CN114249295B - 一种通过共价键或配位键合成的一维有机纳米管及方法 - Google Patents

一种通过共价键或配位键合成的一维有机纳米管及方法 Download PDF

Info

Publication number
CN114249295B
CN114249295B CN202011022155.7A CN202011022155A CN114249295B CN 114249295 B CN114249295 B CN 114249295B CN 202011022155 A CN202011022155 A CN 202011022155A CN 114249295 B CN114249295 B CN 114249295B
Authority
CN
China
Prior art keywords
compound
bond
groups
dimensional organic
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011022155.7A
Other languages
English (en)
Other versions
CN114249295A (zh
Inventor
丛欢
毛亮亮
吴骊珠
佟振合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202011022155.7A priority Critical patent/CN114249295B/zh
Publication of CN114249295A publication Critical patent/CN114249295A/zh
Application granted granted Critical
Publication of CN114249295B publication Critical patent/CN114249295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种通过共价键或配位键合成的一维有机纳米管及方法。所述一维有机纳米管通过以下结构的芴‑氮杂[16]环番大环分子构筑基元通过共价键或配位键组装:
Figure DDA0002700973210000011
其中,R1为C1‑C30的烷基、苯基、取代苯基;Y代表连接基团;Z代表组装成键基团,相邻构筑基元所带有的Z基团不同,且相互之间形成共价键或配位键连接,相邻构筑基元所带有的Z基团成对的为胺基‑醛基、肼‑羧基、胺基‑羧基、邻二酚‑硼酸或硼酸酯、吡啶或多联吡啶‑Pt(II)或Pd(II)基团;所述共价键包括亚胺键、酰胺键、酰肼、酯、硼酸酯;配位键包括吡啶‑铂(II)/钯(II)、多联吡啶‑铂(II)/钯(II)。

Description

一种通过共价键或配位键合成的一维有机纳米管及方法
技术领域
本发明涉及材料化学技术领域。更具体地,涉及一种通过共价键或配位键合成的一维有机纳米管及方法。
背景技术
一维中空纳米结构广泛的存在于自然界中,自1991年Ijima发现碳纳米管以来,有关碳纳米管的研究一直是纳米技术领域的研究热点。经过近三十年的研究,碳纳米管已经在光电、催化、传感、输运、分离及富集等众多领域展现了越来越广泛的应用前景,这使得在过去的几十年里这种具有一维限域空间和各向异性的纳米材料得到了迅速的发展。然而,传统的无机碳纳米管材料仍然存在难以精确制备、衍生化困难等局限,这给发展新型的一维中空纳米结构带来了机遇与挑战。
相比于无机纳米管,以有机合成的手段构筑一维中空纳米结构更具灵活性,其原料选择上有更广阔的空间,结构上更易于修饰,是近年来研究较为火热的一个领域。当前,合成有机纳米管的方法主要有三种:其一,通过高分子或者寡聚物的折叠形成中空通道;其二,通过大环分子的堆积形成管状物;其三,通过小分子的定向排列形成一维纳米通道。其中,大环分子的堆叠由于具有固有的孔道,其管道的孔径可以根据大环的尺寸进行调节,是当前研究最广泛的构筑有机纳米管的手段。但是,无论上述的哪种方法,除了少数例子外,当前报道的合成有机纳米管的方法大多限于π-π堆积、氢键、静电作用等一系列非共价的弱相互作用,这给有机纳米管的构筑带来了新的局限性:其一,尺寸不可控,无法得到结构精确、尺寸单一的纳米管;其二,材料稳定性差,以非共价键连接的有机纳米管易于受环境的干扰而破坏结构。
现有合成纳米管过程中存在以下问题:1)无机碳纳米管难以精确制备、衍生化困难;2)当前通过非共价作用合成的有机纳米管尺寸难以控制、稳定性较差。因此,开发构筑有机纳米管的新策略仍是当前有机合成及纳米技术领域亟需解决的问题。
发明内容
本发明针对现有合成纳米管过程中存在的以上问题,提供一种通过共价键或配位键合成的一维有机纳米管及方法。该合成方法以共价键或配位键为驱动力,合成出一种新的结构精确、尺寸单一、稳定性好、易于衍生化的新型有机纳米管材料。
为实现以上目的,本发明采用下述技术方案:
第一方面,本发明提供一种通过共价键或配位键合成的一维有机纳米管,其通过以下结构的芴-氮杂[16]环番大环分子构筑基元通过共价键或配位键组装;
Figure BDA0002700973190000021
其中,R1为C1-C30的烷基、苯基、取代苯基,所述取代苯基的取代基为卤素、烷基或烷氧基中的一种或两种以上;
Y代表连接基团,为苯基、炔基、烯基或烷基等,其中烯基、烷基可分别由相应的炔基通过部分或全部氢化得到;
Z代表组装成键基团,相邻构筑基元所带有的Z基团不同,且相互之间形成共价键或配位键连接,相邻构筑基元所带有的Z基团成对的为胺基-醛基、肼-羧基、胺基-羧基、邻二酚-硼酸或硼酸酯、吡啶或多联吡啶-Pt(II)或Pd(II)基团;
所述共价键包括但不限于亚胺键、酰胺键、酰肼、酯、硼酸酯等;配位键包括但不限于吡啶-铂(II)/钯(II)、多联吡啶-铂(II)/钯(II)、及其它常见的配体金属组合;例如以下列出可能的共价键和配位键。
Figure BDA0002700973190000031
在本发明中,优选的,所述一维有机纳米管的组装层数为3层及以上。
在本发明中,优选的,R1
Figure BDA0002700973190000032
n-C8H17
在本发明中,优选的,Y为苯基或炔基;烯基、烷基可分别由相应的炔基通过部分或全部氢化得到。
在本发明中,优选的,所述相邻构筑基元所带有的Z基团成对的为吡啶或多联吡啶-Pt(II)或Pd(II)。
第二方面,本发明提供一种通过共价键或配位键合成一维有机纳米管的方法,该方法包括以下步骤:
S100、合成以下结构式的芴-氮杂[16]环番大环分子A;
Figure BDA0002700973190000041
其中,R1为C1-C30的烷基、苯基、取代苯基,所述取代苯基的取代基为卤素、烷基或烷氧基中的一种或两种以上;
LG为卤素原子、三氟甲磺酰基(OTf)或对甲苯磺酰基(OTs)等离去基团;
S200、所述芴-氮杂[16]环番大环分子A通过反应在芴的2,7位引入组装成键基团Z,得到以下结构式的构筑基元;
Figure BDA0002700973190000042
Y代表连接基团,为苯基、炔基、烯基或烷基等,其中烯基、烷基可分别由相应的炔基通过部分或全部氢化得到;
Z代表组装成键基团,为胺基、醛基、肼、羧酸、邻二酚、硼酸及硼酸酯、吡啶、多联吡啶、Pt(II)或Pd(II)基团;
S300、带有不同组装成键基团Z的构筑基元混合,相互之间形成共价键或配位键连接,组装得到所述一维有机纳米管;所述带有不同组装成键基团Z的构筑基元中的Z基团成对的为胺基-醛基、肼-羧基、胺基-羧基、邻二酚-硼酸或硼酸酯、吡啶或多联吡啶-Pt(II)或Pd(II)基团。
在本发明中,优选的,S100包括:
S101、以4-溴二苯胺1为原料,与R1所对应的卤代物R1-X进行偶联反应,得到化合物2;
Figure BDA0002700973190000051
S102、化合物2在正丁基锂作用下生成芳基锂试剂,其与2,7-二LG-9-芴酮发生亲核加成反应得到合环前体化合物3;
Figure BDA0002700973190000052
S103、化合物3在质子酸或Lewis酸的催化下,可以发生分子间的Friedel-Crafts反应,生成三聚的芴-氮杂[16]环番4,即所述芴-氮杂[16]环番大环分子A;
Figure BDA0002700973190000053
在本发明中,优选的,S200包括:
S201、芴-氮杂[16]环番4经Sonogashira偶联及TBAF去保护得到芴2,7位端炔取代的大环化合物5;
Figure BDA0002700973190000054
S202、化合物5与Z1所对应的原料进行反应得到大环化合物6;
Figure BDA0002700973190000061
S203、化合物5与Z2所对应的的原料进行反应得到大环化合物7;所述Z1与Z2独立地选自胺基、醛基、肼、羧酸、邻二酚、硼酸及硼酸酯、吡啶、多联吡啶、Pt(II)或Pd(II)等基团,且相互之间通过S300形成共价键或配位键;
Figure BDA0002700973190000062
S300、带有不同组装成键基团Z的构筑基元混合,相互之间形成共价键或配位键连接,组装得到所述一维有机纳米管。
在本发明中,优选的,Z1为吡啶,所述Z1所对应的原料为对溴吡啶。
Z2为Pt(II)基团,所述Z2所对应的原料为反式-二碘二(三丁基膦)铂。
在本发明中,优选的,S300包括,将大环化合物7与硝酸银经离子置换后,与大环化合物6在有机溶剂中混合进行反应,相互之间形成共价键或配位键连接,组装得到所述一维有机纳米管。
本发明在此以吡啶-铂(II)配位的三层管及一维无限延伸纳米管为例,描述上述技术方案。
S101、以溴代二苯胺1为原料,经取代反应或Ullmann偶联、Buchwald–Hartwig偶联等反应可以得到烷基或芳基取代的化合物2;
Figure BDA0002700973190000071
S102、化合物2在锂试剂作用下生成芳基锂试剂,其与芴酮类化合物发生亲核加成反应可以得到合环前体化合物3;
Figure BDA0002700973190000072
S103、化合物3在质子酸或Lewis酸的催化下,可以发生分子间的Friedel-Crafts反应,生成三聚的芴-氮杂[16]环番4;
Figure BDA0002700973190000073
S201、芴-氮杂[16]环番4经Sonogashira偶联及TBAF去保护可以得到芴2,7位端炔取代的大环化合物5;
Figure BDA0002700973190000074
S202、化合物5与对溴吡啶经Sonogashira偶联可以得到配体大环6;
Figure BDA0002700973190000081
S203、化合物5与铂(II)发生置换反应可以得到含有6个铂(II)的大环化合物7;
Figure BDA0002700973190000082
S301、三层有机纳米管的合成
以吡啶大环6封端为例,为控制纳米管的尺寸,避免得到更大尺寸的有机纳米管,采取将原料投料比控制为吡啶大环6过量2倍以上,将Pt(II)大环经离子置换后以滴加的方式加入吡啶大环中的投料方式,实验表明,该步反应几乎能以定量的收率得到最终的三层有机纳米管,相关产物经过1H NMR,31P NMR,HRMS-MS及红外光谱表征。
Figure BDA0002700973190000091
S302、一维无限延伸有机纳米管的合成
为了得到更长的纳米管,需对原料投料比进行调整,实验表明,当Pt(II)大环与吡啶大环的比例为1:1时,可以得到一种黄色凝胶。透射电子显微镜(TEM)下能观测到直径2-3nm的线状物,表明得到了一维无限延伸有机纳米管。
Figure BDA0002700973190000101
相比于现有的合成有机纳米管的方法,本发明有如下优点:
1)合成路线短,易于实现大规模制备。
2)可以根据投料比对纳米管尺寸进行精确调控。
3)本发明方法得到的纳米管易于修饰,可以根据需求修饰合适的官能团。
4)本发明策略以共价键为连接单元,所得纳米管的稳定性较高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出实施例3的2)中自组装产物的透射电子显微镜图片(500nm)。
图2示出实施例3的2)中自组装产物的透射电子显微镜图片(50nm)。
具体实施方式
为使本发明的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
需要说明的是,本发明所有数值指定(例如温度、时间、浓度及重量等,包括其中每一者的范围)通常可是适当以0.1或1.0的增量改变(+)或(-)的近似值。所有数值指定均可理解为前面有术语“约”。
实施例1
本实施例制备化合物6-1
S101:
Figure BDA0002700973190000111
在空气中,向40mL反应瓶中加入1(500mg,2.0mmol,1.0equiv),10(1.17g,2.0mmol,1.0equiv),及CuI(75mg,0.40mmol,20mol%),转移到手套箱中,加入t-BuONa(500mg,5.2mmol,2.6equiv)和无水THF(5mL),密封后移出手套箱,70℃下搅拌3天。反应液冷却至室温后经硅藻土滤去不溶固体,旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=3:1)得到化合物2-1(1.17g,83%yield)无色油状液体。
1H NMR(400MHz,CDCl3)δ7.30(d,J=8.4Hz,2H),7.26–7.19(m,2H),7.05(d,J=7.6Hz,2H),7.00(dd,J=7.0Hz,J=7.0Hz,1H),6.92(d,J=8.5Hz,2H),6.26(s,2H),3.94(t,J=6.3Hz,2H),3.79(t,J=6.0Hz,4H),1.82–1.65(m,6H),1.50–1.23(m,30H),0.97–0.81(m,9H);
13C NMR(101MHz,CDCl3)δ153.8,147.5,147.2,142.6,135.3,132.1,129.3,124.6,123.9,122.9,114.3,104.7,73.7,69.3,32.1,32.0,30.5,29.7,29.53,29.47,29.41,26.3,26.2,22.9,22.8,14.2。
IR(film):2927,2856,1588,1488,1308,1238,1115,822,754,701,510cm-1
HRMS(MALDI):[M]+calcd for C42H62BrNO3 707.3908,found 707.3885。
S102:
Figure BDA0002700973190000112
在充满N2的手套箱中,向250mL茄形瓶中加入2-1(1.70g,2.40mmol,1.02equiv)及无水THF(30mL),密封后移出手套箱。-78℃下向其中滴加n-BuLi(2.5M in hexane,1.00mL,2.50mmol,1.06equiv),-78℃下搅拌1.5h。-78℃下将2,7-二溴-9-芴酮(796mg,2.36mmol,1.00equiv)溶于20mL THF加入上述反应液中,移去冷浴,自然升至室温后继续搅拌12h。反应结束后加入饱和氯化铵淬灭,加入乙酸乙酯萃取,饱和氯化钠洗涤,无水硫酸钠干燥。旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=1:2)得到化合物3-1(1.79g,78%yield)无色油状液体。
1H NMR(400MHz,CDCl3)δ7.58–7.43(m,6H),7.22(t,J=7.6Hz,2H),7.16(d,J=8.4Hz,2H),7.07(d,J=7.8Hz,2H),6.97(t,J=6.8,1H),6.94(d,J=8.8Hz,2H),6.28(s,2H),3.93(t,J=6.3Hz,2H),3.80(t,J=6.0Hz,4H),2.43(s,1H),1.81–1.62(m,6H),1.51–1.36(m,6H),1.36–1.18(m,24H),0.95–0.80(m,9H);
13C NMR(101MHz,CDCl3)δ153.6,152.2,147.6,147.5,142.7,137.5,135.1,134.6,132.3,129.2,128.4,126.1,123.9,122.6,122.5,122.3,121.6,105.1,83.3,73.6,69.2,32.0,31.9,30.4,29.7,29.5,29.42,29.37,26.2,26.1,22.81,22.78,14.2;
IR(film):3481,3065,2925,2855,1590,1499,1307,1241,1115,1041,877,807cm-1
HRMS(MALDI):[M]+calcd for C55H69Br2NO4 965.3588,found 965.3628.
S103:
Figure BDA0002700973190000121
在空气中,向干燥的1000mL茄形瓶中加入3-1(7.03g,7.26mmol,1.0equiv)及干燥的CH2Cl2(700mL),加入甲基磺酸(20μL,0.31mmol,4mol%),25℃搅拌3h,反应结束后加入三乙胺淬灭,旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=3:2)得到化合物4-1(2.35g,34%yield)白色固体。
1H NMR(400MHz,CDCl3)δ7.57(d,J=8.1Hz,6H),7.54(s,6H),7.48(d,J=8.1Hz,6H),7.07(d,J=8.6Hz,12H),6.97(d,J=8.6Hz,12H),6.21(s,6H),3.82(t,J=6.6Hz,6H),3.71(t,J=6.3Hz,12H),1.70–1.58(m,18H),1.46–1.15(m,90H),0.92–0.80(m,27H);
13C NMR(101MHz,CDCl3)δ153.9,153.7,146.9,142.1,138.1,137.8,135.7,130.9,129.4,129.0,122.7,121.8,121.7,105.9,73.6,69.2,64.8,32.0,31.9,30.4,29.7,29.5,29.4,29.3,26.2,26.1,22.8,14.25,14.23;
IR(film):3033,2925,2854,1591,1502,1455,1296,1240,1112,1062,809,677cm-1
HRMS(MALDI):[M]+calcd for C165H201Br6N3O9 2842.0458,found 2842.0479.
S201:
Figure BDA0002700973190000131
在充满N2的手套箱中,向40mL反应瓶中加入4-1(568mg,0.20mmol,1.0equiv),三乙基乙炔基硅(420mg,3.0mmol,15equiv),CuI(3.8mg,0.020mmol,10mol%),Pd(PPh3)4(23mg,0.020mmol,10mol%),无水THF(9mL),and二乙胺(1mL),密封后移出手套箱,50℃下搅拌15h。反应结束后冷却至室温,旋蒸除去溶剂,加入干燥的THF(10mL),25℃下向其中加入TBAF(2.0mL,1.0M,2.0mmol,10equiv),室温搅拌2h,旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=1:1)得到化合物5-1(465mg,90%yield)白色固体。
1H NMR(400MHz,CDCl3)δ7.68(d,J=7.6Hz,6H),7.56(s,6H),7.50(d,J=7.6Hz,6H),7.08(d,J=7.8Hz,12H),6.95(d,J=7.8Hz,12H),6.18(s,6H),3.81(t,J=6.1Hz,6H),3.69(t,J=5.5Hz,12H),3.10(s,6H),1.71–1.57(m,18H),1.43–1.20(m,90H),0.94–0.79(m,27H);
13C NMR(101MHz,CDCl3)δ153.6,152.5,146.8,142.2,140.0,138.1,135.5,131.9,130.0,129.0,122.7,121.6,120.5,105.7,84.3,77.8,73.6,69.2,64.6,32.0,31.9,30.4,29.7,29.5,29.4,29.3,26.2,26.1,22.8,14.25,14.22;
IR(film):3306,3034,2926,2855,2106,1591,1503,1463,1238,1113,823,647cm-1
HRMS(MALDI):[M]+calcd for C177H207N3O9 2518.5827,found 2518.5734.
S202:
Figure BDA0002700973190000132
在充满N2的手套箱中,向40mL反应瓶中加入5-1(300mg,0.12mmol,1.00equiv),Pd(PPh3)4(30mg,0.026mmol,22mol%),CuI(6.0mg,0.032mmol,26mol%),K2CO3(300mg,2.2mmol,18equiv),4-溴吡啶(340mg,2.2mmol,18equiv),无水THF 10mL),and二乙胺(1mL),密封后移出手套箱,50℃下搅拌15h。反应结束后冷却至室温,经硅藻土滤去不溶物,旋蒸除去溶剂,CH2Cl2/MeOH重结晶得到化合物6(319mg,89%yield)黄色固体。
1H NMR(400MHz,CDCl3)δ8.70–8.50(s,12H),7.77(d,J=7.8Hz,6H),7.61(s,6H),7.58(d,J=7.8Hz,6H),7.35(d,J=4.8Hz,12H),7.14(d,J=8.5Hz,12H),7.00(d,J=8.5Hz,12H),6.18(s,6H),3.79(t,J=6.5Hz,6H),3.66(t,J=6.2Hz,12H),1.69–1.61(m,6H),1.61–1.49(m,12H),1.42–1.33(m,6H),1.31–1.11(m,84H),0.84(t,J=6.7Hz,27H);
13C NMR(101MHz,CDCl3)δ153.7,152.8,150.0,146.8,142.0,140.3,138.0,135.8,131.8,131.3,129.5,129.0,125.5,122.7,121.8,120.9,106.0,94.6,87.6,73.6,69.3,64.7,32.0,31.9,30.4,29.6,29.43,29.41,29.35,29.26,26.2,26.1,22.8,22.7,14.19,14.17;
IR(film):3033,2925,2854,2216,1589,1501,1287,1237,1111,818,539cm-1
HRMS(MALDI):[M]+calcd for C207H225N9O9 2980.7420,found 2980.7405.
实施例2
本实施例制备化合物7-1
S101:
Figure BDA0002700973190000141
空气中,向100mL中加入NaH(60%in mineral oil,400mg,10mmol,2.0equiv)及无水THF(10mL),0℃下将1(1.25g,5.0mmol,1.0equiv)溶于10mL THF加入该悬浮液中,0℃搅拌1h,随后将1-溴辛烷(1.93g,10mmol,2.0equiv)加入反应体系中,80℃下搅拌10h。反应结束后加水淬灭,二氯甲烷萃取,饱和氯化钠洗涤,无水硫酸钠干燥。旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=1:2)得到化合物S4(1.70g,94%yield)无色油状液体。
1H NMR(400MHz,CDCl3)δ7.38–7.27(m,4H),7.06–6.98(m,3H),6.78(d,J=7.2Hz,2H),3.63(t,J=6.6Hz,2H),1.69–1.58(m,2H),1.35–1.21(m,10H),0.93–0.82(m,3H);
13C NMR(101MHz,CDCl3)δ147.7,147.5,132.1,129.6,122.7,122.6,121.0,112.4,52.6,31.9,29.5,29.4,27.5,27.2,22.8,14.2;
IR(film):3037,2927,2855,1583,1491,1364,1245,1182,1074,813,698,509cm-1
HRMS(ESI):[M+H]+calcd for C20H27BrN 360.1321,found 360.1315.
S102:
Figure BDA0002700973190000151
在充满N2的手套箱中,向250mL茄形瓶中加入2-2(1.37g,3.80mmol,1.0equiv)及无水THF(50mL),密封后移出手套箱。-78℃下向其中滴加n-BuLi(1.6M,2.4mL,3.84mmol,1.01equiv),-78℃下搅拌1.5h。-78℃下将2,7-二溴-9-芴酮(1.50g,4.44mmol,1.2equiv)溶于20mL THF加入上述反应液中,移去冷浴,自然升至室温后继续搅拌12h。反应结束后加入饱和氯化铵淬灭,加入乙酸乙酯萃取,饱和氯化钠洗涤,无水硫酸钠干燥。旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=2:1)得到化合物S5(1.90g,81%yield)无色油状液体。
1H NMR(400MHz,CDCl3)δ7.53–7.45(m,6H),7.32–7.26(m,2H),7.17(d,J=8.5Hz,2H),7.05(d,J=8.1Hz,2H),7.00(t,J=7.3Hz,1H),6.81(d,J=8.5Hz,2H),3.64(t,J=7.6Hz,2H),2.42(s,1H),1.69–1.58(m,2H),1.32–1.22(m,10H),0.87(t,J=6.6Hz,3H);
13C NMR(101MHz,CDCl3)δ152.3,148.1,147.7,137.6,132.6,132.4,129.5,128.5,126.3,123.2,122.59,122.57,121.7,118.6,83.4,52.5,31.9,29.5,29.4,27.6,27.2,22.8,14.2;
IR(film):3424,3056,2925,2853,1593,1509,1449,1363,1247,1166,1061,811cm1
HRMS(ESI):[M]+calcd for C33H33Br2NO 617.0923,found 617.0902.
S103:
Figure BDA0002700973190000152
在空气中,向干燥的250mL茄形瓶中加入S5(1.50g,2.42mmol,1.0equiv)及干燥的CH2Cl2(150mL),加入甲基磺酸(10μL,0.15mmol,6mol%),25℃搅拌3h,反应结束后加入三乙胺淬灭,旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=5:1)得到化合物3(410mg,28%yield)白色固体。
13C NMR(101MHz,CDCl3)δ153.9,147.0,138.1,137.2,130.9,129.5,129.1,122.0,121.6,120.9,64.7,52.4,31.9,29.44,29.40,27.7,27.1,22.7,14.2;
IR(film):3033,2924,2852,1601,1506,1453,1364,1248,1184,1062,808,676cm1
HRMS(ESI):[M+H]+calcd for C99H94Br6N3 1798.2542,found 1798.2540.
S201:
Figure BDA0002700973190000161
在充满N2的手套箱中,向40mL反应瓶中加入3(410mg,0.23mmol,1.0equiv),三乙基乙炔基硅(385mg,2.8mmol,12equiv),CuI(4mg,0.02mmol,10mol%),Pd(PPh3)4(27mg,0.010mmol,10mol%),无水THF(9.0mL),二乙胺(1.0mL),密封后移出手套箱,50℃下搅拌15h。反应结束后冷却至室温,旋蒸除去溶剂,加入干燥的THF(10mL),25℃下向其中加入TBAF(2.3mL,1.0M,2.3mmol,10equiv),室温搅拌2h,旋蒸除去溶剂,柱层析(石油醚:二氯甲烷=3:1)得到化合物5-2(297mg,88%yield)白色固体。
1H NMR(400MHz,CDCl3)δ7.70(d,J=7.0Hz,6H),7.58(s,6H),7.50(d,J=7.4Hz,6H),7.09(d,J=7.2Hz,12H),6.82(d,J=7.3Hz,12H),3.48(t,J=6.8Hz,6H),3.10(s,6H),1.64–1.53(m,6H),1.26–1.13(m,30H),0.81(t,J=5.5Hz,9H);
13C NMR(101MHz,CDCl3)δ152.5,146.9,140.0,137.4,131.8,130.1,129.2,121.6,120.8,120.5,84.4,77.8,64.5,52.4,31.9,29.44,29.40,27.7,27.1,22.7,14.2;
IR(film):3289,3034,2924,2850,2106,1611,1508,1462,1365,1258,825cm-1
HRMS(MALDI):[M]+calcd for C111H99N3 1473.7834,found 1473.7809.
S202:
Figure BDA0002700973190000162
在充满N2的手套箱中,向40mL反应瓶中加入5-2(147mg,0.10mmol,1.0equiv),反式-二碘二(三丁基膦)铂(1.50g,1.76mmol,18equiv),CuI(6.0mg,0.032mmol,32mol%),甲苯(10mL),及三乙胺(5mL),密封后移出手套箱,室温搅拌15h,经硅藻土滤去不溶物,旋蒸除去溶剂,所得固体用乙醇重结晶得7-1(515mg,89%)黄色固体。
1H NMR(400MHz,CDCl3)δ7.55(d,J=7.6Hz,6H),7.27(d,J=7.6Hz,6H),7.22(s,6H),7.08(d,J=7.7Hz,12H),6.85(d,J=7.8Hz,12H),3.51–3.39(m,6H),2.31–2.05(m,72H),1.58–1.46(m,78H),1.45–1.32(m,72H),1.24–1.12(m,30H),0.98–0.73(m,117H);
13C NMR(101MHz,CDCl3)δ152.3,146.8,138.0,137.4,130.6,129.0,127.6,127.4,120.4,119.3,101.1,90.8,64.5,52.7,31.8,29.4,29.3,27.3,27.1,26.4,24.3,24.2,22.6,14.1,13.9;
31P NMR(162MHz,CDCl3)δ2.03(s,195Pt satellites,JPt-P=658Hz);
IR(film):3031,2956,2926,2859,2110,1601,1506,1460,1409,1376,1090,903,819,785,721cm-1
HRMS(ESI):[M+2H]2+calcd for m/z 1/2(C255H419I6N3P12Pt6)2913.5938,found2913.5883.
实施例3
1)三层有机纳米管的合成:
Figure BDA0002700973190000181
空气中,将7-1(17.5mg,0.0030mmol,1.0equiv)溶解于CH2Cl2(7mL)中,向其中加入硝酸银(5.3mg,0.031mmol,10equiv),室温避光搅拌15h,反应结束后旋蒸除去大部分溶剂至剩余约2mL,加入2mL正己烷,用微孔滤膜滤去固体,所得滤液旋干得黄色固体8-1,平行投料两个,合并后该粗产物不经进一步纯化即可投入下一步反应。空气中,向化合物6-1(107mg,0.036mmol,6.0equiv)的5mL溶液中逐滴加入粗产物8-1的CH2Cl2(5mL)溶液,室温下搅拌15h,反应结束后,旋蒸除去溶剂,所得固体用二氯甲烷及石油醚重结晶得黄色固体9(60mg,87%)。
1H NMR(400MHz,CD2Cl2)δ8.77–8.62(m,12H),8.11–6.66(m,162H),6.22–6.08(m,12H),3.79–3.70(m,12H),3.67–3.47(m,30H),1.86–1.67(m,72H),1.62–1.54(m,114H),1.44–1.32(m,84H),1.30–1.07(m,198H),0.95–0.74(m,171H);
31P NMR(162MHz,CD2Cl2)δ9.99(s,195Pt satellites,JPt-P=2321Hz);
IR(film):3037,2929,2853,2219,2116,1590,1502,1465,1386,1273,1106,822cm-1
HRMS(ESI):[M-5NO3]5+calcd for m/z 1/5(C669H867N22O21P12Pt6)2217.4440,found2217.4538.
2)一维无限延伸有机纳米管的合成:
空气中,将7-1(17.5mg,0.0030mmol,1.0equiv)溶解于CH2Cl2(7mL)中,向其中加入硝酸银(5.3mg,0.031mmol,10equiv),室温避光搅拌15h,反应结束后旋蒸除去大部分溶剂至剩余约2mL,加入2mL正己烷,用微孔滤膜滤去固体,所得滤液旋干得黄色固体8-1,该粗产物不经进一步纯化即可投入下一步反应。空气中,向化合物6-1(9.0mg,0.003mmol,1.0equiv)的5mL溶液中逐滴加入粗产物8-1的CH2Cl2(5mL)溶液,室温下搅拌15h,反应结束后,向其中加入10mL无水乙醚得黄绿色固体23.1mg。利用透射电子显微镜(TEM)对其进行了形貌的表征,如图1和图2所示,初步结果显示,上述结构自组装形成了大量的一维纤维状物质,其直径约为3nm,与大环的直径(~2.5nm)相当,推测其为大环“自下而上”自组装形成了一维无限有机纳米管。
Figure BDA0002700973190000191
按照上述相同的合成策略,制备了多种不同结构的有机纳米管,调控投料比,可以控制纳米管的长度为3层至无限延伸。其中,R1取代基为C1-30的烷基、苯基、取代苯基(取代基可以是卤素、烷基、烷氧基)等,只需要相应替换实施例1中的原料10为R1对应的卤代物即可,此类原料均可商业购买。
根据连接成键基团Z的不同,将两种构筑基元分别表示为化合物6及7,根据最终所得的纳米管结构进行分类,可以将Z基团成对的表示为:醛-胺、羧酸-胺、羧酸-肼、羧酸-酯、硼酸-邻二酚、吡啶-铂(II)/钯(II)、多联吡啶-铂(II)/钯(II)、及其它常见的配体金属组合等,具体组合方式及结构如下表所示。
表1:共价键及配位键合成有机纳米管的组合方式实施例
Figure BDA0002700973190000201
Figure BDA0002700973190000211
Figure BDA0002700973190000221
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种通过共价键或配位键合成的一维有机纳米管,其特征在于,所述一维有机纳米管通过以下结构的芴-氮杂[16]环番大环分子构筑基元通过共价键或配位键组装;
Figure FDA0002700973180000011
其中,R1为C1-C30的烷基、苯基、取代苯基,所述取代苯基的取代基为卤素、烷基或烷氧基中的一种或两种以上;
Y代表连接基团,为苯基、炔基、烯基或烷基;
Z代表组装成键基团,相邻构筑基元所带有的Z基团不同,且相互之间形成共价键或配位键连接,相邻构筑基元所带有的Z基团成对的为胺基-醛基、肼-羧基、胺基-羧基、邻二酚-硼酸或硼酸酯、吡啶或多联吡啶-Pt(II)或Pd(II)基团;
所述共价键包括亚胺键、酰胺键、酰肼、酯、硼酸酯;配位键包括吡啶-铂(II)/钯(II)、多联吡啶-铂(II)/钯(II)。
2.根据权利要求1所述的一维有机纳米管,其特征在于,所述一维有机纳米管的组装层数为3层及以上。
3.根据权利要求1所述的一维有机纳米管,其特征在于,R1
Figure FDA0002700973180000012
n-C8H17
4.根据权利要求1所述的一维有机纳米管,其特征在于,Y为苯基或炔基。
5.根据权利要求1所述的一维有机纳米管,其特征在于,所述相邻构筑基元所带有的Z基团成对的为吡啶或多联吡啶-Pt(II)或Pd(II)。
6.一种通过共价键或配位键合成权利要求1-5任一项所述一维有机纳米管的方法,其特征在于,该方法包括以下步骤:
S100、合成以下结构式的芴-氮杂[16]环番大环分子A;
Figure FDA0002700973180000021
其中,R1为C1-C30的烷基、苯基、取代苯基,所述取代苯基的取代基为卤素、烷基或烷氧基中的一种或两种以上;
LG为卤素原子、三氟甲磺酰基或对甲苯磺酰基;
S200、所述芴-氮杂[16]环番大环分子A通过反应在芴的2,7位引入组装成键基团Z,得到以下结构式的构筑基元;
Figure FDA0002700973180000022
Y代表连接基团,为苯基、炔基、烯基或烷基;
Z为胺基、醛基、肼、羧酸、邻二酚、硼酸及硼酸酯、吡啶、多联吡啶、Pt(II)或Pd(II)基团;
S300、带有不同组装成键基团Z的构筑基元混合,相互之间形成共价键或配位键连接,组装得到所述一维有机纳米管。
7.根据权利要求6所述的方法,其特征在于,S100包括:
S101、以4-溴二苯胺1为原料,与R1所对应的卤代物R1-X进行偶联反应,得到化合物2;
Figure FDA0002700973180000031
S102、化合物2在正丁基锂作用下生成芳基锂试剂,其与2,7-二LG-9-芴酮发生亲核加成反应得到合环前体化合物3;
Figure FDA0002700973180000032
S103、化合物3在质子酸或Lewis酸的催化下,可以发生分子间的Friedel-Crafts反应,生成三聚的芴-氮杂[16]环番4,即所述芴-氮杂[16]环番大环分子A;
Figure FDA0002700973180000033
8.根据权利要求7所述的方法,其特征在于,S200包括:
S201、芴-氮杂[16]环番4经Sonogashira偶联及TBAF去保护得到芴2,7位端炔取代的大环化合物5;
Figure FDA0002700973180000034
S202、化合物5与Z1所对应的原料进行反应得到大环化合物6;
Figure FDA0002700973180000041
S203、化合物5与Z2所对应的的原料进行反应得到大环化合物7;所述Z1与Z2独立地选自胺基、醛基、肼、羧酸、邻二酚、硼酸及硼酸酯、吡啶、多联吡啶、Pt(II)或Pd(II)基团,且相互之间通过S300形成共价键或配位键;
Figure FDA0002700973180000042
9.根据权利要求8所述的方法,其特征在于,Z1为吡啶,所述Z1所对应的原料为对溴吡啶;
Z2为Pt(II)基团,所述Z2所对应的原料为反式-二碘二(三丁基膦)铂。
10.根据权利要求9所述的方法,其特征在于,S300包括,将大环化合物7与硝酸银经离子置换后,与大环化合物6在有机溶剂中混合进行反应,相互之间形成共价键或配位键连接,组装得到所述一维有机纳米管。
CN202011022155.7A 2020-09-25 2020-09-25 一种通过共价键或配位键合成的一维有机纳米管及方法 Active CN114249295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011022155.7A CN114249295B (zh) 2020-09-25 2020-09-25 一种通过共价键或配位键合成的一维有机纳米管及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011022155.7A CN114249295B (zh) 2020-09-25 2020-09-25 一种通过共价键或配位键合成的一维有机纳米管及方法

Publications (2)

Publication Number Publication Date
CN114249295A CN114249295A (zh) 2022-03-29
CN114249295B true CN114249295B (zh) 2023-04-18

Family

ID=80790312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011022155.7A Active CN114249295B (zh) 2020-09-25 2020-09-25 一种通过共价键或配位键合成的一维有机纳米管及方法

Country Status (1)

Country Link
CN (1) CN114249295B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613875B1 (en) * 1993-10-14 2003-09-02 The Scripps Research Institute Cyclic peptide tube
CN102040193A (zh) * 2009-10-23 2011-05-04 中国科学院理化技术研究所 有机小分子纳米环及纳米管的制备方法
CN104558124A (zh) * 2015-01-28 2015-04-29 中国药科大学 含2-甲基-3氨基苯甲酸的新型环肽
JP2016056247A (ja) * 2014-09-05 2016-04-21 国立大学法人名古屋大学 らせん構造を有する化合物及びそれを用いた有機ナノチューブ
CN111655777A (zh) * 2017-11-15 2020-09-11 纽约州立大学研究基金会 通过芳香族低聚酰胺折叠体形成的跨膜孔及其用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153576A1 (ja) * 2011-05-09 2012-11-15 独立行政法人産業技術総合研究所 内表面疎水化有機ナノチューブ、および同ナノチューブを用いた薬剤カプセル化物
WO2016210141A1 (en) * 2015-06-23 2016-12-29 Ohio State Innovation Foundation Immobilization of biomolecules by self-assembled nanostructures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613875B1 (en) * 1993-10-14 2003-09-02 The Scripps Research Institute Cyclic peptide tube
CN102040193A (zh) * 2009-10-23 2011-05-04 中国科学院理化技术研究所 有机小分子纳米环及纳米管的制备方法
JP2016056247A (ja) * 2014-09-05 2016-04-21 国立大学法人名古屋大学 らせん構造を有する化合物及びそれを用いた有機ナノチューブ
CN104558124A (zh) * 2015-01-28 2015-04-29 中国药科大学 含2-甲基-3氨基苯甲酸的新型环肽
CN111655777A (zh) * 2017-11-15 2020-09-11 纽约州立大学研究基金会 通过芳香族低聚酰胺折叠体形成的跨膜孔及其用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Bing Gong等.Self-Assembling Organic Nanotubes with Precisely Defined, Sub-nanometer Pores Formation and Mass Transport Characteristics.Accouts of Chemical Research.2013,第46卷第2858页. *
Chih-Hui Lo等.Oriented association of multiwall carbon nanotubes upon efficient epitaxial organization of polyfluorene.Carbon.2015,第93卷342-352. *
Kirill Bordo等.Nanowires and nanotubes from p-conjugated organic materials fabricated by template wetting.Applied Physics A.2014,第114卷1067-1074. *
毛亮亮.非均相光催化的原子转移自由基加成反应及芴衍生大环的合成和自组装研究.中国科学院大学博士学位论文.第69-110页. *
王为.共价有机框架新应用:选择性水解二维共价有机框架制备有机纳米管.有机化学.2020,第40卷545-546. *

Also Published As

Publication number Publication date
CN114249295A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
Huang et al. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities
Yuan et al. Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality
CN107954961A (zh) 一种[60]富勒烯二氢呋喃衍生物的合成方法
CN107245148B (zh) 三维多孔超分子有机骨架材料及其制备方法和应用
CN114249295B (zh) 一种通过共价键或配位键合成的一维有机纳米管及方法
CN112645836B (zh) 一种非均相催化剂Cu@COF-Me-M及其制备方法和应用
CN111978537B (zh) 一种手性催化剂(s)-dtp-cof及其制备、回用方法及应用
CN102127424B (zh) 一种铱金属配合物有机荧光粒子及其制备方法
Yamanaka et al. Synthesis and estimation of gelation ability of C3-symmetry tris-urea compounds
CN108864147A (zh) 一种八元氮氧杂环螺吲哚酮化合物及制备方法
CN110041220B (zh) 一种对称酰亚胺类化合物及其合成方法
Kraemer et al. Syntheses of phenothiazinylboronic acid derivatives-suitable starting points for the construction of redox active materials
CN115960142B (zh) 一种含环内锇亚乙烯键金属杂环化合物及其合成方法与应用
JP2008222584A (ja) イミン化合物の製法
Heller et al. Multi-functionalized 2, 2′: 6′, 2′′-Terpyridines
CN113461681B (zh) 一种铱催化的n-苯基-7氮杂吲哚衍生物及其制备方法
CN114853608B (zh) 一种氮杂环卡宾催化的[60]富勒氢衍生物的合成方法
CN107793347A (zh) 一种合成非对称[60]富勒烯吡咯烷衍生物的方法
CN109320538B (zh) 3-溴-5-芳基-2-(三甲基硅基)-1-(n,n-二甲基磺酰胺)吡咯合成方法
CN109020984A (zh) 四苯基锌卟啉-多面体笼状硅氧烷及其制备方法
CN105294517B (zh) 一种制备手性1,3‑二胺的方法
CN108129348A (zh) 叠氮三氟甲氧基化合物及其合成方法
CN113754606A (zh) 吩噁嗪二胺衍生物和/或吩噻嗪二胺衍生物及其制备方法
CN110862347A (zh) 一种2-芳基取代喹啉氮氧化合物的制备方法
CN116082268B (zh) 手性苯并吗啉类化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant