CN114280109A - 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法 - Google Patents

一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法 Download PDF

Info

Publication number
CN114280109A
CN114280109A CN202111541102.0A CN202111541102A CN114280109A CN 114280109 A CN114280109 A CN 114280109A CN 202111541102 A CN202111541102 A CN 202111541102A CN 114280109 A CN114280109 A CN 114280109A
Authority
CN
China
Prior art keywords
mxene
mos
bimetallic
situ
nitrogen dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111541102.0A
Other languages
English (en)
Other versions
CN114280109B (zh
Inventor
太惠玲
赵秋妮
梁俊阁
黄琦
张亚杰
袁震
段再华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111541102.0A priority Critical patent/CN114280109B/zh
Publication of CN114280109A publication Critical patent/CN114280109A/zh
Application granted granted Critical
Publication of CN114280109B publication Critical patent/CN114280109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明属于气体传感器与复合纳米材料技术领域,具体提供一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法。本发明提供一种新型NOx敏感材料:原位异质增强的双金属MXene/MoS2复合材料,在水热环境下双金属MXene外层Mo原子与硫原子相互作用取代双金属MXene末端官能团,从而原位生长双金属MXene/MoS2异质界面,双金属MXene二维结构上分级组装边缘表露的MoS2,使其具有优异的NOx气敏特性;并且,本发明以该材料为气敏层设置于敏感器件基底上构成二氧化氮传感器,该传感器室温工作,具有高信噪比、宽检测范围(2.5ppb~50ppm)、超低检测限与好重复性(RSD<1%)的优点,且对氧化氮(NOx)气体具有高选择性,匹配新一代的低功耗、可穿戴电子设备发展需求。

Description

一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传 感器及其制备方法
技术领域
本发明属于气体传感器与复合纳米材料技术领域,具体提供一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法。
背景技术
二氧化氮(NO2)作为大气环境的主要污染物之一,通过燃料燃烧大量排放,NO2气体能引起大气能见度降低、酸雨产生;NO2被人体吸入后可造成呼吸系统疾病,具体来说,人体短时间暴露下、需要对ppm级NO2的进行快速报警,而人体长时间暴露下、需要对ppb级NO2的进行快速报警;因此,准确快速地检测NO2浓度非常重要,开发具有宽检测范围、超低检测限与快速响应的室温NO2气体传感器更是具有十分重要的意义。
目前,大多NO2气体传感器需要加热或光照等辅助手段提升其敏感特性,如申请号为201910276010.0的发明专利公开了一种基于二维二硫化钼纳米材料的二氧化氮传感器,在紫外光照射下,设置在源极和漏极中间的二硫化钼吸附NO2气体后,NO2气体分子捕获二硫化钼的电子,从而引起传感器的电导发生改变。又如申请号为202010017845.7的发明专利公开了一种金修饰的花状SnS2的二氧化氮气体传感器及制备方法,该二氧化氮气体传感器包括气体敏感材料和加热电极,将均匀分布金的花状SnS2涂覆于加热电极的表面,该传感器对8ppm NO2响应值约为15,响应时间为120.8s,恢复时间为249.4s。然而,为迎合绿色节能、低功耗电子的发展需求,开发基于新型敏感材料的响应高、选择性好、稳定性好的室温NO2传感器仍是一大挑战。
发明内容
本发明的目的在于针对上述现有技术存在的缺陷,提供一种新型NOx敏感材料:原位异质增强的双金属MXene/MoS2复合材料,并以此为气敏层设置于敏感器件基底上构成响应高、选择性好、稳定性好的室温二氧化氮传感器,已匹配新一代的低功耗、可穿戴电子设备发展需求。
为实现上述目的,本发明采用的技术方案如下:
一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述二氧化氮传感器包括:敏感器件基底、及敏感器件基底上设置的气敏层,所述气敏层为双金属MXene/MoS2复合敏感膜。
进一步地,所述气敏层的厚度为50nm~500μm。
进一步地,所述双金属MXene/MoS2复合材料由双金属MXene材料上通过原位生长MoS2制得。
进一步地,所述双金属MXene材料为Mo2TiC2Tx或Mo2Ti2C3Tx,其中,Tx代表末端官能团。
进一步地,所述敏感器件基底为刚性或柔性基底的叉指电极。
更进一步地,所述敏感器件基底为刚性基底的叉指电极时,所述刚性基底采用硅基衬底、陶瓷衬底或三氧化二铝衬底,所述敏感器件基底为柔性基底的叉指电极时,所述柔性基底采用聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚氨酯(PU)、布基或纸基中的一种。
更进一步地,所述敏感器件基底的叉指电极数量为1~50对,每对叉值电极的叉值间距/宽度为5~500μm,叉指电极厚度为100-1000nm。
上述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器的制备方法,包括以下步骤:
步骤1.对敏感器件基底进行预处理:依次进行清洗、干燥、亲水处理;
步骤2.制备双金属MXene分散液:以刻蚀相前驱体(Mo2TiAlC2或Mo2Ti2C3Tx)为原料,首先,采用氢氟酸(HF)或盐酸与其它氟化物的混合溶液刻蚀,然后,采用四甲基氢氧化铵(TMAOH)或四丁基氢氧化铵(TBAOH)插层工艺,最后,离心清洗得到双金属MXene分散液;刻蚀与插层的次数为一次到多次;
步骤3.原位生长制备双金属MXene/MoS2复合材料:采用水热工艺在双金属MXene上生长MoS2纳米材料;
步骤4.将敏感材料分散液沉积在敏感器件基底上形成气敏层,干燥后得到原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器。
进一步地,步骤4中,沉积工艺包括:涂料笔涂覆、喷涂、旋涂、滴涂、浸涂或自组装的工艺制备单层或多层薄膜。
与现有技术相比,本发明的有益效果在于:
1)本发明提出了一种新型NOx敏感复合材料:原位异质增强的双金属MXene/MoS2复合材料,双金属MXene外层Mo原子暴露,在水热环境下与硫原子相互作用取代双金属MXene末端官能团,从而原位生长双金属MXene/MoS2异质界面,双金属MXene二维结构上分级组装边缘表露的MoS2,特殊的形貌设计与功能设计使其表现出优异的NOx气敏特性。
2)本发明以上述原位异质增强的双金属MXene/MoS2复合材料为气敏层、设置于敏感器件基底上形成二氧化氮传感器,该传感器室温工作,具有高信噪比、宽检测范围(2.5ppb-50ppm)、超低检测限与好重复性(RSD<1%)的优点,且对氧化氮(NOx)气体具有高选择性,有助于新一代的低功耗、可穿戴电子设备发展。
附图说明
图1为本发明实施例1中双金属Mo2TiC2Tx/MoS2复合薄膜扫描电镜图。
图2为本发明实施例1中双金属Mo2TiC2Tx/MoS2复合薄膜传感器电阻实时变化曲线图。
图3为本发明实施例1中双金属Mo2TiC2Tx/MoS2复合薄膜传感器10ppm NO2重复性曲线图。
图4为本发明实施例1中双金属Mo2TiC2Tx/MoS2复合薄膜传感器2.5ppb检测下限测试图。
图5为本发明实施例1中双金属Mo2TiC2Tx/MoS2复合薄膜传感器选择性测试图。
具体实施方式
为使本发明的目的、技术方案和技术效果更加清楚,下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本实施例提供一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,包括:敏感器件基底、及敏感器件基底上设置的气敏层;其中,敏感器件基底采用硅基金叉指电极,叉指电极的材料为金,叉指电极的叉指间距为50μm,叉指电极的叉指宽度为50μm,叉指电极的电极厚度为100nm,叉指电极对数为15对;气敏层采用双金属MXene/MoS2复合材料薄膜、厚度约为200nm,双金属MXene材料采用Mo2TiC2Tx
本实施例中上述双金属MXene/MoS2复合材料薄膜采用滴涂工艺制备,具体包括以下步骤:
步骤1.预处理硅基金叉指电极,依次进行离子水、丙酮、酒精和去离子水清洗,然后干燥备用;
步骤2.制备二维材料Mo2TiC2Tx:以刻蚀相前驱体(Mo2TiAlC2)为原料,通过HF刻蚀与TMAOH插层工艺制备;
具体为:准备10mL 40%HF水溶液,1min内缓慢加入1g Mo2AlTiC2粉末,超声10min后60℃加热搅拌96h,离心清洗至pH值达到6~7,得到Mo2TiC2Tx初步产物;然后,向上述沉淀物中添加15mL 25wt.%TMAOH水溶液进行50℃、48h插层;最后,离心清洗并收集Mo2TiC2Tx浆液;
步骤3.原位生长制备双金属MXene/MoS2复合材料;取10mL Mo2TiC2Tx浆液稀释后备用,称取1:1质量比的二水钼酸钠与硫脲粉末,加入上述浆液中,搅拌30min后得到混合溶液;使用盐酸溶液调节混合溶液PH至3,再于210℃下水热24h,原位生长制备双金属Mo2TiC2Tx/MoS2复合材料;
步骤4.通过滴涂工艺在硅基金叉指电极上制备气敏复合膜,再于60℃环境下干燥12h,得到双金属Mo2TiC2Tx/MoS2复合薄膜基NO2气体传感器。
根据本实施例制备得双金属Mo2TiC2Tx/MoS2复合薄膜基NO2传感器,性能测试按照本领域已公开的方法进行,具体方法为:在模拟大气环境(50%RH)中,使用Keithley 2700数据采集器对上述制备的传感器的电阻信号进行测试,不同的NO2浓度由气体稀释法获得,测试浓度为0~50ppm,响应值(Response)定义为:Response=Ra/Rg*100%,其中,Ra为空气气氛下传感器输出电阻值,Rg为NO2气氛下传感器输出电阻值。
本实施例中双金属Mo2TiC2Tx/MoS2复合材料的扫描电镜图如图1所示,大片层双金属Mo2TiC2Tx纳米结构上原位生长了花瓣型的小片状或花状的MoS2纳米片,MoS2对Mo2TiC2Tx纳米片在起支撑作用的同时,MoS2大量的边缘暴露提供丰富的气体分子吸附位点。与单一MoS2对NOx气体表现出p型半导体特性相比,双金属Mo2TiC2Tx得益于二维片层结构存在大量的活性外层钼原子,原位嫁接二硫化钼后,能够通过异质界面形成肖特基结存储空穴,从而促进电子-空穴对的分离来增强传感器的响应值、检测下限与特异性等特性。
图2为本实施例中双金属Mo2TiC2Tx/MoS2复合薄膜传感器在2-50ppm下的电阻实时变化曲线,由图可见,NO2通入后,传感器电阻值随着NO2浓度增加而减小,对50ppm NO2气体表现出高响应值(>500%),且响应时间快、约为30s。
图3为本实施例中双金属Mo2TiC2Tx/MoS2复合薄膜传感器10ppm NO2重复性曲线,由图可见,该传感器具有良好的重复性,通过计算六个稳态响应值,传感器的相对标准偏差(RSD)小于1%。
图4为本实施例中双金属Mo2TiC2Tx/MoS2复合薄膜传感器检测下限测试曲线,由图可见,该传感器具有超低检测限(2.5ppb),且具有超高信噪比。
图5为本实施例中双金属Mo2TiC2Tx/MoS2复合薄膜传感器选择性测试曲线,由图可见,该传感器对NOx表现出优异的选择性,说明其对NOx分子具有特异性吸附与灵敏的信号转换。
实施例2
本实施例提供一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,包括:敏感器件、及敏感器件上设置的气敏层;其中,敏感器件采用硅基金叉指电极,叉指电极的材料为金,叉指电极的叉指间距为200μm,叉指电极的叉指宽度为200μm,叉指电极的电极厚度为100nm,叉指电极对数为20对;气敏层采用双金属MXene/MoS2复合材料薄膜、厚度约为200nm,双金属MXene材料采用Mo2Ti2C3Tx
步骤1.预处理硅基金叉指电极,依次进行离子水、丙酮、酒精和去离子水清洗,然后干燥备用;
步骤2.制备二维材料Mo2Ti2C3Tx:以刻蚀相前驱体(Mo2Ti2AlC3)为原料,通过两次HF刻蚀与TBAOH插层工艺制备;
具体为:准备10mL 40%HF水溶液,1min内缓慢加入1g Mo2Ti2AlC3粉末,超声10min后55℃加热搅拌72h;离心清洗后二次HF刻蚀,55℃加热搅拌48h;离心清洗至pH值达到6~7,得到Mo2Ti2C3Tx初步产物;然后,向上述沉淀物中添加15mL 25wt.%TBAOH水溶液进行40℃、48h插层;最后,离心清洗并收集Mo2Ti2C3Tx浆液;
步骤3.原位生长制备双金属MXene/MoS2复合材料;取5mL Mo2Ti2C3Tx浆液稀释后备用,称取1:1质量比的二水钼酸钠与硫脲粉末,加入上述浆液中,搅拌30min后得到混合溶液;使用盐酸溶液调节混合溶液PH至3,再于210℃水热24h,原位生长制备双金属Mo2Ti2C3Tx/MoS2复合材料;
步骤4.通过旋涂工艺在柔性PI衬底基叉指电极上制备气敏复合膜;再于60℃环境下干燥12h,得到双金属Mo2Ti2C3Tx/MoS2复合薄膜基NO2气体传感器。
本实施例制备得双金属Mo2Ti2C3Tx/MoS2复合材料的微观结构与实施例1相似,双金属MXene/MoS2复合膜基二氧化氮传感器性能与实施例1相近。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (9)

1.一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述二氧化氮传感器包括:敏感器件基底、及敏感器件基底上设置的气敏层,所述气敏层为双金属MXene/MoS2复合敏感膜。
2.按权利要求1所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述气敏层的厚度为50nm~500μm。
3.按权利要求1所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述双金属MXene/MoS2复合材料由双金属MXene材料上通过原位生长MoS2制得。
4.按权利要求1所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述双金属MXene材料为Mo2TiC2Tx或Mo2Ti2C3Tx,其中,Tx代表末端官能团。
5.按权利要求1所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述敏感器件基底为刚性或柔性基底的叉指电极。
6.按权利要求5所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述敏感器件基底为刚性基底的叉指电极时,所述刚性基底采用硅基衬底、陶瓷衬底或三氧化二铝衬底,所述敏感器件基底为柔性基底的叉指电极时,所述柔性基底采用聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚氨酯(PU)、布基或纸基中的一种。
7.按权利要求5所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器,其特征在于,所述敏感器件基底的叉指电极数量为1~50对,每对叉值电极的叉值间距/宽度为5~500μm,叉指电极厚度为100~1000nm。
8.按权利要求1所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器的制备方法,其特征在于,包括以下步骤:
步骤1.对敏感器件基底进行预处理:依次进行清洗、干燥、亲水处理;
步骤2.制备双金属MXene分散液:以刻蚀相前驱体(Mo2TiAlC2或Mo2Ti2C3Tx)为原料,首先,采用氢氟酸(HF)或盐酸与其它氟化物的混合溶液刻蚀,然后,采用四甲基氢氧化铵(TMAOH)或四丁基氢氧化铵(TBAOH)插层工艺,最后,离心清洗得到双金属MXene分散液;刻蚀与插层的次数为一次到多次;
步骤3.原位生长制备双金属MXene/MoS2复合材料:采用水热工艺在双金属MXene上生长MoS2纳米材料;
步骤4.将敏感材料分散液沉积在敏感器件基底上形成气敏层,干燥后得到原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器。
9.按权利要求8所述原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器的制备方法,其特征在于,所述步骤4中,沉积工艺包括:涂料笔涂覆、喷涂、旋涂、滴涂、浸涂或自组装的工艺制备单层或多层薄膜。
CN202111541102.0A 2021-12-16 2021-12-16 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法 Active CN114280109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111541102.0A CN114280109B (zh) 2021-12-16 2021-12-16 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111541102.0A CN114280109B (zh) 2021-12-16 2021-12-16 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN114280109A true CN114280109A (zh) 2022-04-05
CN114280109B CN114280109B (zh) 2023-11-24

Family

ID=80872651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111541102.0A Active CN114280109B (zh) 2021-12-16 2021-12-16 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN114280109B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519971B1 (ko) * 2015-01-26 2015-05-15 연세대학교 산학협력단 가스 센서 및 이의 제조 방법
CN109671949A (zh) * 2018-12-12 2019-04-23 福建翔丰华新能源材料有限公司 一种MXene基柔性复合负极材料及其制备方法
CN110272611A (zh) * 2018-03-14 2019-09-24 中国科学院深圳先进技术研究院 一种导热材料的制备方法
US20190391099A1 (en) * 2017-12-22 2019-12-26 Korea Advanced Institute Of Science And Technology Chemiresistor gas sensor using mxene and the manufacturing method thereof
CN110635027A (zh) * 2019-08-27 2019-12-31 深圳大学 一种基于MXene电极的半导体器件及其制备方法
CN111498850A (zh) * 2020-04-26 2020-08-07 江南大学 一种二维过渡金属碳氮化物及其制备方法和应用
CN112072126A (zh) * 2020-08-31 2020-12-11 华南理工大学 一种Mxene柔性自支撑锂空电池正极材料、Mxene柔性复合膜及其制备方法
CN112063085A (zh) * 2020-08-06 2020-12-11 怀化学院 复合柔性高介电薄膜及其制备方法和应用
CN112323498A (zh) * 2020-11-02 2021-02-05 芜湖富春染织股份有限公司 一种多功能织物及其制备方法和应用
CN112763551A (zh) * 2020-12-29 2021-05-07 电子科技大学 基于复合材料阻塞效应的二氧化氮传感器及其制备方法
CN113173601A (zh) * 2021-04-25 2021-07-27 黑龙江大学 一种薄层MXene/六方晶相二硫化钼复合材料及其制备方法和应用
CN113567518A (zh) * 2021-07-27 2021-10-29 南京航空航天大学 一种二氧化氮气体传感器及其制备方法
CN113720254A (zh) * 2021-08-27 2021-11-30 中国科学院上海硅酸盐研究所 一种强度线型双响应的柔性应变传感器及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519971B1 (ko) * 2015-01-26 2015-05-15 연세대학교 산학협력단 가스 센서 및 이의 제조 방법
US20190391099A1 (en) * 2017-12-22 2019-12-26 Korea Advanced Institute Of Science And Technology Chemiresistor gas sensor using mxene and the manufacturing method thereof
CN110272611A (zh) * 2018-03-14 2019-09-24 中国科学院深圳先进技术研究院 一种导热材料的制备方法
CN109671949A (zh) * 2018-12-12 2019-04-23 福建翔丰华新能源材料有限公司 一种MXene基柔性复合负极材料及其制备方法
CN110635027A (zh) * 2019-08-27 2019-12-31 深圳大学 一种基于MXene电极的半导体器件及其制备方法
CN111498850A (zh) * 2020-04-26 2020-08-07 江南大学 一种二维过渡金属碳氮化物及其制备方法和应用
CN112063085A (zh) * 2020-08-06 2020-12-11 怀化学院 复合柔性高介电薄膜及其制备方法和应用
CN112072126A (zh) * 2020-08-31 2020-12-11 华南理工大学 一种Mxene柔性自支撑锂空电池正极材料、Mxene柔性复合膜及其制备方法
CN112323498A (zh) * 2020-11-02 2021-02-05 芜湖富春染织股份有限公司 一种多功能织物及其制备方法和应用
CN112763551A (zh) * 2020-12-29 2021-05-07 电子科技大学 基于复合材料阻塞效应的二氧化氮传感器及其制备方法
CN113173601A (zh) * 2021-04-25 2021-07-27 黑龙江大学 一种薄层MXene/六方晶相二硫化钼复合材料及其制备方法和应用
CN113567518A (zh) * 2021-07-27 2021-10-29 南京航空航天大学 一种二氧化氮气体传感器及其制备方法
CN113720254A (zh) * 2021-08-27 2021-11-30 中国科学院上海硅酸盐研究所 一种强度线型双响应的柔性应变传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TIAN XU: "A two-dimensional Ti3C2TX MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia", 《JOURNAL OF MATERIALS CHEMISTRY A》, vol. 10, no. 10, pages 5505 - 5519 *
ZHAO QIUNI: "Edge-Enriched Mo2TiC2Tx/MoS2 Heterostructure with Coupling Interface for Selectively NO2 Monitoring", 《ADVANCED FUNCTIONAL MATERIALS》, vol. 32, no. 39, pages 1 - 10 *
唐艳婷: "磷烯的表面修饰及二氧化氮传感研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 2, pages 1 - 73 *
董旭晟: "MXenes的表面改性及其在碱金属离子电池中应用的研究进展", 《 功能材料》, vol. 51, no. 9, pages 9031 - 9044 *

Also Published As

Publication number Publication date
CN114280109B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN110672670B (zh) 基于三维MXene褶皱球/ZnO复合材料的平面柔性室温NO2传感器及其制备方法
KR20190076341A (ko) 맥신을 이용한 케미레지스터 가스센서 및 이의 제조 방법
CN110687169B (zh) 一种湿度敏感的碳纳米管/石墨烯/有机复合柔性材料、湿度传感器及其制备方法
CN106198674B (zh) 一种介孔石墨烯制备工艺及基于介孔石墨烯场效应晶体管生物传感器
CN109613071B (zh) 基于多聚赖氨酸修饰碳系材料的湿敏复合膜的湿度传感器及其制备方法
US20230184710A1 (en) Nonenzymatic biosensor based on metal-modified porous boron-doped diamond electrode, and method for preparing same and use thereof
CN112557457B (zh) 基于可印刷纳米复合材料的平面柔性室温气体传感器
CN112763551B (zh) 基于复合材料阻塞效应的二氧化氮传感器及其制备方法
US8324703B2 (en) Approach to contacting nanowire arrays using nanoparticles
CN101793855A (zh) 硅微纳米结构气体传感器及其制作方法
CN110589875A (zh) 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
CN108802121B (zh) 一种光电流溶解氧传感器
CN107192739A (zh) 一种空间用氢传感器及其制备方法
CN107179337A (zh) 一种双模湿度传感器及其制备方法
CN113834863A (zh) 一种基于三维Ti3C2Tx/rGO复合褶皱球的室温高选择性NO2传感器及制备方法
KR20150026012A (ko) 가스센서 및 그 제조방법
Kondratev et al. Technologically feasible ZnO nanostructures for carbon monoxide gas sensing
KR20150026151A (ko) 가스센서 및 그 제조방법
CN114280109A (zh) 一种原位异质增强的双金属MXene/MoS2复合膜基二氧化氮传感器及其制备方法
CN109540988A (zh) 基于叉指凹槽结构的无参比电极GaN基pH传感器及其制备方法
CN113340947A (zh) 一种聚苯胺空心球/MXene复合氨气气敏材料的制备方法
Qin et al. Stable clusters array of silicon nanowires developed by top-plating technique as a high-performance gas sensor
CN116297711A (zh) 基于ZnO/GaN异质结结构纳米材料的NO2传感器及其制备方法
CN113035970B (zh) 正负光电导特性可调的纳米金刚石基探测器及其制备方法
KR20120126977A (ko) 탄소나노튜브 기반 3전극 시스템, 그 제조방법 및 이를 이용한 전기화학 바이오센서

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant