CN114275863A - 一种热力杀菌釜水处理自动控制系统及方法 - Google Patents

一种热力杀菌釜水处理自动控制系统及方法 Download PDF

Info

Publication number
CN114275863A
CN114275863A CN202111637815.7A CN202111637815A CN114275863A CN 114275863 A CN114275863 A CN 114275863A CN 202111637815 A CN202111637815 A CN 202111637815A CN 114275863 A CN114275863 A CN 114275863A
Authority
CN
China
Prior art keywords
water
cold
hot
monitoring
sampled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111637815.7A
Other languages
English (en)
Other versions
CN114275863B (zh
Inventor
邓明森
杨恒修
沈虎峻
邹雪锋
李付绍
武青青
陈令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Education University
Original Assignee
Guizhou Education University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Education University filed Critical Guizhou Education University
Priority to CN202111637815.7A priority Critical patent/CN114275863B/zh
Publication of CN114275863A publication Critical patent/CN114275863A/zh
Application granted granted Critical
Publication of CN114275863B publication Critical patent/CN114275863B/zh
Priority to US18/083,147 priority patent/US11760660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/12Location of water treatment or water treatment device as part of household appliances such as dishwashers, laundry washing machines or vacuum cleaners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • G01N2001/1037Sampling from special places from an enclosure (hazardous waste, radioactive)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种热力杀菌釜水处理自动控制系统及方法,所述系统包括:取样模块,监测模块和控制模块;通过取样模块分别进行热水和冷水取样,并设置监测模块分别对取样热水和取样冷水中的在线荧光信号进行监测;通过控制模块分别根据热取样水的在线荧光信号控制是否向热水区中投加复合型药剂以及根据冷取样水的在线荧光信号控制是否向冷水区中投加复合型药剂;同时,还通过监测模块对冷水取样水的余氯信号进行监控,并通过控制模块根据余氯信号控制是否向冷水区中投加氧化性杀菌剂。本发明上述方案同时对热水区和冷水区进行监测,无论热水或冷水任何一方的水质出现恶化的情况时,均采取相应措施来缓解腐蚀,进而大幅提高杀菌釜水处理效果。

Description

一种热力杀菌釜水处理自动控制系统及方法
技术领域
本发明涉及水处理领域,特别是涉及一种热力杀菌釜水处理自动控制系统及方法。
背景技术
罐装密封(马口铁罐、铝罐、玻璃管、软包)食品(如各种罐头、饮品、肉类等)在进入市场前需经历杀菌处理达到食品的商业无菌状态,从而提高食品的保质期。工业上杀菌方式主要以热力杀菌为主。将食品罐装密封好送入热杀菌设备中,通过水或蒸汽为介质,在高温条件下,将食物中的各种致病菌、腐败菌等杀死,达到食物的商业无菌状态。
热力杀菌设备有很多种,从生产的连续性上分类,主要有两大类,可分为连续式和非连续式杀菌釜。连续式杀菌釜典型的代表有静水压式杀菌釜、轨道式旋转杀菌釜,非连续式杀菌釜的典型代表有非连续式立式、卧式杀菌釜。我国使用较多的是静水压式杀菌釜、非连续式的卧式杀菌釜。
采用热力设备进行杀菌,其基本原理是利用高温条件将食物中的各种致病菌、腐败菌等杀灭,整个杀菌过程基本一致。其过程主要经历三个阶段:
预热:食品包装容器在杀菌釜中与预热水充分接触,提升封装食物的温度以达到逐渐接近杀菌温度的目的,此外还能达到降低蒸汽用量、降低能耗的目的。热水温度取决于采用的杀菌设备的类型,如果是非连续卧式杀菌釜,通常在杀菌釜中通入一定温度(温度一般在50-90℃之间)的热水;如果采用连续式静水压式杀菌设备,其热水预热区是一个随着水柱的下降而温度逐渐升高的温区,以此更接近随后的杀菌温度。
杀菌:在预热完成后,封装食物容器在高温蒸汽或水中进行杀菌处理,此期间的温度一般在100-130℃。以此杀灭各种致病菌、腐败菌等。
冷却:杀菌结束后进入冷却阶段,使食物容器充分与冷却水接触,以此降低食品温度。基于杀菌釜的种类不同,冷却方式及过程有存在差异,但其目的是将封装食物温度降低。静水压式连续杀菌釜的降温首先是进入带压冷却区,该冷却区水温较高,基本与预热区的温度保持对称,机内带压冷却区后温度随着水柱的升高不断降低,然后进入常压冷却;如果采用的非连续式的卧式杀菌釜,在杀菌结束后杀菌釜通入冷却水并循环,逐渐对杀菌釜和封装食物降温。
预热和冷却过程中,热水和冷水在杀菌釜中与杀菌釜本体和封装食物容器进行充分接触,并进行相应的的水循环,逐渐与杀菌釜本体以及封装食物进行换热从而达到预热和冷却的目的,杀菌釜和封装食物容器在热水和冷却水中有一定的停留时间,热水和冷却水会对杀菌釜本体金属和食物封装容器会产生严重的腐蚀。而考虑到热力杀菌生产条件的特殊性:(1)杀菌釜的主要制备材料是碳钢,还有少数部件采用不锈钢、铜等金。食物封装容器材料通常为玻璃、马口铁、铝合金、软包装等材料,在杀菌釜中包含多种金属材料,因此存在巨大的电偶腐蚀趋势;(2)杀菌釜的热水和冷却水相对于传统的敞开式循环冷却水的温度要高很多,热水可能高至90℃,甚至更高,冷却水温度也可能高至70℃,甚至更高,而高温具有更高的腐蚀倾向;(3)冷却过程中,出水国标要求的余氯含量需要大于0.5ppm,高余氯会极大的加剧金属腐蚀。
考虑到热力杀菌生产的特殊性,相对于传统的循环冷却水,其腐蚀问题对设备和生产的影响会更严重、更难解决。该问题对热力杀菌与封装食物产品可能造成的巨大的影响:严重的腐蚀导致设备经常停机检修,增加维修成本,降低生产率,因停产产生的隐性损失更是不可估量;腐蚀还导致设备使用寿命大幅下降,国内一般在3年左右,甚至短则1年就报废了,杀菌釜属于高投入的重资产设备,无形中增加生产成本;更严重的问题是腐蚀产物易附着在封装食物容器表面,大大提高封装食物产品的次品率。
为了进行设备保护、降低维修频率、提高生产率、提高成品率、降低成本,需要对热力杀菌过程中的水处理进行一定的化学处理以抑制严重的腐蚀,而一套卓越的、完整的水处理控制系统是关键。目前在国内热力杀菌过程中,由于水处理条件相对苛刻,难度较大,基本没有进行完整的水处理的系统和方法。
发明内容
本发明的目的是提供一种热力杀菌釜水处理自动控制系统及方法,通过监测杀菌釜预热水和冷却水的一些特征参数,实现对杀菌釜水处理的控制,帮助使用杀菌釜的食品生产企业提高设备使用寿命、降低维修频率、提高生产率、提高成品率、降低成本。
为实现上述目的,本发明提供了如下方案:
一种热力杀菌釜水处理自动控制系统,所述系统包括:取样模块,监测模块和控制模块;
所述取样模块包括热取样管路和冷取样管路,所述热取样管路和所述冷取样管路分别用于从热水区获得热取样水和从冷水区获得冷取样水;
所述监测模块包括热水监测子模块和冷水监测子模块,所述热水监测子模块用于对所述热取样水的在线荧光进行监测;所述冷水监测子模块用于对所述冷取样水的在线荧光和在线余氯进行监测;
所述控制模块包括热水控制子模块和冷水控制子模块;所述热水控制子模块,与所述热水监测子模块连接,用于根据所述热取样水的在线荧光信号控制是否向所述热水区中投加复合型药剂;所述冷水控制子模块,与所述冷水监测子模块连接,用于根据所述冷取样水的在线荧光信号控制是否向所述冷水区中投加复合型药剂以及根据所述冷取样水的余氯信号控制是否向所述冷水区中投加氧化性杀菌剂。
本发明还提供一种热力杀菌釜水处理自动控制方法,应用于上述控制系统,所述方法包括:
对热水区和冷水区分别取样,得到热取样水和冷取样水;
分别对所述热取样水和所述冷取样水进行在线荧光监测,获得热取样水的在线荧光信号和冷取样水的在线荧光信号;
根据所述热取样水的在线荧光信号控制是否向所述热水区投放复合型药剂,根据所述冷取样水的在线荧光信号控制是否向所述冷水区投放复合型药剂;
对所述冷取样水进行在线余氯监测,获得冷取样水的在线余氯信号;
根据所述冷取样水的在线余氯信号控制是否向所述冷水区投放氧化性杀菌剂。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供的热力杀菌釜水处理自动控制系统及方法,设置热取样管路和冷取样管路分别进行热水和冷水取样,并设置热水监测子模块和冷水监测子模块同时对取样热水和取样冷水中的在线荧光信号进行监测。由于本发明的药剂中复配了一定比例的荧光示踪剂,通过在线荧光信号的强度可以获得药剂浓度的在线实时值,当热水或冷水中的药剂浓度值低于预设药剂浓度阈值时,分别通过热水控制子模块向热水区投放复合型药剂,以及通过冷水控制子模块向冷水区投放复合型药剂,通过投放该药剂可以缓解杀菌釜中热水区和冷水区的腐蚀。同时,本发明还通过冷水监测子模块对冷取样水的在线余氯进行监测,如当在线余氯值低于预设余氯阈值时,通过冷水控制子模块向冷水区投加氧化性杀菌剂,以使得冷水中的余氯值高于预设余氯阈值,进而达到余氯出水标准。本发明上述方案中通过对杀菌釜的热水和冷水同时监测,无论热水或冷水任何一方的水质出现加剧腐蚀的情况时,均采取投放药剂等方式来缓解,进而大幅提高杀菌釜水处理效果,提升杀菌釜使用寿命,降低维修频率,降低成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的热力杀菌釜水处理自动控制系统结构图;
图2为本发明实施例2提供的热力杀菌釜水处理自动控制方法流程图。
符号说明:
1-取样模块;2-监测模块;3-控制模块;4-数字化管理模块;11-热取样管路;12-冷取样管路;21-热水监测子模块;22-冷水监测子模块;211-第一液位传感器;212-第一微型冷却器;213-第一温度探测器;214-第二温度探测器;221-第二液位传感器;222-第二微型冷却器;223-第三温度探测器;224-第四温度探测器;31-热水控制子模块;32-冷水控制子模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种热力杀菌釜水处理自动控制系统及方法,对杀菌釜的热水和冷水同时监测和控制,大大提升杀菌釜水处理的处理效果,帮助使用杀菌釜的食品生产企业提高设备使用寿命,降低维修频率,提升生产连续性及生产效率,提高成品率,降低成本、提升企业竞争力。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
本实施例提供一种热力杀菌釜水处理自动控制系统,请参阅图1,所述系统包括:取样模块1,监测模块2和控制模块3。
取样模块1包括热取样管路11和冷取样管路12,热取样管路11和冷取样管路12分别用于从热水区获得热取样水和从冷水区获得冷取样水。
监测模块2包括热水监测子模块21和冷水监测子模块22,热水监测子模块21用于对热取样水的在线荧光进行监测;冷水监测子模块22用于对冷取样水的在线荧光和在线余氯进行监测。
需要说明的是,本实施例可以根据需要监测的信息对应设置传感器,例如上述对取样水中的在线荧光进行监测,则可以设置热水监测子模块21和冷水监测子模块22均包括在线荧光传感器,需要对冷取样水的在线余氯进行监测,则可以设置冷水监测子模块22中还包含在线余氯传感器。
控制模块3包括热水控制子模块31和冷水控制子模块32;热水控制子模块31,与热水监测子模块21连接,用于根据热取样水的在线荧光信号控制是否向热水区中投加复合型药剂;冷水控制子模块32,与冷水监测子模块22连接,用于根据冷取样水的在线荧光信号控制是否向冷水区中投加复合型药剂。
上述复合型药剂包括分散剂、缓蚀剂、阻垢剂等药剂,通过在使用的药剂中复配一定比例的荧光示踪剂,并通过在线荧光传感器监测荧光强度以获得药剂浓度的在线实时值。通过设置药剂浓度的控制范围来投加药剂。如药剂浓度控制在10±1ppm,那么当药剂浓度低于9ppm时,通过控制模块3开启加药泵投加药剂,当检测到浓度高于11ppm时,通过控制模块3关闭加药泵停止投加药剂。
现实中杀菌釜的预热水和冷却水的温度超过50℃时有发生,这给药剂浓度的监测带来了挑战,因为在相对高的温度下,对荧光信号的监测将会发生偏差,检测不再准确,这给水处理控制带来了较大的挑战,在一定程度上影响了水处理效果。
作为一种可选的实施方式,本实施例中,热水监测子模块21还包括第一微型冷却器212,第一温度探测器213和第二温度探测器214;第一微型冷却器212设置于热取样管路11上,第一温度探测器213和第二温度探测器214分别设置于第一微型冷却器212前后,并分别用于探测进入第一微型冷却器212前的水温以及经过第一微型冷却器212之后的水温,热水控制子模块31还用于根据第一温度探测器213探测的水温控制第一微型冷却器212的启停;
冷水监测子模块22还包括第二微型冷却器222,第三温度探测器223和第四温度探测器224;第二微型冷却器222设置于冷取样管路12上,第三温度探测器223和第四温度探测器224分别设置于第二微型冷却器222前后,并分别用于探测进入第二微型冷却器222前的水温以及经过第二微型冷却器222之后的水温,冷水控制子模块32还用于根据第三温度探测器223探测的水温控制第二微型冷却器222的启停。
通过在热水和冷却水的取样水管路各安装微型冷却器以使得进入在线荧光传感器的水温低于45℃,提升在线荧光信号检测准确性。在冷却器前后安装温度传感器,通过温度信号,以控制微型冷却器的冷水的启停。
现有的水处理,大多是根据国家标准要求在冷却水中投入大量的氧化型杀菌剂以达到大于0.5ppm的出水余氯标准,而余氯信号基本是通过定时人工检测,然后再手动投加氧化性杀菌剂至冷却水中,或者是通过定时器连续的投加至冷却水中,常常导致冷却水余氯值长期远高于0.5ppm,引起的腐蚀问题十分严重。
本实施例中,冷水监测子模块22还对冷取样水的在线余氯(或氧化还原电位ORP)进行监测,冷水控制子模块32还用于根据冷取样水的余氯信号(或氧化还原电位ORP)控制是否向冷水区中投加氧化性杀菌剂。如余氯控制范围在0.6±0.1ppm,那么当余氯低于0.5ppm时,通过冷水控制子模块32开启加药泵投加氧化性杀菌剂,当余氯大于0.7ppm时,通过冷水控制子模块32关闭加药泵停止投加氧化性杀菌剂,这样可以将冷却水的余氯值精确控制在大于0.5ppm以满足标准,但同时小于0.7ppm,以最大限度的降低余氯对腐蚀的影响。也可通过ORP信号控制是否投加氧化性杀菌剂,余氯值与氧化还原电位有一定的对应值,这取决于每个现场的水质情况,首先确定对应关系,如已确定某水质余氯0.5ppm时,对应的ORP值为500mV,那么可以将ORP范围设置在550±50mV,当低于500mV时,开始控制氧化性杀菌剂的投加,而当高于氧化还原电位高于600mV时停止氧化性杀菌剂的投加。
杀菌釜中的热水和冷水除了会对釜体金属和封装食物容器产生腐蚀危害外,还易产生结垢及沉积、微生物污垢等危害。由于在生产过程中对某些部件局部要涂抹润滑油以增强部件衔接或转动的润滑性,而润滑油会滋生微生物问题,因此水体有巨大的微生物滋生倾向,容易形成污垢。同时,生产过程还可能存在爆罐现象,食物从容器中泄露到水中,增加水中的有机物含量,促进微生物滋生及繁殖,容易形成污垢。结垢沉积、微生物污垢的影响除了降低换热效率外,其主要的影响在食物罐体,一旦在食物罐体发生结垢沉积附着在外表面,严重影响食品安全、降低成品率。因此,解决结垢与沉积、微生物污染等对确保食品安全、设备保护、提高生产率、降低成本等同样至关重要。
基于上述情况,本实施例的热水监测子模块21还用于对热取样水的电导率、总铁、浊度以及化学需氧量进行监测,热水控制子模块31还用于根据热取样水的电导率、总铁、浊度以及化学需氧量信号实现热水区的热水排污控制;
冷水监测子模块22还用于对冷取样水的电导率、总铁、浊度以及化学需氧量进行监测,冷水控制子模块32还用于根据冷取样水的电导率、总铁、浊度以及化学需氧量信号实现冷水区的冷水排污控制。
通常情况下,本实施例采用电导率的设置范围进行排污控制,如电导率控制在500±20μs/cm,那么当电导率高于520μs/cm时,控制模块3开启排污泵进行排污直至电导率降低到480μs/cm以下控制模块3关闭排污泵停止排污。
杀菌釜的热水和冷却水的具体状况与传统的敞开式循环冷却水略有不同,有其特殊性如总铁高,余氯高,高COD(化学需氧量)等,这些参数都无法体现在传统的循环冷却水控制系统中,对热水和冷却水的排污也不能完全按照传统的电导率的设置范围模式进行排污。
本实施例提供的上述方案,当热水和冷却水遭遇苛刻的水质环境时,同样可以进行排污,例如出现腐蚀加剧,当总铁、浊度、或在线COD含量超过其临界值,均可以通过控制模块3启动排污泵强行进行排污,直到其相应的值达到合理范围,如设置可容忍的总铁范围为0.5-2ppm,那么当总铁大于2ppm时,可启动排污泵强行排污直到总铁小于0.5ppm为止关闭排污泵停止排污,即使此时热水系统的电导率还未达到排污标准。
需要说的是,本领域技术人员还可根据需要,设置监测模块2包含其他相应的传感器,例如当需要监测热水区和冷水区的pH值时,则可设置热水监测子模块21和冷水监测子模块22均包含pH传感器,从而分别监测热取样管路11和冷取样管路12中水的pH值;当需要监测热水区和冷水区的腐蚀率时,可以设置热水监测子模块21和冷水监测子模块22均包含在线腐蚀率传感器或腐蚀挂片,从而分别监测热取样管路11和冷取样管路12中的腐蚀,本实施例并不对此进行限制。
经过排污有效降低了热水或冷水中的总铁、COD、浊度等,但同样也会使得热水区或冷水区的水位下降,基于此,本实施例设置的热水监测子模块21还包括第一液位传感器211,第一液位传感器211设置于热水区,用于获取热水区的液位信号;冷水监测子模块22包括第二液位传感器221,第二液位传感器221设置于冷水区,用于获取冷水区的液位信号;
热水控制子模块31还用于根据热水区的液位信号控制向热水区补水,冷水控制子模块32还用于根据冷水区的液位信号控制向冷水区补水。
考虑到杀菌釜水处理过程中的数据记录问题,以及为方便用户进行数字化管理,提高杀菌釜水处理效率,本实施例提供的水处理控制系统还包括数字化管理模块4,数字化管理模块4与取样模块1、监测模块2和控制模块3均连接,用于对系统各模块的数据进行记录并存储到云端。
实施例2
本实施例提供一种热力杀菌釜水处理自动控制方法,本实施例提供的方法应用于实施例1所述的系统,请参阅图2,所述方法包括:
对热水区和冷水区分别取样,得到热取样水和冷取样水;
分别对所述热取样水和所述冷取样水进行在线荧光监测,获得热取样水的在线荧光信号和冷取样水的在线荧光信号;
根据所述热取样水的在线荧光信号控制是否向所述热水区投放复合型药剂,根据所述冷取样水的在线荧光信号控制是否向所述冷水区投放复合型药剂;
对所述冷取样水进行在线余氯监测,获得冷取样水的在线余氯信号;
根据所述冷取样水的在线余氯信号控制是否向所述冷水区投放氧化性杀菌剂。
作为一种可选的实施方式,所述方法还包括:
分别对所述热取样水和所述冷取样水的电导率、总铁、浊度以及化学需氧量进行监测;
根据所述冷取样水的电导率、总铁、浊度以及化学需氧量信号控制是否对所述冷水区的冷水排污;
根据所述热取样水的电导率、总铁、浊度以及化学需氧量信号控制是否对所述热水区的热水排污。
作为一种可选的实施方式,所述方法还包括:
通过第一液位传感器211获取所述热水区的液位信号,通过第二液位传感器221获取所述冷水区的液位信号;
根据所述热水区的液位信号控制是否向所述热水区补水,根据所述冷水区的液位信号控制是否向所述冷水区补水。
可选的,热取样管路上设置第一微型冷却器,冷取样管路上设置第二微型冷却器;所述方法还包括:
利用第一温度探测器213对进入第一微型冷却器212前的水温进行监测,利用第二温度探测器214对通过第一微型冷却器212后的水温进行监测;
根据所述第一温度探测器213监测的水温和所述第二温度探测器214监测的水温控制所述第一微型冷却器212的启停;
利用第三温度探测器223对进入第二微型冷却器222前的水温进行监测,利用第四温度探测器224对通过第二微型冷却器222后的水温进行监测;
根据所述第三温度探测器223监测的水温和所述第四温度探测器224监测的水温控制所述第二微型冷却器222的启停。
作为一种可选的实施方式,所述方法还包括:
通过数字化模块4对所述杀菌釜水处理自动控制过程中的数据进行记录并存储到云端。
本发明提供的杀菌釜水处理自动控制系统及方法,可同时提供杀菌釜热水、冷却水精确的监控,大幅提升杀菌釜水处理效果,提升杀菌釜使用寿命,降低维修频率、提高生产率、降低成本、提升企业竞争力。
通过引入更多的水质处理结果窗口参数传感器如总铁、腐蚀率、浊度、COD等,可能基于结果导向(如总铁、浊度、在线COD)调控排污方式,避免单一电导率控制引起的弊端(如高总铁、浊度、COD导致的各种腐蚀、沉积污垢等问题),提升水处理效果。
通过在热水、冷却水取样水均安装微型冷却器,可实现在高温条件下的精准检测在线荧光信号,药剂浓度监控更精确,水处理效果更好。
通过数字化管理提升杀菌釜水处理效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种热力杀菌釜水处理自动控制系统,其特征在于,所述系统包括:取样模块,监测模块和控制模块;
所述取样模块包括热取样管路和冷取样管路,所述热取样管路和所述冷取样管路分别用于从热水区获得热取样水和从冷水区获得冷取样水;
所述监测模块包括热水监测子模块和冷水监测子模块,所述热水监测子模块用于对所述热取样水的在线荧光进行监测;所述冷水监测子模块用于对所述冷取样水的在线荧光和在线余氯进行监测;
所述控制模块包括热水控制子模块和冷水控制子模块;所述热水控制子模块,与所述热水监测子模块连接,用于根据所述热取样水的在线荧光信号控制是否向所述热水区中投加复合型药剂;所述冷水控制子模块,与所述冷水监测子模块连接,用于根据所述冷取样水的在线荧光信号控制是否向所述冷水区中投加所述复合型药剂以及根据所述冷取样水的余氯信号控制是否向所述冷水区中投加氧化性杀菌剂。
2.根据权利要求1所述的系统,其特征在于,所述热水监测子模块还用于对所述热取样水的电导率、总铁、浊度以及化学需氧量进行监测,所述热水控制子模块还用于根据所述热取样水的电导率、总铁、浊度以及化学需氧量信号实现所述热水区的热水排污控制;
所述冷水监测子模块还用于对所述冷取样水的电导率、总铁、浊度以及化学需氧量进行监测,所述冷水控制子模块还用于根据所述冷取样水的电导率、总铁、浊度以及化学需氧量信号实现所述冷水区的冷水排污控制。
3.根据权利要求2所述的系统,其特征在于,所述热水监测子模块包括第一液位传感器;所述第一液位传感器,设置于所述热水区,用于获取所述热水区的液位信号;所述冷水监测子模块包括第二液位传感器;所述第二液位传感器,设置于所述冷水区,用于获取所述冷水区的液位信号;
所述热水控制子模块还用于根据所述热水区的液位信号控制向所述热水区补水;所述冷水控制子模块还用于根据所述冷水区的液位信号控制向所述冷水区补水。
4.根据权利要求1所述的系统,其特征在于,所述热水监测子模块还包括第一微型冷却器,第一温度探测器和第二温度探测器;所述第一微型冷却器设置于所述热取样管路上,所述第一温度探测器和所述第二温度探测器分别设置于所述第一微型冷却器前后,并分别用于探测进入所述第一微型冷却器前的水温以及经过所述第一微型冷却器之后的水温,所述热水控制子模块还用于根据所述第一温度探测器探测的水温控制所述第一微型冷却器的启停;
所述冷水监测子模块还包括第二微型冷却器,第三温度探测器和第四温度探测器;所述第二微型冷却器设置于所述冷取样管路上,所述第三温度探测器和所述第四温度探测器分别设置于所述第二微型冷却器前后,并分别用于探测进入所述第二微型冷却器前的水温以及经过所述第二微型冷却器之后的水温,所述冷水控制子模块还用于根据所述第三温度探测器探测的水温控制所述第二微型冷却器的启停。
5.根据权利要求1所述的系统,其特征在于,所述系统还包括数字化管理模块;所述数字化管理模块,与所述取样模块、所述监测模块和所述控制模块均连接,用于对所述系统各模块的数据进行记录并存储到云端。
6.一种热力杀菌釜水处理自动控制方法,其特征在于,应用于如所述权利要求1-5任一所述的系统,所述方法包括:
对热水区和冷水区分别取样,得到热取样水和冷取样水;
分别对所述热取样水和所述冷取样水进行在线荧光监测,获得热取样水的在线荧光信号和冷取样水的在线荧光信号;
根据所述热取样水的在线荧光信号控制是否向所述热水区投放复合型药剂,根据所述冷取样水的在线荧光信号控制是否向所述冷水区投放所述复合型药剂;
对所述冷取样水进行在线余氯监测,获得冷取样水的在线余氯信号;
根据所述冷取样水的在线余氯信号控制是否向所述冷水区投放氧化性杀菌剂。
7.根据权利要求6所述的方法,其特征在于,所述方法还包括:
分别对所述热取样水和所述冷取样水的电导率、总铁、浊度以及化学需氧量进行监测;
根据所述冷取样水的电导率、总铁、浊度以及化学需氧量信号控制是否对所述冷水区的冷水排污;
根据所述热取样水的电导率、总铁、浊度以及化学需氧量信号控制是否对所述热水区的热水排污。
8.根据权利要求7所述的方法,其特征在于,所述方法还包括:
通过第一液位传感器获取所述热水区的液位信号,通过第二液位传感器获取所述冷水区的液位信号;
根据所述热水区的液位信号控制是否向所述热水区补水,根据所述冷水区的液位信号控制是否向所述冷水区补水。
9.根据权利要求6所述的方法,其特征在于,热取样管路上设置第一微型冷却器,冷取样管路上设置第二微型冷却器;所述方法还包括:
利用第一温度探测器对进入所述第一微型冷却器前的水温进行监测,利用第二温度探测器对通过第一微型冷却器后的水温进行监测;
根据所述第一温度探测器监测的水温和所述第二温度探测器监测的水温控制所述第一微型冷却器的启停;
利用第三温度探测器对进入所述第二微型冷却器前的水温进行监测,利用第四温度探测器对通过第二微型冷却器后的水温进行监测;
根据所述第三温度探测器监测的水温和所述第四温度探测器监测的水温控制所述第二微型冷却器的启停。
10.根据权利要求6所述的方法,其特征在于,所述方法还包括:
通过数字化模块对所述杀菌釜水处理自动控制过程中的数据进行记录并存储到云端。
CN202111637815.7A 2021-12-29 2021-12-29 一种热力杀菌釜水处理自动控制系统及方法 Active CN114275863B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111637815.7A CN114275863B (zh) 2021-12-29 2021-12-29 一种热力杀菌釜水处理自动控制系统及方法
US18/083,147 US11760660B2 (en) 2021-12-29 2022-12-16 Automatic control system and method for water treatment of thermal sterilization kettle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111637815.7A CN114275863B (zh) 2021-12-29 2021-12-29 一种热力杀菌釜水处理自动控制系统及方法

Publications (2)

Publication Number Publication Date
CN114275863A true CN114275863A (zh) 2022-04-05
CN114275863B CN114275863B (zh) 2022-11-08

Family

ID=80878144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111637815.7A Active CN114275863B (zh) 2021-12-29 2021-12-29 一种热力杀菌釜水处理自动控制系统及方法

Country Status (2)

Country Link
US (1) US11760660B2 (zh)
CN (1) CN114275863B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204653585U (zh) * 2015-03-24 2015-09-23 内蒙古伊利实业集团股份有限公司 淋水杀菌机
CN105988378A (zh) * 2015-01-30 2016-10-05 上海洗霸科技股份有限公司 循环冷却水控制系统及加药控制装置和方法
CN208869386U (zh) * 2018-09-13 2019-05-17 上海济环水处理科技有限公司 一种用于处理循环冷却水的自动化加药系统
CN112279326A (zh) * 2020-11-09 2021-01-29 洛阳强龙实业有限公司 一种在线水质监测及加药控制系统
CN214664778U (zh) * 2021-04-06 2021-11-09 张寒晶 一种用于中央冷热水的控制系统
CN214896353U (zh) * 2021-06-03 2021-11-26 河南龙之润科技有限公司 一种循环冷却水智能一体化管控系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221552A1 (en) * 2004-05-18 2007-09-27 Biomass Processing Technology, Inc. System for Processing a Biomaterial Waste Stream
WO2007051235A1 (en) * 2005-11-02 2007-05-10 Packaged Environmental Solutions Pty Ltd Disinfection system improvements
KR20150027149A (ko) * 2012-05-29 2015-03-11 제이엠와이 인베스트 에이피에스 액체 처리 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988378A (zh) * 2015-01-30 2016-10-05 上海洗霸科技股份有限公司 循环冷却水控制系统及加药控制装置和方法
CN204653585U (zh) * 2015-03-24 2015-09-23 内蒙古伊利实业集团股份有限公司 淋水杀菌机
CN208869386U (zh) * 2018-09-13 2019-05-17 上海济环水处理科技有限公司 一种用于处理循环冷却水的自动化加药系统
CN112279326A (zh) * 2020-11-09 2021-01-29 洛阳强龙实业有限公司 一种在线水质监测及加药控制系统
CN214664778U (zh) * 2021-04-06 2021-11-09 张寒晶 一种用于中央冷热水的控制系统
CN214896353U (zh) * 2021-06-03 2021-11-26 河南龙之润科技有限公司 一种循环冷却水智能一体化管控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
漳州中罐协科技中心编著: "《食品热力杀菌理论与实践》", 31 March 2014, 中国轻工业出版社 *

Also Published As

Publication number Publication date
CN114275863B (zh) 2022-11-08
US20230202868A1 (en) 2023-06-29
US11760660B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
US4237090A (en) Method for inhibiting corrosion in aqueous systems
Albanese et al. Energy efficient inactivation of S accharomyces cerevisiae via controlled hydrodynamic cavitation
Linhardt Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms
MXPA02012886A (es) Control de la corrosion utilizando un donador de peroxido de hidrogeno.
EP0652305A1 (en) Closed cooling system corrosion inhibitors
CN114275863B (zh) 一种热力杀菌釜水处理自动控制系统及方法
JP5807697B1 (ja) 密閉冷却水系における腐食抑制方法及び密閉冷却水系用腐食抑制剤並びに腐食抑制システム
US9115432B2 (en) Methods and compositions for inhibiting metal corrosion in heated aqueous solutions
CN103695929B (zh) 一种用于封闭水系统抑制金属腐蚀的有机缓蚀剂
CN101709473B (zh) 高温水溶性缓蚀剂
Oreko et al. Assessment of Inhibitive Drugs for Corrosion Inhibition Applications in Petrochemical Plants–A Review
CN108148951A (zh) 不锈钢热处理工艺
CN113416522A (zh) 低电导率新能源动力电池防冻冷却液及制备方法
CN113667986A (zh) 一种脱酯酸洗钝化剂及其应用
Dewettinck et al. Development of a rapid pH-based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater
JP2845670B2 (ja) 金属防食剤
Mazelam et al. Influence of hydrochloric acid against food-grade steel SUS304 and its corrosion impact
CN108033576B (zh) 一种防止铝罐蒸煮后腐蚀的方法
Mykhaylovin et al. Influence of C18 long chain fatty acids on butyrate degradation by a mixed culture
CN215110471U (zh) 一种用于搪瓷类制品的防腐蚀密封套
CN106757048A (zh) 一种热网防腐蚀缓蚀剂及制备和使用方法
CN115536160A (zh) 一种食品级锅炉节能增效剂及其制备方法
Negandhi | Food and Beverage
JP2845671B2 (ja) 金属防食剤
CN113493916A (zh) 一种水冷负载清洗方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant