉伸框架滑移导轨6采用平行双轨结构;所述静态拉伸框架2设置在静态拉伸框架滑移导轨6上,静态拉伸框架2在静态拉伸框架滑移导轨6上具有直线移动自由度;所述静态拉伸作动器3水平固装在静态拉伸框架2上,静态拉伸作动器3的活塞杆与静态拉伸框架滑移导轨6相平行;所述静态拉伸作动器3的活塞杆延伸至静态拉伸框架2内侧,所述静态拉伸负荷传感器4同轴固装在静态拉伸作动器3的活塞杆端部;所述静态拉伸夹具5同轴安装在静态拉伸负荷传感器4上;所述剪切盒机构设置在静态拉伸框架2内侧中部,剪切盒机构与静态拉伸夹具5正对设置;所述剪切盒机构包括下半剪切盒7、上半剪切盒8及位移传感器9;所述下半剪切盒7固定安装在静态拉伸框架2上,所述上半剪切盒8位于下半剪切盒7上方,所述位移传感器9连接在下半剪切盒7与上半剪切盒8之间。The static stretching actuator comprises a static stretching frame 2, a static stretching actuator 3, a static stretching load sensor 4, and a static stretching fixture 5; the static stretching frame 2 adopts a rectangular structure; a static stretching frame sliding guide rail 6 is horizontally arranged on the upper surface of the base 1, and the static stretching frame sliding guide rail 6 adopts a parallel double-track structure; the static stretching frame 2 is arranged on the static stretching frame sliding guide rail 6, and the static stretching frame 2 has a linear movement degree of freedom on the static stretching frame sliding guide rail 6; the static stretching actuator 3 is horizontally fixed on the static stretching frame 2, and the piston rod of the static stretching actuator 3 is parallel to the static stretching frame sliding guide rail 6; the The piston rod of the static stretching actuator 3 extends to the inner side of the static stretching frame 2, and the static stretching load sensor 4 is coaxially fixed on the end of the piston rod of the static stretching actuator 3; the static stretching fixture 5 is coaxially installed on the static stretching load sensor 4; the shear box mechanism is arranged in the middle of the inner side of the static stretching frame 2, and the shear box mechanism is arranged opposite to the static stretching fixture 5; the shear box mechanism includes a lower shear box 7, an upper shear box 8 and a displacement sensor 9; the lower shear box 7 is fixedly installed on the static stretching frame 2, the upper shear box 8 is located above the lower shear box 7, and the displacement sensor 9 is connected between the lower shear box 7 and the upper shear box 8.
所述静态剪切执行机构包括静态剪切框架10、静态剪切作动器11及静态剪切负荷传感器12;所述静态剪切框架10采用龙门结构,静态剪切框架10竖直固装在底座1上,静态剪切框架10跨装在静态拉伸框架滑移导轨6上方;所述静态剪切作动器11竖直固装在静态剪切框架10的横梁上,静态剪切作动器11的活塞杆竖直朝向延伸至静态剪切框架10内侧;所述静态剪切负荷传感器12同轴固装在静态剪切作动器11的活塞杆端部。The static shear actuator includes a static shear frame 10, a static shear actuator 11 and a static shear load sensor 12; the static shear frame 10 adopts a gantry structure, the static shear frame 10 is vertically fixed on the base 1, and the static shear frame 10 is straddled above the static stretching frame sliding guide rail 6; the static shear actuator 11 is vertically fixed on the crossbeam of the static shear frame 10, and the piston rod of the static shear actuator 11 extends vertically to the inside of the static shear frame 10; the static shear load sensor 12 is coaxially fixed on the end of the piston rod of the static shear actuator 11.
所述动态拉剪执行机构包括动态拉剪框架13、电磁铁14、配重铁块15、动态拉剪负荷传感器16、动态拉伸夹具17及起吊钢索18;所述动态拉剪框架13采用龙门结构,动态拉剪框架13竖直固装在底座1上,动态拉剪框架13跨装在静态拉伸框架滑移导轨6上方;所述电磁铁14固定吊装在动态拉剪框架13的横梁下方,在电磁铁14的中心开设有锚杆穿行孔;所述配重铁块15位于电磁铁14下方,配重铁块15与电磁铁14磁吸配合,在配重铁块15的中心也开设有锚杆穿行孔;所述动态拉剪负荷传感器16位于配重铁块15下方,在动态拉剪负荷传感器16的中心也开设有锚杆穿行孔;所述动态拉伸夹具17同轴安装在动态拉剪负荷传感器16上;所述起吊钢索18连接在配重铁块15顶端;在所述动态拉剪框架13的立柱上竖直设置有配重铁块导向滑轨19,配重铁块导向滑轨19采用平行双轨结构,配重铁块15沿配重铁块导向滑轨19具有竖直移动自由度;在所述配重铁块导向滑轨19的底部设置有配重缓冲块20。The dynamic shearing actuator includes a dynamic shearing frame 13, an electromagnet 14, a counterweight iron block 15, a dynamic shearing load sensor 16, a dynamic stretching fixture 17 and a lifting cable 18; the dynamic shearing frame 13 adopts a gantry structure, the dynamic shearing frame 13 is vertically fixed on the base 1, and the dynamic shearing frame 13 is straddled above the static stretching frame sliding guide rail 6; the electromagnet 14 is fixedly hoisted under the crossbeam of the dynamic shearing frame 13, and an anchor rod passage hole is opened in the center of the electromagnet 14; the counterweight iron block 15 is located below the electromagnet 14, and the counterweight iron block 15 cooperates with the electromagnet 14 by magnetic attraction, and at the center of the counterweight iron block 15 An anchor hole is also provided; the dynamic shear load sensor 16 is located below the counterweight iron block 15, and an anchor hole is also provided in the center of the dynamic shear load sensor 16; the dynamic stretching clamp 17 is coaxially installed on the dynamic shear load sensor 16; the lifting steel cable 18 is connected to the top of the counterweight iron block 15; a counterweight iron block guide rail 19 is vertically arranged on the column of the dynamic shear frame 13, and the counterweight iron block guide rail 19 adopts a parallel double-track structure, and the counterweight iron block 15 has vertical movement freedom along the counterweight iron block guide rail 19; a counterweight buffer block 20 is arranged at the bottom of the counterweight iron block guide rail 19.
当进行锚杆静态拉伸实验时,包括如下步骤:When conducting a static tensile test on an anchor rod, the following steps are included:
步骤一:将测试用的锚杆21从剪切盒机构中穿过,剪切盒机构不启用,锚杆21与下半剪切盒7和上半剪切盒8不接触;Step 1: Pass the anchor rod 21 for testing through the shear box mechanism, the shear box mechanism is not activated, and the anchor rod 21 is not in contact with the lower half shear box 7 and the upper half shear box 8;
步骤二:将锚杆21一端通过锁具固定在静态拉伸框架2上,锚杆21另一端由静态拉伸夹具5夹持固定;Step 2: Fix one end of the anchor rod 21 to the static stretching frame 2 through a lock, and the other end of the anchor rod 21 is clamped and fixed by the static stretching clamp 5;
步骤三:启动静态拉伸作动器3,控制静态拉伸作动器3的活塞杆以0.1mm/min的速率回缩,对锚杆21施加静态拉伸载荷,同步采集载荷数据和锚杆变形数据,直至锚杆21断裂,保存实验数据,实验结束。Step 3: Start the static tensile actuator 3, control the piston rod of the static tensile actuator 3 to retract at a rate of 0.1 mm/min, apply a static tensile load to the anchor rod 21, and synchronously collect load data and anchor rod deformation data until the anchor rod 21 breaks. Save the experimental data and the experiment ends.
当进行锚杆静态剪切实验时,包括如下步骤:When conducting a static shear test on an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆21从剪切盒机构中穿过,启用剪切盒机构,使锚杆21与下半剪切盒7和上半剪切盒8充分接触;Step 1: Pass the anchor rod 21 for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod 21 fully contact with the lower half shear box 7 and the upper half shear box 8;
步骤二:将锚杆21一端通过锁具固定在静态拉伸框架2上,锚杆21另一端由静态拉伸夹具5夹持固定;Step 2: Fix one end of the anchor rod 21 to the static stretching frame 2 through a lock, and the other end of the anchor rod 21 is clamped and fixed by the static stretching clamp 5;
步骤三:沿着静态拉伸框架滑移导轨6移动静态拉伸框架2,锚杆21及剪切盒机构则随着静态拉伸框架2同步移动,直到上半剪切盒8位于静态剪切作动器11及静态剪切负荷传感器12的正下方,之后将静态拉伸框架2锁定到底座1上;Step 3: Move the static stretching frame 2 along the static stretching frame sliding guide rail 6, and the anchor rod 21 and the shear box mechanism move synchronously with the static stretching frame 2 until the upper half shear box 8 is located directly below the static shear actuator 11 and the static shear load sensor 12, and then lock the static stretching frame 2 to the base 1;
步骤四:启动静态剪切作动器11,先控制静态剪切作动器11的活塞杆以100mm/min的速率伸出,直到静态剪切负荷传感器12与下方的上半剪切盒8顶靠接触在一起,之后控制静态剪切作动器11的活塞杆以0.1mm/min的速率伸出,对上半剪切盒8施加竖直载荷,进而通过上半剪切盒8及下半剪切盒7对锚杆21施加静态剪切载荷,同步采集载荷数据和锚杆变形数据,直至锚杆21断裂,保存实验数据,实验结束。Step 4: Start the static shear actuator 11, first control the piston rod of the static shear actuator 11 to extend at a rate of 100 mm/min, until the static shear load sensor 12 is in contact with the upper shear box 8 below, and then control the piston rod of the static shear actuator 11 to extend at a rate of 0.1 mm/min, apply a vertical load to the upper shear box 8, and then apply a static shear load to the anchor 21 through the upper shear box 8 and the lower shear box 7, and synchronously collect load data and anchor deformation data until the anchor 21 breaks, save the experimental data, and the experiment ends.
当进行锚杆动态拉伸实验时,包括如下步骤:When conducting a dynamic tensile test of an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆21从动态拉剪框架13的顶部横梁上竖直插入,使锚杆21依次穿过电磁铁14、配重铁块15及动态拉剪负荷传感器16中心处的锚杆穿行孔,之后将锚杆21上端通过锁具固定在动态拉剪框架13上,将动态拉伸夹具17夹持固定在锚杆21下端;Step 1: vertically insert the anchor rod 21 for testing from the top crossbeam of the dynamic shear frame 13, so that the anchor rod 21 passes through the anchor rod passage hole at the center of the electromagnet 14, the counterweight iron block 15 and the dynamic shear load sensor 16 in sequence, and then fix the upper end of the anchor rod 21 to the dynamic shear frame 13 through a lock, and clamp the dynamic tensile clamp 17 to the lower end of the anchor rod 21;
步骤二:将起吊钢索18与配重铁块15连接在一起,通过起吊钢索18向上吊起配重铁块15,配重铁块15上升过程沿着配重铁块导向滑轨19移动,直到配重铁块15与上方的电磁铁14顶靠接触在一起;Step 2: Connect the lifting cable 18 and the counterweight iron block 15 together, and lift the counterweight iron block 15 upwards through the lifting cable 18. The counterweight iron block 15 moves along the counterweight iron block guide rail 19 during the rising process until the counterweight iron block 15 contacts the electromagnet 14 above;
步骤三:启动电磁铁14,在电磁吸力作用下,配重铁块15被吸附固定到电磁铁14上,之后解除起吊钢索18与配重铁块15的连接;Step 3: Start the electromagnet 14. Under the action of electromagnetic attraction, the counterweight iron block 15 is adsorbed and fixed to the electromagnet 14, and then the connection between the lifting cable 18 and the counterweight iron block 15 is released;
步骤四:控制电磁铁14断电,解除电磁吸力,配重铁块15在重力作用下沿着配重铁块导向滑轨19快速下坠,直至撞击到下方的动态拉剪负荷传感器16,撞击力会依次通过动态拉剪负荷传感器16和动态拉伸夹具17传递至锚杆21,进而通过撞击力对锚杆21施加动态拉伸载荷,同步采集载荷数据和锚杆变形数据;Step 4: Control the electromagnet 14 to cut off the power and release the electromagnetic suction. The counterweight iron block 15 falls rapidly along the counterweight iron block guide rail 19 under the action of gravity until it hits the dynamic tensile shear load sensor 16 below. The impact force is transmitted to the anchor rod 21 through the dynamic tensile shear load sensor 16 and the dynamic tensile fixture 17 in turn, and then a dynamic tensile load is applied to the anchor rod 21 through the impact force, and the load data and anchor rod deformation data are collected synchronously.
步骤五:重复步骤二至步骤四,直至锚杆21断裂,锚杆21断裂后,配重铁块15会带着断裂后的下半段锚杆21、动态拉剪负荷传感器16及动态拉伸夹具17继续下坠,直到配重铁块15撞击到配重缓冲块20,保存实验数据,实验结束。Step 5: Repeat steps 2 to 4 until the anchor rod 21 breaks. After the anchor rod 21 breaks, the counterweight iron block 15 will continue to fall with the broken lower half of the anchor rod 21, the dynamic shear load sensor 16 and the dynamic tensile clamp 17 until the counterweight iron block 15 hits the counterweight buffer block 20, save the experimental data, and the experiment ends.
当进行锚杆动态剪切实验时,包括如下步骤:When conducting a dynamic shear test of an anchor bolt, the following steps are included:
步骤一:将测试用的锚杆21从剪切盒机构中穿过,启用剪切盒机构,使锚杆21与下半剪切盒7和上半剪切盒8充分接触;Step 1: Pass the anchor rod 21 for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod 21 fully contact with the lower half shear box 7 and the upper half shear box 8;
步骤二:将锚杆21一端通过锁具固定在静态拉伸框架2上,锚杆21另一端由静态拉伸夹具5夹持固定;Step 2: Fix one end of the anchor rod 21 to the static stretching frame 2 through a lock, and the other end of the anchor rod 21 is clamped and fixed by the static stretching clamp 5;
步骤三:将起吊钢索18与配重铁块15连接在一起,通过起吊钢索18向上吊起配重铁块15,配重铁块15上升过程沿着配重铁块导向滑轨19移动,直到配重铁块15与上方的电磁铁14顶靠接触在一起;Step 3: Connect the lifting cable 18 and the counterweight iron block 15 together, and lift the counterweight iron block 15 upwards through the lifting cable 18. The counterweight iron block 15 moves along the counterweight iron block guide rail 19 during the rising process until the counterweight iron block 15 contacts the electromagnet 14 above;
步骤四:启动电磁铁14,在电磁吸力作用下,配重铁块15被吸附固定到电磁铁14上,之后解除起吊钢索18与配重铁块15的连接;Step 4: Start the electromagnet 14. Under the action of electromagnetic suction, the counterweight iron block 15 is adsorbed and fixed to the electromagnet 14, and then the connection between the lifting cable 18 and the counterweight iron block 15 is released;
步骤五:沿着静态拉伸框架滑移导轨6移动静态拉伸框架2,锚杆21及剪切盒机构则随着静态拉伸框架2同步移动,直到上半剪切盒8位于配重铁块15的正下方,之后将静态拉伸框架2锁定到底座1上;Step 5: Move the static stretching frame 2 along the static stretching frame sliding guide rail 6, and the anchor rod 21 and the shear box mechanism move synchronously with the static stretching frame 2 until the upper half shear box 8 is located directly below the counterweight iron block 15, and then lock the static stretching frame 2 to the base 1;
步骤六:控制电磁铁14断电,解除电磁吸力,配重铁块15在重力作用下沿着配重铁块导向滑轨19快速下坠,直至撞击到下方的上半剪切盒8,撞击力会通过上半剪切盒8及下半剪切盒7对锚杆21施加动态剪切载荷,同步采集载荷数据和锚杆变形数据;Step 6: Control the electromagnet 14 to cut off the power and release the electromagnetic suction. The counterweight iron block 15 falls rapidly along the counterweight iron block guide rail 19 under the action of gravity until it hits the upper shear box 8 below. The impact force will apply a dynamic shear load to the anchor rod 21 through the upper shear box 8 and the lower shear box 7, and the load data and anchor rod deformation data are collected synchronously.
步骤七:重复步骤三、步骤四及步骤六,直至锚杆21断裂,锚杆21断裂后,配重铁块15会带着断裂后的前半段锚杆21及上半剪切盒8继续下坠,直到配重铁块15撞击到配重缓冲块20,保存实验数据,实验结束。Step 7: Repeat steps 3, 4 and 6 until the anchor rod 21 breaks. After the anchor rod 21 breaks, the counterweight iron block 15 will continue to fall with the broken front half of the anchor rod 21 and the upper shear box 8 until the counterweight iron block 15 hits the counterweight buffer block 20, save the experimental data, and the experiment ends.
当进行拉应力状态下的静态剪切实验时,包括如下步骤:When conducting a static shear test under tensile stress, the following steps are included:
步骤一:将测试用的锚杆21从剪切盒机构中穿过,启用剪切盒机构,使锚杆21与下半剪切盒7和上半剪切盒8充分接触;Step 1: Pass the anchor rod 21 for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod 21 fully contact with the lower half shear box 7 and the upper half shear box 8;
步骤二:将锚杆21一端通过锁具固定在静态拉伸框架2上,锚杆21另一端由静态拉伸夹具5夹持固定;Step 2: Fix one end of the anchor rod 21 to the static stretching frame 2 through a lock, and the other end of the anchor rod 21 is clamped and fixed by the static stretching clamp 5;
步骤三:沿着静态拉伸框架滑移导轨6移动静态拉伸框架2,锚杆21及剪切盒机构则随着静态拉伸框架2同步移动,直到上半剪切盒8位于静态剪切作动器11及静态剪切负荷传感器12的正下方,之后将静态拉伸框架2锁定到底座1上;Step 3: Move the static stretching frame 2 along the static stretching frame sliding guide rail 6, and the anchor rod 21 and the shear box mechanism move synchronously with the static stretching frame 2 until the upper half shear box 8 is located directly below the static shear actuator 11 and the static shear load sensor 12, and then lock the static stretching frame 2 to the base 1;
步骤四:启动静态拉伸作动器3,控制静态拉伸作动器3的活塞杆以1kN/s的速率回缩,对锚杆21施加拉应力;Step 4: Start the static tensile actuator 3, control the piston rod of the static tensile actuator 3 to retract at a rate of 1 kN/s, and apply tensile stress to the anchor rod 21;
步骤五:启动静态剪切作动器11,先控制静态剪切作动器11的活塞杆以100mm/min的速率伸出,直到静态剪切负荷传感器12与下方的上半剪切盒8顶靠接触在一起,之后控制静态剪切作动器11的活塞杆以0.1mm/min的速率伸出,对上半剪切盒8施加竖直载荷,进而通过上半剪切盒8及下半剪切盒7对拉应力状态下的锚杆21施加静态剪切载荷,同步采集载荷数据和锚杆变形数据,直至锚杆21断裂,保存实验数据,实验结束。Step 5: Start the static shear actuator 11, first control the piston rod of the static shear actuator 11 to extend at a rate of 100 mm/min, until the static shear load sensor 12 is in contact with the upper shear box 8 below, and then control the piston rod of the static shear actuator 11 to extend at a rate of 0.1 mm/min, apply a vertical load to the upper shear box 8, and then apply a static shear load to the anchor 21 under the tensile stress state through the upper shear box 8 and the lower shear box 7, and synchronously collect load data and anchor deformation data until the anchor 21 breaks, save the experimental data, and end the experiment.
当进行拉应力状态下的动态剪切实验时,包括如下步骤:When conducting a dynamic shear test under tensile stress, the following steps are included:
步骤一:将测试用的锚杆21从剪切盒机构中穿过,启用剪切盒机构,使锚杆21与下半剪切盒7和上半剪切盒8充分接触;Step 1: Pass the anchor rod 21 for testing through the shear box mechanism, activate the shear box mechanism, and make the anchor rod 21 fully contact with the lower half shear box 7 and the upper half shear box 8;
步骤二:将锚杆21一端通过锁具固定在静态拉伸框架2上,锚杆21另一端由静态拉伸夹具5夹持固定;Step 2: Fix one end of the anchor rod 21 to the static stretching frame 2 through a lock, and the other end of the anchor rod 21 is clamped and fixed by the static stretching clamp 5;
步骤三:将起吊钢索18与配重铁块15连接在一起,通过起吊钢索18向上吊起配重铁块15,配重铁块15上升过程沿着配重铁块导向滑轨19移动,直到配重铁块15与上方的电磁铁14顶靠接触在一起;Step 3: Connect the lifting cable 18 and the counterweight iron block 15 together, and lift the counterweight iron block 15 upwards through the lifting cable 18. The counterweight iron block 15 moves along the counterweight iron block guide rail 19 during the rising process until the counterweight iron block 15 contacts the electromagnet 14 above;
步骤四:启动电磁铁14,在电磁吸力作用下,配重铁块15被吸附固定到电磁铁14上,之后解除起吊钢索18与配重铁块15的连接;Step 4: Start the electromagnet 14. Under the action of electromagnetic suction, the counterweight iron block 15 is adsorbed and fixed to the electromagnet 14, and then the connection between the lifting cable 18 and the counterweight iron block 15 is released;
步骤五:沿着静态拉伸框架滑移导轨6移动静态拉伸框架2,锚杆21及剪切盒机构则随着静态拉伸框架2同步移动,直到上半剪切盒8位于配重铁块15的正下方,之后将静态拉伸框架2锁定到底座1上;Step 5: Move the static stretching frame 2 along the static stretching frame sliding guide rail 6, and the anchor rod 21 and the shear box mechanism move synchronously with the static stretching frame 2 until the upper half shear box 8 is located directly below the counterweight iron block 15, and then lock the static stretching frame 2 to the base 1;
步骤六:启动静态拉伸作动器3,控制静态拉伸作动器3的活塞杆以1kN/s的速率回缩,对锚杆21施加拉应力;Step 6: Start the static tensile actuator 3, control the piston rod of the static tensile actuator 3 to retract at a rate of 1 kN/s, and apply tensile stress to the anchor rod 21;
步骤七:控制电磁铁14断电,解除电磁吸力,配重铁块15在重力作用下沿着配重铁块导向滑轨19快速下坠,直至撞击到下方的上半剪切盒8,撞击力会通过上半剪切盒8及下半剪切盒7对拉应力状态下的锚杆21施加动态剪切载荷,同步采集载荷数据和锚杆变形数据;Step 7: Control the electromagnet 14 to cut off the power and release the electromagnetic attraction. The counterweight iron block 15 falls rapidly along the counterweight iron block guide rail 19 under the action of gravity until it hits the upper shear box 8 below. The impact force will apply a dynamic shear load to the anchor rod 21 under the tensile stress state through the upper shear box 8 and the lower shear box 7, and the load data and anchor rod deformation data are collected synchronously.
步骤八:重复步骤三、步骤四及步骤七,直至锚杆21断裂,锚杆21断裂后,配重铁块15会带着断裂后的前半段锚杆21及上半剪切盒8继续下坠,直到配重铁块15撞击到配重缓冲块20,保存实验数据,实验结束。Step 8: Repeat steps 3, 4 and 7 until the anchor rod 21 breaks. After the anchor rod 21 breaks, the counterweight iron block 15 will continue to fall with the broken front half of the anchor rod 21 and the upper shear box 8 until the counterweight iron block 15 hits the counterweight buffer block 20, save the experimental data, and the experiment ends.
在上述所有实验中,测试用的锚杆21均选用直径为22mm、长度为2200mm的左旋精轧螺纹钢。In all the above experiments, the anchor rods 21 used for testing were all made of left-handed fine-rolled threaded steel bars with a diameter of 22 mm and a length of 2200 mm.
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。The solutions in the embodiments are not intended to limit the patent protection scope of the present invention. All equivalent implementations or changes that do not deviate from the present invention are included in the patent scope of this case.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111559069.4A CN114323939B (en) | 2021-12-20 | 2021-12-20 | Comprehensive experimental device for static and dynamic tension and shear of anchor rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111559069.4A CN114323939B (en) | 2021-12-20 | 2021-12-20 | Comprehensive experimental device for static and dynamic tension and shear of anchor rod |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114323939A CN114323939A (en) | 2022-04-12 |
CN114323939B true CN114323939B (en) | 2024-06-14 |
Family
ID=81053126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111559069.4A Active CN114323939B (en) | 2021-12-20 | 2021-12-20 | Comprehensive experimental device for static and dynamic tension and shear of anchor rod |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114323939B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114942191B (en) * | 2022-05-25 | 2024-11-29 | 东北大学 | Device and method for testing comprehensive mechanical properties of static pull-shear of anchor rod |
CN115711809B (en) * | 2022-11-15 | 2023-08-18 | 山东科技大学 | System and method for testing anchoring performance of full-size rock mass anchor rod under composite load |
CN118583649B (en) * | 2024-08-05 | 2024-12-03 | 江阴协诚机电科技有限公司 | Multifunctional detector for mining anchor rod and anchor cable |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103134725A (en) * | 2011-11-29 | 2013-06-05 | 中国科学院武汉岩土力学研究所 | Anchor rod performance test device |
CN206146749U (en) * | 2016-11-15 | 2017-05-03 | 河南理工大学 | A device for testing the tensile impact mechanical properties of anchor bolts and cables |
CN107941617A (en) * | 2018-01-12 | 2018-04-20 | 河南理工大学 | One kind, which is drawn, cuts effect lower bolt anchor cable mechanical property testing system and its test method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650759Y2 (en) * | 1987-04-24 | 1994-12-21 | 出光石油化学株式会社 | Dynamic shear strength tester |
US5712431A (en) * | 1996-05-01 | 1998-01-27 | Endura-Tec Systems Corporation | Device and method for testing the shear response of a material in response to an applied force |
KR100392237B1 (en) * | 2000-08-25 | 2003-07-31 | 학교법인 영남학원 | Rectangular biaxial tension and shear test machine on plane |
US7320242B2 (en) * | 2002-03-12 | 2008-01-22 | The University Of Akron | Tensile impact apparatus |
CN104075943B (en) * | 2014-06-30 | 2016-08-17 | 天地科技股份有限公司 | A kind of testing stand for testing anchor pole comprehensive mechanical property and method of testing |
CN105510158B (en) * | 2016-01-11 | 2018-04-03 | 河南理工大学 | Anchoring body dynamic tensile test device and experimental method |
CN107576566B (en) * | 2017-08-04 | 2019-09-27 | 河南理工大学 | A comprehensive test method for mechanical properties of mine support materials |
JP7045021B2 (en) * | 2017-08-30 | 2022-03-31 | 国立大学法人福井大学 | Shear force test equipment |
CN108036999B (en) * | 2017-12-13 | 2020-04-21 | 山东大学 | A new multifunctional testing machine for direct shearing, tension and compression loading of rock mass |
CN208818591U (en) * | 2018-08-08 | 2019-05-03 | 西南交通大学 | Dynamic tension-shear loading test device and dynamic tension-shear test system |
CN109470569A (en) * | 2018-11-05 | 2019-03-15 | 石家庄铁道大学 | A kind of rock tensile shear test device and using method thereof |
CN110044729A (en) * | 2019-04-26 | 2019-07-23 | 东北大学 | A kind of rock tensile shear(ing) test device and method based on true triaxial |
CN110274831B (en) * | 2019-07-05 | 2020-07-07 | 山东科技大学 | Device and method for testing anchor rod (cable) supporting structure and comprehensively testing performance of anchor system |
CN113324852B (en) * | 2021-04-27 | 2022-03-18 | 东南大学 | Interface bonding static and dynamic performance test device and test method |
-
2021
- 2021-12-20 CN CN202111559069.4A patent/CN114323939B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103134725A (en) * | 2011-11-29 | 2013-06-05 | 中国科学院武汉岩土力学研究所 | Anchor rod performance test device |
CN206146749U (en) * | 2016-11-15 | 2017-05-03 | 河南理工大学 | A device for testing the tensile impact mechanical properties of anchor bolts and cables |
CN107941617A (en) * | 2018-01-12 | 2018-04-20 | 河南理工大学 | One kind, which is drawn, cuts effect lower bolt anchor cable mechanical property testing system and its test method |
Non-Patent Citations (1)
Title |
---|
冲击载荷下加锚岩体抗剪力学特性;山世昌等;采矿与岩层控制工程学报;20211014;第3卷(第4期);第24-33页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114323939A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114323939B (en) | Comprehensive experimental device for static and dynamic tension and shear of anchor rod | |
CN103543069B (en) | Indoor stretching-shearing testing device for anchor rod | |
CN110593953B (en) | Device and method for testing impact resistance of roadway support system under simulated rockburst conditions | |
CN104697736B (en) | Consider the anchor pole shock resistance test system and its application process of the interaction of supporting country rock | |
WO2019119899A1 (en) | Device and method for testing working performance of anchor rod cable by simulating rock stratum fracture and separation on basis of electromagnetic action | |
CN1190573C (en) | Engineering structure multidimensional damping device | |
CN104676122B (en) | Three-direction impact-resistant support and hanger | |
CN203551388U (en) | Indoor stretching-shearing testing device for anchor rod | |
CN114323966B (en) | Comprehensive mechanical property test system and method for underground engineering anchoring material | |
CN102607840B (en) | Large deformation tensile force testing system | |
CN112903482A (en) | Multifunctional test bed for testing impact load of mining support material and test method | |
CN206146749U (en) | A device for testing the tensile impact mechanical properties of anchor bolts and cables | |
CN103134725A (en) | Anchor rod performance test device | |
CN103196756B (en) | Repeated loading test device for combined shear wall test piece | |
CN207700060U (en) | A kind of low retraction steel strand wires vertical prestressing two times tensioning structure | |
CN202372410U (en) | Anchor rod performance test device | |
CN106522378A (en) | Shape memory alloy rigidity-variable damping-variable limiting protecting shock-insulating support base | |
CN111089786B (en) | A kind of test device and method for impact damage of steel wire rope | |
CN112816347A (en) | NPR anchor rod Hopkinson tensile test device and method under high strain rate condition | |
CN204439319U (en) | Consider the anchor pole shock resistance test macro of interaction between support-surrounding rock | |
CN113340747A (en) | Anchor rod shearing testing device and method | |
CN112816348A (en) | Multi-connected microscopic NPR anchor rod Hopkinson tensile test device and test method | |
CN106400979A (en) | Chute-type tensile seismic isolation device | |
CN107941600B (en) | Buffer device for composite material tensile test | |
CN217028974U (en) | Series Combined Energy Absorption Anchor System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |