CN114295527A - 一种实时监测膜组件运行的监控系统以及分析方法 - Google Patents

一种实时监测膜组件运行的监控系统以及分析方法 Download PDF

Info

Publication number
CN114295527A
CN114295527A CN202111614145.7A CN202111614145A CN114295527A CN 114295527 A CN114295527 A CN 114295527A CN 202111614145 A CN202111614145 A CN 202111614145A CN 114295527 A CN114295527 A CN 114295527A
Authority
CN
China
Prior art keywords
membrane module
membrane
monitoring
enriched
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111614145.7A
Other languages
English (en)
Other versions
CN114295527B (zh
Inventor
王小华
曾璆
潘德茂
赵凯
何欣辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hang Zhou Zeta Technology Co Lts
Original Assignee
Hang Zhou Zeta Technology Co Lts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hang Zhou Zeta Technology Co Lts filed Critical Hang Zhou Zeta Technology Co Lts
Priority to CN202111614145.7A priority Critical patent/CN114295527B/zh
Publication of CN114295527A publication Critical patent/CN114295527A/zh
Application granted granted Critical
Publication of CN114295527B publication Critical patent/CN114295527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种实时监测膜组件运行的监控系统以及分析方法,涉及膜组件监测技术领域,包括以下步骤:(1)、测定膜组件进口空气流量、膜组件进口瞬时压力、膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力;(2)、建立膜组件的提取率模型为:
Figure DDA0003436234710000011
建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线;(3)、定义膜组件绝对阻力系数为:
Figure DDA0003436234710000012
建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线。本申请分析方法,可以直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,实现膜组件运行状态的实时可视化监测和分析。

Description

一种实时监测膜组件运行的监控系统以及分析方法
技术领域
本发明涉及膜组件监测技术领域,具体涉及一种实时监测膜组件运行的监控系统以及分析方法。
背景技术
在膜法富氧制取技术中,富氧的提取精度主要取决于膜组件的分离效率,而膜组件的分离效率往往取决于膜组件的运行状态,同时,膜组件的运行状态则直接影响了膜组件能否长期高效的运行。目前,现有技术中虽然公开了一些用于监测膜组件运行状态的分析方法,但上述用于监测膜组件运行的监控体系以及分析方法,大多是对于膜组件基础层面上的监控,如膜组件进出口压力(压差)、进气流量、排气流量以及成品气量和露点,压差是对应空气流过该组件阻力的特征,根据这些工艺参数数据来监测分析膜组件的运行状态。通常,上述工艺参数数据属于常规数据,常规数据之间往往是是相互耦合的,尤其是流量和阻力,因此上述分析方法整体上属于表观参数监测。然而,对于膜组件的运行而言,单纯监测这些参数是很难以直观分析膜组件运行状态的,尤其是在多变的环境工况和生产荷载下的膜组件运行状态的监控分析,进而难以对膜法富氧制取系统以及膜组件的现场运行、优化管控、运维管理和各级层管控产生有力的参考价值。
发明内容
1、发明要解决的技术问题
针对现有用于监测膜组件运行的监控体系以及分析方法存在难以直观分析膜组件运行状态的技术问题,本发明提供了一种实时监测膜组件运行的监控系统以及分析方法,它不仅可以直观分析膜组件的运行分析,且可以实现膜组件运行状态的实时可视化监测和分析。
2、技术方案
为解决上述问题,本发明提供的技术方案为:
一种膜组件运行状态的监测分析方法,包括以下步骤:
(1)、测定膜组件进口空气流量、膜组件进口瞬时压力、膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力;
(2)、建立膜组件的提取率模型为:
Figure BDA0003436234690000011
其中,Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件出口富氧空气流量,Nm3/min;η为膜组件富氧提取率,%;
同时,采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线;
(3)、定义膜组件绝对阻力系数为:
Figure BDA0003436234690000021
其中:p1为膜组件进口瞬时压力,MPa;p2为膜组件出口富氮瞬时压力,MPa;Qx为Q2或者Q1,Nm3/min;ε为膜组件绝对阻力系数;
同时,建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率。
在本申请中,通过建立膜组件的提取率模型,通过采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线,可以直观分析不同膜组件进口空气流量和膜组件状态条件下,所产富氧空气占据总空气流量的比例,该提取率模型可以作为膜组件的基本无量纲特性模型参数;同时,通过定义膜组件的绝对阻力系数,并建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率,进而获得膜组件对应状态下的绝对阻力系数数值,且根据膜组件的绝对阻力系数随膜组件运行时间的变化曲线,可以直观分析膜组件运行状态与阻力损失的关系。由此可知,相比于现有的膜组件运行的监测分析方法,本申请中的分析方法,基于相应的曲线形式,可以直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,尤其是在不同进口空气流量、瞬时压力等参数下,膜组件的的提取率以及膜组件绝对阻力系数的可视化分析,实现膜组件运行状态的实时可视化监测和分析,使得现有监测分析中涉及到的常规数据监测的价值才能够得到直观的体现,对现场运行、优化管控、运维管理和各级层管控都具有重要的参考价值。
可选的,还包括定义膜组件相对阻力系数为:
Figure BDA0003436234690000022
其中,εF为膜组件使用状态绝对阻力系数,εD为膜组件初始状态绝对阻力系数,∈为膜组件在不同状态下的相对阻力系数;同时,根据步骤(3)中获得的膜组件在运行时间内的绝对阻力系数数据,建立相对阻力系数随膜组件运行时间的变化曲线,并分析获得膜组件对应的污染程度。
可选的,还包括测定膜组件在运行过程中的总电耗功率,建立成品气综合单耗模型为:
Figure BDA0003436234690000031
其中,N为膜组件运行过程中的总电耗功率,kW;Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件进口空气流量与膜组件出口富氮空气流量之差,Nm3/min;π为综合单耗指数;
同时,对连续时间段t内编号为i的采样点的综合单耗指数取平均值:
Figure BDA0003436234690000032
其中,i为连续时间段t内第i个采样点;πi为表示连续时间段t内第i个采样点对应的综合单耗取值;M为连续时间段t内采样的总个数;
Figure BDA0003436234690000033
为连续时间段t内整体综合单耗取值。
可选的,在步骤(1)中,所述膜组件进口空气流量和瞬时压力分别通过空气流量传感器和空气压力传感器监测获得。
可选的,所述膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力分别通过对应的所述富氧流量传感器、富氮流量传感器和富氮压力传感器监测获得。
同时,本申请还提供一种实时监测膜组件运行的监控系统,按照上述所述的膜组件运行状态的监测分析方法进行实施,所述监控系统包括:
膜组件,所述膜组件具有进气口、第一出气口和第二出气口,所述进气口处设有空气压力传感器和空气流量传感器,所述第一出气口处设有富氧压力传感器、富氧流量传感器、富氧浓度传感器和露点温度传感器;所述第二出气口处设有富氮压力传感器和富氮流量传感器;
控制系统,所述控制系统分别与所述空气压力传感器、空气流量传感器、富氧压力传感器、富氧流量传感器、富氧浓度传感器、露点温度传感器、富氮压力传感器和富氮流量传感器相连接。
可选的,还包括控制面板,所述控制面板与所述控制系统相连接。
可选的,还包括显示装置,所述显示装置与控制系统相连接。
可选的,还包括电源装置,所述电源装置用于提供电源。
可选的,所述膜组件为中空纤维式、卷式、板框式或管式。
3、有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)本申请实施例提出的一种膜组件运行状态的监测分析方法,通过建立膜组件的提取率模型,通过采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线,可以直观分析不同膜组件进口空气流量和膜组件状态条件下,所产富氧空气占据总空气流量的比例,该提取率模型可以作为膜组件的基本无量纲特性模型参数;同时,通过定义膜组件的绝对阻力系数,并建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率,进而获得膜组件对应状态下的绝对阻力系数数值,且根据膜组件的绝对阻力系数随膜组件运行时间的变化曲线,可以直观分析膜组件运行状态与阻力损失的关系。由此可知,相比于现有的膜组件运行的监测分析方法,本申请中的分析方法,基于相应的曲线形式,可以直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,尤其是在不同进口空气流量、瞬时压力等参数下,膜组件的的提取率以及膜组件绝对阻力系数的可视化分析,实现膜组件运行状态的实时可视化监测和分析,使得现有监测分析中涉及到的常规数据监测的价值才能够得到直观的体现,对现场运行、优化管控、运维管理和各级层管控都具有重要的参考价值。
(2)本申请实施例提出的一种膜组件运行状态的监测分析方法,首次定义了相对阻力系数的概念,通过相对阻力系数,不仅可以直接反应膜组件本身的相对状态,且可以用于可视化显示膜组件污染程度的重要参数,表示对应膜组件在实际状态下,偏离原始未污染状态的程度,进而用于膜组件准确维护的数据基准。
(3)本申请实施例提出的一种膜组件运行状态的监测分析方法,首次建立了成品气综合单耗模型,同时考虑到成品气综合单耗模型中没有涉及对应运行的时间以及给定时间内的整体单耗,通过引入对应时间段内的整体单耗,实现膜组件成品气综合单耗可视化监测,为后续对膜组件优化运行管控提供了参考依据。
(4)本申请实施例提出的一种实时监测膜组件运行的监控系统,它可以实现直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,尤其是在不同进口空气流量、瞬时压力等参数下,膜组件的的提取率以及膜组件绝对阻力系数的可视化分析,实现膜组件运行状态的实时可视化监测和分析,使得现有监测分析中涉及到的常规数据监测的价值才能够得到直观的体现,对现场运行、优化管控、运维管理和各级层管控都具有重要的参考价值。
附图说明
图1为本发明实施例提出的一种实时监测膜组件运行的监控系统的结构示意图。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。本发明中所述的第一、第二等词语,是为了描述本发明的技术方案方便而设置,并没有特定的限定作用,均为泛指,对本发明的技术方案不构成限定作用。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
本实施例提供一种膜组件运行状态的监测分析方法,包括以下步骤:
(1)、测定膜组件进口空气流量、膜组件进口瞬时压力、膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力;
(2)、建立膜组件的提取率模型为:
Figure BDA0003436234690000051
其中,Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件出口富氧空气流量,Nm3/min;η为膜组件富氧提取率,%;
同时,采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线;
(3)、定义膜组件绝对阻力系数为:
Figure BDA0003436234690000052
其中:p1为膜组件进口瞬时压力,MPa;p2为膜组件出口富氮瞬时压力,MPa;Qx为Q2或者Q1,Nm3/min;ε为膜组件绝对阻力系数;
同时,建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率。
在本实施例中,通过建立膜组件的提取率模型,通过采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线,可以直观分析不同膜组件进口空气流量和膜组件状态条件下,所产富氧空气占据总空气流量的比例,该提取率模型可以作为膜组件的基本无量纲特性模型参数;同时,通过定义膜组件的绝对阻力系数,并建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率,进而获得膜组件对应状态下的绝对阻力系数数值,且根据膜组件的绝对阻力系数随膜组件运行时间的变化曲线,可以直观分析膜组件运行状态与阻力损失的关系。由此可知,相比于现有的膜组件运行的监测分析方法,本申请中的分析方法,基于相应的曲线形式,可以直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,尤其是在不同进口空气流量、瞬时压力等参数下,膜组件的的提取率以及膜组件绝对阻力系数的可视化分析,实现膜组件运行状态的实时可视化监测和分析,使得现有监测分析中涉及到的常规数据监测的价值才能够得到直观的体现,对现场运行、优化管控、运维管理和各级层管控都具有重要的参考价值。
实施例2
本实施例的一种膜组件运行状态的监测分析方法,与实施例1的技术方案相比,还包括定义膜组件相对阻力系数为:
Figure BDA0003436234690000061
其中,εF为膜组件使用状态绝对阻力系数,εD为膜组件初始状态绝对阻力系数,∈为膜组件在不同状态下的相对阻力系数;
同时,根据步骤(3)中获得的膜组件在运行时间内的绝对阻力系数数据,建立相对阻力系数随膜组件运行时间的变化曲线,并分析获得膜组件对应的污染程度。
考虑到绝对阻力系数是对一个给定的局部阻力原件,反馈的是给定状态下一个相对固定的取值,无法进一步表明膜组件运行时是否出现污染或者膜组件本身特性的变化差异,为了能够进一步明确污染对膜组件特性的影响程度,本申请首次定义了相对阻力系数的概念,通过相比阻力系数,不仅可以直接反应膜组件本身的相对状态,且可以用于可视化显示膜组件污染程度的重要参数,表示对应膜组件在实际状态下,偏离原始未污染状态的程度。进而用于膜组件准确维护的数据基准。
实施例3
本实施例的一种膜组件运行状态的监测分析方法,与实施例1或2的技术方案相比,还包括测定膜组件在运行过程中的总电耗功率,建立成品气综合单耗模型为:
Figure BDA0003436234690000062
其中,N为膜组件运行过程中的总电耗功率,kW;Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件进口空气流量与膜组件出口富氮空气流量之差,Nm3/min;π为综合单耗指数;
同时,对连续时间段t内编号为i的采样点的综合单耗指数取平均值:
Figure BDA0003436234690000071
其中,i为连续时间段t内第i个采样点;πi为表示连续时间段t内第i个采样点对应的综合单耗取值;M为连续时间段t内采样的总个数;
Figure BDA0003436234690000072
为连续时间段t内整体综合单耗取值。
通常,在膜法富氧制取系统所涉及到的主要能耗为压缩机的电耗、配套冷却水系统能耗和干燥处理的能耗(纯余热状态时,主要为冷却水能耗;如果露点要求提升的高标准模式,配套电加热能耗,成品气含湿量大大由于传统的冷干配加热方式),这些能耗在实际运用中对于膜组件优化运行管控的开展有着很大影响。为了能够及时的、可视化的监测和反馈在多变的环境工况和生产荷载,以及不同的膜组状态条件下的生产单位体积成品气量所消耗的综合能量,本申请首次建立了成品气综合单耗模型,同时考虑到成品气综合单耗模型中没有涉及对应运行的时间以及给定时间内的整体单耗,通过引入对应时间段内的整体单耗,实现膜组件成品气综合单耗可视化监测,为后续对膜组件优化运行管控提供了参考依据。
实施例4
本实施例的一种膜组件运行状态的监测分析方法,与实施例1的技术方案相比,在步骤(1)中,所述膜组件进口空气流量和瞬时压力分别通过空气流量传感器和空气压力传感器监测获得。
实施例5
本实施例的一种膜组件运行状态的监测分析方法,与实施例4的技术方案相比,所述膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力分别通过对应的所述富氧流量传感器、富氮流量传感器和富氮压力传感器监测获得。
实施例6
结合附图1,本实施例提供一种实时监测膜组件运行的监控系统,按照实施例1-5任意一项技术方案所述的膜组件运行状态的监测分析方法进行实施,所述监控系统包括:
膜组件1,所述膜组件1具有进气口2、第一出气口3和第二出气口4,所述进气口2处设有空气压力传感器5和空气流量传感器6,所述第一出气口3处设有富氧压力传感器9、富氧流量传感器10、富氧浓度传感器11和露点温度传感器12;所述第二出气口4处设有富氮压力传感器7和富氮流量传感器8;
控制系统(图中未示出),所述控制系统分别与所述空气压力传感器5、空气流量传感器6、富氧压力传感器9、富氧流量传感器10、富氧浓度传感器11、露点温度传感器12、富氮压力传感器7和富氮流量传感器8相连接。
在本实施例中,通过采用上述监控系统可以实现直观分析不同生产以及环境工况下,膜组件的实际运行状态以及变化规律,尤其是在不同进口空气流量、瞬时压力等参数下,膜组件的的提取率以及膜组件绝对阻力系数的可视化分析,实现膜组件运行状态的实时可视化监测和分析,使得现有监测分析中涉及到的常规数据监测的价值才能够得到直观的体现,对现场运行、优化管控、运维管理和各级层管控都具有重要的参考价值。
实施例7
本实施例的一种实时监测膜组件运行的监控系统,与实施例6的技术方案相比,还包括控制面板(图中未示出),所述控制面板与所述控制系统相连接。通过设置控制面板便于操作和控制各个传感器的工作状态。
实施例8
本实施例的一种实时监测膜组件运行的监控系统,与实施例6的技术方案相比,还包括显示装置(图中未示出),所述显示装置与控制系统相连接。通过设置显示装置可以将控制系统中的相关信息以及曲线更加的直观的显示出来。
实施例9
本实施例的一种实时监测膜组件运行的监控系统,与实施例6的技术方案相比,还包括电源装置(图中未示出),所述电源装置用于提供电源。所述电源装置为监控系统中各个部件提供电源。
实施例10
本实施例的一种实时监测膜组件运行的监控系统,与实施例6的技术方案相比,所述膜组件为中空纤维式、卷式、板框式或管式。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

1.一种膜组件运行状态的监测分析方法,其特征在于,包括以下步骤:
(1)、测定膜组件进口空气流量、膜组件进口瞬时压力、膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力;
(2)、建立膜组件的提取率模型为:
Figure FDA0003436234680000011
其中,Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件出口富氧空气流量,Nm3/min;η为膜组件富氧提取率,%;
同时,采集不同膜组件进口空气流量和不同膜组件运行状态下分别对应的膜组件的提取率,并分别建立不同膜组件进口空气流量和不同膜组件运行状态与对应的膜组件的提取率的关系曲线;
(3)、定义膜组件绝对阻力系数为:
Figure FDA0003436234680000012
其中:p1为膜组件进口瞬时压力,MPa;p2为膜组件出口富氮瞬时压力,MPa;Qx为Q2或者Q1,Nm3/min;ε为膜组件绝对阻力系数;
同时,建立膜组件的绝对阻力系数随膜组件运行时间的变化曲线,获得对应时间的膜组件的绝对阻力系数数据,并分析获得膜组件对应的阻力损失率。
2.根据权利要求1所述的膜组件运行状态的监测分析方法,其特征在于,还包括定义膜组件相对阻力系数为:
Figure FDA0003436234680000013
其中,εF为膜组件使用状态绝对阻力系数,εD为膜组件初始状态绝对阻力系数,∈为膜组件在不同状态下的相对阻力系数;
同时,根据步骤(3)中获得的膜组件在运行时间内的绝对阻力系数数据,建立相对阻力系数随膜组件运行时间的变化曲线,并分析获得膜组件对应的污染程度。
3.根据权利要求1或2所述的膜组件运行状态的监测分析方法,其特征在于,还包括测定膜组件在运行过程中的总电耗功率,建立成品气综合单耗模型为:
Figure FDA0003436234680000014
其中,N为膜组件运行过程中的总电耗功率,kW;Q1为膜组件进口空气流量,Nm3/min;Q2为膜组件出口富氮空气流量,Nm3/min;Q3为膜组件进口空气流量与膜组件出口富氮空气流量之差,Nm3/min;π为综合单耗指数;
同时,对连续时间段t内编号为i的采样点的综合单耗指数取平均值:
Figure FDA0003436234680000021
其中,i为连续时间段t内第i个采样点;πi为表示连续时间段t内第i个采样点对应的综合单耗取值;M为连续时间段t内采样的总个数;
Figure FDA0003436234680000022
为连续时间段t内整体综合单耗取值。
4.根据权利要求1所述的膜组件运行状态的监测分析方法,其特征在于,在步骤(1)中,所述膜组件进口空气流量和瞬时压力分别通过空气流量传感器和空气压力传感器监测获得。
5.根据权利要求4所述的膜组件运行状态的监测分析方法,其特征在于,所述膜组件出口富氧空气流量、膜组件出口富氮空气流量和膜组件出口富氮瞬时压力分别通过对应的所述富氧流量传感器、富氮流量传感器和富氮压力传感器监测获得。
6.一种实时监测膜组件运行的监控系统,其特征在于,按照权利要求1-5任意一项所述的膜组件运行状态的监测分析方法进行实施,所述监控系统包括:
膜组件,所述膜组件具有进气口、第一出气口和第二出气口,所述进气口处设有空气压力传感器和空气流量传感器,所述第一出气口处设有富氧压力传感器、富氧流量传感器、富氧浓度传感器和露点温度传感器;所述第二出气口处设有富氮压力传感器和富氮流量传感器;
控制系统,所述控制系统分别与所述空气压力传感器、空气流量传感器、富氧压力传感器、富氧流量传感器、富氧浓度传感器、露点温度传感器、富氮压力传感器和富氮流量传感器相连接。
7.根据权利要求6所述的实时监测膜组件运行的监控系统,其特征在于,还包括控制面板,所述控制面板与所述控制系统相连接。
8.根据权利要求6所述的实时监测膜组件运行的监控系统,其特征在于,还包括显示装置,所述显示装置与控制系统相连接。
9.根据权利要求6所述的实时监测膜组件运行的监控系统,其特征在于,还包括电源装置,所述电源装置用于提供电源。
10.根据权利要求6所述的实时监测膜组件运行的监控系统,其特征在于,所述膜组件为中空纤维式、卷式、板框式或管式。
CN202111614145.7A 2021-12-27 2021-12-27 一种实时监测膜组件运行的监控系统以及分析方法 Active CN114295527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111614145.7A CN114295527B (zh) 2021-12-27 2021-12-27 一种实时监测膜组件运行的监控系统以及分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111614145.7A CN114295527B (zh) 2021-12-27 2021-12-27 一种实时监测膜组件运行的监控系统以及分析方法

Publications (2)

Publication Number Publication Date
CN114295527A true CN114295527A (zh) 2022-04-08
CN114295527B CN114295527B (zh) 2023-11-21

Family

ID=80969459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111614145.7A Active CN114295527B (zh) 2021-12-27 2021-12-27 一种实时监测膜组件运行的监控系统以及分析方法

Country Status (1)

Country Link
CN (1) CN114295527B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272845A (zh) * 2023-11-22 2023-12-22 广东蘑菇物联科技有限公司 空压站能耗水平评估方法、装置及设备

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218415A (ja) * 1989-02-17 1990-08-31 Nitto Denko Corp 窒素富化空気の製造方法
CA2230101A1 (en) * 1995-08-22 1997-03-06 William H. Ii Delp Oxygen enriched air generation system
JP2000084344A (ja) * 1998-09-10 2000-03-28 Tokico Ltd 気体分離装置
JP2000102717A (ja) * 1998-09-29 2000-04-11 Tokico Ltd 気体分離装置
KR20010106887A (ko) * 2000-05-24 2001-12-07 박호군 막여과 시간에 따른 막오염 진행 추이를 동시에연속적으로 모니터링하기 위한 막여과 장치 및 방법
JP2005351707A (ja) * 2004-06-09 2005-12-22 Jfe Engineering Kk 膜ろ過性能の検知方法、検知装置、膜ろ過方法および膜ろ過装置
JP2006021093A (ja) * 2004-07-07 2006-01-26 Hitachi Ltd 膜ろ過処理装置の運転支援装置
JP2008142675A (ja) * 2006-12-13 2008-06-26 Toray Ind Inc 膜ろ過装置の運転条件の決定方法、それを用いた膜ろ過装置の運転方法、及び、膜ろ過装置
KR20090119138A (ko) * 2008-05-15 2009-11-19 (주) 지에스텍 공기에서 산소와 질소를 분리/추출하는 장치
WO2012060778A1 (en) * 2010-11-01 2012-05-10 Nanyang Technological University A membrane sensor and method of detecting fouling in a fluid
CN202614643U (zh) * 2012-05-03 2012-12-19 河南义腾新能源科技有限公司 一种电池隔膜透气度的测量系统
JP2013049008A (ja) * 2011-08-30 2013-03-14 Ube Industries Ltd 酸素富化空気を製造するシステムおよび方法
CN203030197U (zh) * 2012-12-12 2013-07-03 山东恒业石油新技术应用有限公司 单根氮气分离膜管性能参数检测装置
CN103432909A (zh) * 2013-08-02 2013-12-11 中膜科技(苏州)有限公司 膜组件性能检测方法
KR20140054670A (ko) * 2012-10-29 2014-05-09 도레이케미칼 주식회사 막오염 지수를 이용한 막여과 공정 시스템 및 그 방법
CN106512745A (zh) * 2016-10-17 2017-03-22 哈尔滨工业大学 一种水处理膜池污染评价及控制的方法
DE102017130417A1 (de) * 2016-12-20 2018-06-21 GM Global Technology Operations LLC Verfahren und vorrichtung zur überwachung des durchflusswiderstands in einem abgasnachbehandlungssystem
CN108463709A (zh) * 2015-11-20 2018-08-28 Emd密理博公司 增强的稳定性过滤器完整性测试
US20190277744A1 (en) * 2017-02-22 2019-09-12 Emd Millipore Corporation Mixed gas integrity testing of porous materials without permeate side access
CN110362844A (zh) * 2019-02-12 2019-10-22 杭州哲达科技股份有限公司 压缩空气系统绝对能效和相对能效的分析方法
CN111266015A (zh) * 2020-03-05 2020-06-12 天津工业大学 一种气体透过率的恒体积变压法测试系统
WO2020213737A1 (ja) * 2019-04-19 2020-10-22 東レ株式会社 パラメータ算出方法、分離膜特性の予測方法、分離膜の運転方法
CN113816342A (zh) * 2021-10-14 2021-12-21 杭州哲达科技股份有限公司 一种富氧膜组件和膜法富氧制取系统

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218415A (ja) * 1989-02-17 1990-08-31 Nitto Denko Corp 窒素富化空気の製造方法
CA2230101A1 (en) * 1995-08-22 1997-03-06 William H. Ii Delp Oxygen enriched air generation system
JP2000084344A (ja) * 1998-09-10 2000-03-28 Tokico Ltd 気体分離装置
JP2000102717A (ja) * 1998-09-29 2000-04-11 Tokico Ltd 気体分離装置
KR20010106887A (ko) * 2000-05-24 2001-12-07 박호군 막여과 시간에 따른 막오염 진행 추이를 동시에연속적으로 모니터링하기 위한 막여과 장치 및 방법
JP2005351707A (ja) * 2004-06-09 2005-12-22 Jfe Engineering Kk 膜ろ過性能の検知方法、検知装置、膜ろ過方法および膜ろ過装置
JP2006021093A (ja) * 2004-07-07 2006-01-26 Hitachi Ltd 膜ろ過処理装置の運転支援装置
JP2008142675A (ja) * 2006-12-13 2008-06-26 Toray Ind Inc 膜ろ過装置の運転条件の決定方法、それを用いた膜ろ過装置の運転方法、及び、膜ろ過装置
KR20090119138A (ko) * 2008-05-15 2009-11-19 (주) 지에스텍 공기에서 산소와 질소를 분리/추출하는 장치
WO2012060778A1 (en) * 2010-11-01 2012-05-10 Nanyang Technological University A membrane sensor and method of detecting fouling in a fluid
US20130240440A1 (en) * 2010-11-01 2013-09-19 Nanyang Technological University Membrane sensor and method of detecting fouling in a fluid
JP2013049008A (ja) * 2011-08-30 2013-03-14 Ube Industries Ltd 酸素富化空気を製造するシステムおよび方法
CN202614643U (zh) * 2012-05-03 2012-12-19 河南义腾新能源科技有限公司 一种电池隔膜透气度的测量系统
KR20140054670A (ko) * 2012-10-29 2014-05-09 도레이케미칼 주식회사 막오염 지수를 이용한 막여과 공정 시스템 및 그 방법
CN203030197U (zh) * 2012-12-12 2013-07-03 山东恒业石油新技术应用有限公司 单根氮气分离膜管性能参数检测装置
CN103432909A (zh) * 2013-08-02 2013-12-11 中膜科技(苏州)有限公司 膜组件性能检测方法
CN108463709A (zh) * 2015-11-20 2018-08-28 Emd密理博公司 增强的稳定性过滤器完整性测试
US20180257039A1 (en) * 2015-11-20 2018-09-13 Emd Millipore Corporation Enhanced Stability Filter Integrity Test
CN106512745A (zh) * 2016-10-17 2017-03-22 哈尔滨工业大学 一种水处理膜池污染评价及控制的方法
DE102017130417A1 (de) * 2016-12-20 2018-06-21 GM Global Technology Operations LLC Verfahren und vorrichtung zur überwachung des durchflusswiderstands in einem abgasnachbehandlungssystem
US20190277744A1 (en) * 2017-02-22 2019-09-12 Emd Millipore Corporation Mixed gas integrity testing of porous materials without permeate side access
CN110362844A (zh) * 2019-02-12 2019-10-22 杭州哲达科技股份有限公司 压缩空气系统绝对能效和相对能效的分析方法
WO2020213737A1 (ja) * 2019-04-19 2020-10-22 東レ株式会社 パラメータ算出方法、分離膜特性の予測方法、分離膜の運転方法
CN111266015A (zh) * 2020-03-05 2020-06-12 天津工业大学 一种气体透过率的恒体积变压法测试系统
CN113816342A (zh) * 2021-10-14 2021-12-21 杭州哲达科技股份有限公司 一种富氧膜组件和膜法富氧制取系统

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAO, RL 等: "Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure", ACTA PHYSICA SINICA, vol. 64, no. 19, pages 198101 *
P.-M. GEFFROY 等: "Influence of oxygen partial pressure on the oxygen diffusion and surface exchange coefficients in mixed conductors", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 39, no. 1, pages 59 - 65, XP085513753, DOI: 10.1016/j.jeurceramsoc.2018.03.034 *
仲雅娟: "复合膜法捕集烟气中水蒸气及其渗透机理研究", 中国优秀硕士学位论文全文数据库工程科技Ⅱ辑, no. 02, pages 042 - 1387 *
张智超 等: "内压超滤膜丝单双端给水的纯水通量分布", 工业水处理, vol. 36, no. 11, pages 70 - 73 *
梁正贤: "沼气膜分离净化制取车用气体燃料工艺设计", 中国优秀硕士学位论文全文数据库农业科技辑, no. 03, pages 044 - 9 *
鄷启胤: "管式膜流体动力学特性研究", 中国优秀硕士学位论文全文数据库基础科学辑, no. 12, pages 004 - 29 *
陈山林: "膜法富氧性能优化研究——火力发电厂富氧燃烧氧源制备", 中国优秀硕士学位论文全文数据库工程科技Ⅱ辑, no. 09, pages 042 - 284 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272845A (zh) * 2023-11-22 2023-12-22 广东蘑菇物联科技有限公司 空压站能耗水平评估方法、装置及设备
CN117272845B (zh) * 2023-11-22 2024-03-08 广东蘑菇物联科技有限公司 空压站能耗水平评估方法、装置及设备

Also Published As

Publication number Publication date
CN114295527B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN111474299B (zh) 一种基于大数据的工业环境实时监测系统
Li et al. Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery
CN110362844B (zh) 压缩空气系统绝对能效和相对能效的分析方法
CN110383011A (zh) 出租车顶灯内多核传感器系统
CN114295527B (zh) 一种实时监测膜组件运行的监控系统以及分析方法
CN201335967Y (zh) 一种工业烟尘、烟气排放在线监测系统
CN104566694A (zh) 大型商业建筑内空气品质智能调节系统及其调节方法
CN113536710B (zh) 一种泵及泵组能效可视化监测方法
CN116519555A (zh) 一种稀释法烟气监测系统
CN114551944A (zh) 质子交换膜燃料电池内部含水量的快速控制方法及系统
CN216350327U (zh) 一种紧凑型cems机柜
CN116976148B (zh) 一种铜电解过程离子含量变化的监测方法及系统
CN108627768B (zh) 一种全钒液流电池系统soc在线检测方法
CN111158413B (zh) 一种针对建筑室内外空气环境的整合监测系统
CN109908754A (zh) 一种脱硝scr喷氨控制系统及其工作流程
CN202687948U (zh) 真空变压吸附制氧机的智能控制系统
CN115526095A (zh) 柔性无刷电机生产线数字孪生系统
CN202033226U (zh) 分时段多样品大气采样器
CN113816342A (zh) 一种富氧膜组件和膜法富氧制取系统
CN208013237U (zh) 一种微生物呼吸速率自动测定装置
CN209229942U (zh) 中央空调出风口过滤器寿命提醒装置
CN218974244U (zh) 一种电解分析池装置
CN221002828U (zh) 一种金矿矿山通风管理系统
CN217954030U (zh) 一种新型智能仪表取样架装置
CN212102125U (zh) 一种酸性氧化电位水生成器水质在线检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A real-time monitoring system and analysis method for membrane component operation

Granted publication date: 20231121

Pledgee: Zheshang Bank Co.,Ltd. Hangzhou Branch

Pledgor: HANG ZHOU ZETA TECHNOLOGY Co. LTS

Registration number: Y2024330000757