CN114225969A - 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用 - Google Patents

一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用 Download PDF

Info

Publication number
CN114225969A
CN114225969A CN202111406982.0A CN202111406982A CN114225969A CN 114225969 A CN114225969 A CN 114225969A CN 202111406982 A CN202111406982 A CN 202111406982A CN 114225969 A CN114225969 A CN 114225969A
Authority
CN
China
Prior art keywords
cerium
plasma
low
metal organic
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111406982.0A
Other languages
English (en)
Inventor
吴军良
毛梦绮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111406982.0A priority Critical patent/CN114225969A/zh
Publication of CN114225969A publication Critical patent/CN114225969A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/38Lanthanides other than lanthanum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其应用方法。该方法利用金属有机骨架材料(MOFs)形貌结构可调控的优点,以室温自组装方法合成铈基牺牲模板(Ce‑BTC),然后通过控制焙烧温度调变铈基材料的结构和性质,制备具有高比表多孔道的催化剂。该催化剂应用于等离子体场内时,有利于等离子体场中高活性物种和反应物分子在催化剂内部的传质与反应,与等离子体实现协同作用。本发明方法制备条件温和,无需添加其他表面活性剂或模板剂等,操作简单、成本低廉,有利于实现工业化大规模生产,与等离子体协同作用可应用于挥发性有机物净化等领域。

Description

一种与低温等离子体协同作用的铈基金属有机骨架衍生材料 及其制备方法与应用
技术领域
本发明属于大气污染治理及化工生产技术领域,具体涉及一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其应用方法。
背景技术
挥发性有机物(VOCs)是形成近地面光化学烟雾、臭氧(O3)和细颗粒物(PM2.5)等大气复合污染物的重要前驱体,VOCs大量排放导致近年来大气复合污染事件频发,对区域大气环境质量和人体健康产生严重影响。挥发性有机物的来源包括天然源和人为源,其中工业源排放的VOCs占人为源排放量的50%左右,主要来自化工、包装印刷、家具制造等行业,是VOCs污染治理的重点关注领域。这些行业排放的VOCs浓度较低,成分复杂,既污染环境,又无回收价值,宜采取彻底销毁的技术。目前,常用的销毁技术主要包括直接燃烧、催化燃烧、光催化、等离子体和生物降解等治理技术。其中,低温等离子体技术利用空气放电产生的各种活性物种(电子、自由基、激发态分子等)氧化废气中的VOCs,具有在常温常压下迅速销毁多种VOCs的优点,在大风量、低浓度的工业源VOCs净化中具有独特的优势,近三十年来得到了快速发展。
然而,单独的等离子体技术存在能耗高,VOCs氧化不彻底,且伴有副产物O3排放等缺点,为改进该技术的短板,等离子体催化技术应运而生。该技术将等离子体反应启动快速、条件温和的优点与催化反应选择性好、反应彻底的优点结合,可有效降低反应能耗,提高污染物转化率和VOCs完全氧化程度,并减少副产物排放,因此研发与等离子体协同的高效催化剂是提升系统性能的关键。
在等离子体催化体系中,常用的催化剂有负载型贵金属和金属氧化物两类。与贵金属型催化剂相比,金属氧化物因价格低廉,在协同等离子体催化降解VOCs时展现出良好的催化活性,被广泛应用于等离子体催化降解VOCs中。催化剂的活性组分主要为Ce、Mn、Ni、Co等,其中稀土金属氧化物二氧化铈具有优异的氧化还原性能,高氧储存能力和丰富的氧空位等独特的性质,在等离子体催化反应系统中普遍表现出高CO2选择性、低能耗和低O3排放的良好性能,在等离子体催化领域受到广泛关注。
传统的CeO2催化剂制备方法,如水热法、浸渍法和共沉淀法等,由于制备的产物形貌不可控、容易出现颗粒团聚、缺乏发达的孔结构且比表面积小,导致催化剂所暴露的活性中心数量少或活性组分分散度低,既不利于反应物质的传递也限制了表面反应的进行,使得催化性能常常不尽人意,限制了CeO2催化剂的广泛应用。
鉴于此,本发明开发了一种以金属有机骨架材料为前体的牺牲模板法,通过选择铈源和桥连配体调控活性组分的分散度和孔道尺寸,以合成特定形貌的牺牲模板,再利用空气热分解的方式,通过控制焙烧温度调变其微观结构和表面性质,将牺牲模板转化为CeO2催化剂,最终制备得到的催化剂不仅具有高比表面积、多孔道的特点,而且能够有效增加催化剂表面暴露出的活性位点数量,其在等离子体催化反应中表现出了优异的催化性能。该方法操作简便、成本低廉且可以大规模高产量合成氧化铈催化剂,在工业和实际应用中都具有良好的应用前景。
发明内容
本发明的目的在于针对现有制备方法获得的产物形貌不可控、反应性能差等不足,提供了一种操作简便、能够较大规模合成且经济的CeO2催化剂制备方法,所制备的高活性位点暴露的氧化铈催化剂,协同等离子体催化氧化VOCs等反应具有优异的性能。
本发明的目的通过以下技术方案实现:
一种与低温等离子体协同作用的铈基金属有机骨架衍生材料的制备方法及其应用,包括如下步骤:
(1)首先将六水合硝酸铈和均苯三甲酸分别分散于去离子水中,搅拌至完全溶解,得到溶液A和溶液B。然后将溶液A和溶液B进行混合得到溶液C,再依次加入去离子水和无水乙醇,继续搅拌,得到溶液D。对溶液D进行离心洗涤、真空干燥、研磨后得到固体粉末状的Ce-BTC。
(2)将Ce-BTC置于管式炉中,在空气气氛下进行升温,在不同温度下热处理,得到CeO2催化剂。
(3)将CeO2催化剂置于低温等离子体反应器内部或者串联在后面,形成等离子体催化装置,用于挥发性有机物催化氧化等反应。
上述方法中,步骤(1)中,所述六水合硝酸铈与均苯三甲酸的摩尔质量比为1:1;所述铈盐与去离子水的摩尔质量比为0.086~0.087:1;所述有机配体与去离子水的摩尔质量比为0.042~0.043:1;所述溶液C与去离子水的体积比为1:1;所述溶液C与无水乙醇的体积比为1:2;所述搅拌反应的速率为400~600rpm,搅拌温度为25~35℃,所述搅拌时间为0.5~1h;所述离心转速为3500~4000rpm;所述真空干燥温度为60~80℃,所述干燥时间为8~12h。
上述方法中,步骤(2)中,所述热处理升温速率为1℃/min,所述热处理温度为250~500℃,所述热处理时间为5~15h。
上述方法中,步骤(3)中,所述铈基金属有机骨架衍生材料应用于低温等离子体催化装置,低温等离子体产生类型为介质阻挡、表面放电等;所述应用领域包括挥发性有机物净化等领域。
一种用于低温等离子体催化氧化VOCs的铈基金属有机骨架衍生材料,所述与等离子体协同的CeO2催化剂具有高效降解VOCs的性能,在输入能量密度为464J/L时,甲醇转化率和CO2选择性分别高达100%和90.1%。
一种与低温等离子体协同作用的铈基金属有机骨架衍生材料用于大气污染控制和有机合成等化工生产领域。
本发明采用室温自组装配位的方法,通过选择铈源和桥连配体调控活性组分的分散度和孔道尺寸,合成特定形貌的牺牲模板,然后将牺牲模板在空气中进行热处理获得高比表多孔道的金属有机骨架衍生材料,克服现有制备方法获得产物形貌不可控,反应性能差等不足,提供了一种操作简便、能够较大规模合成且经济的CeO2催化剂制备方法,所制备的高活性位点暴露的CeO2催化剂,协同等离子体催化氧化VOCs等反应具有优异的性能。
与现有技术相比,本发明的优势在于:
(1)制备条件温和,室温下即可发生合成反应、无需添加其他表面活性剂或模板剂等操作简单、成本低廉,有利于实现工业化大规模生产。
(2)通过这种方法制备得到的铈基金属有机骨架衍生材料,具有较高的比表面积和多孔结构,增加了暴露的活性位点数量,协同等离子体降解VOCs表现出优异的催化性能。
(3)在长期等离子体催化氧化目标VOCs反应中能够保持良好的催化能力。
附图说明
图1为本发明实施例1-4催化剂的XRD图;
图2为本发明实施例2催化剂的SEM图;
图3为单独等离子体和本发明实施例1-4催化剂协同等离子体催化氧化甲醇的性能图;
图4为本发明实施例2催化剂协同等离子体催化氧化甲醇的性能稳定性图。
具体实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
实施例1
称取8.6844g Ce(NO3)3·6H2O和4.2000g 1,3,5-H3BTC,分别加入到100mL去离子水中,在室温下以500rpm搅拌速率搅拌至完全溶解。然后将两种前驱体溶液进行混合,依次加入200mL的去离子水和400mL无水乙醇,继续在室温下搅拌30min,再静置1h。对静置后的溶液进行离心,离心速率为4000rpm,得到白色固体产物,随后用去离子水离心洗涤3次,在60℃条件下真空干燥12h。通过研磨得到白色固体粉末状的Ce-BTC(牺牲模板)。随后在空气中以1℃/min的速率升温程序从室温升至250℃,对Ce-BTC进行6h热处理,得到CeO2-250催化剂。
实施例2
实施例2的具体步骤与实施1基本相同,所不同的是将热处理温度由250℃换成300℃。称取8.6844g Ce(NO3)3·6H2O和4.2000g1,3,5-H3BTC,分别加入到100mL去离子水中,在室温下以500rpm搅拌速率搅拌至完全溶解。然后将两种前驱体溶液进行混合,依次加入200mL的去离子水和400mL无水乙醇,继续在室温下搅拌30min,再静置1h。对静置后的溶液进行离心,离心速率为4000rpm,得到白色固体产物,随后用去离子水离心洗涤3次,在60℃条件下真空干燥12h。通过研磨得到白色固体粉末状的Ce-BTC。随后在空气中以1℃/min的速率升温程序从室温升至300℃,对Ce-BTC进行6h热处理,得到CeO2-300催化剂。
由图2SEM图可知,成功制备了CeO2-300催化剂,材料呈现棒状形貌。
实施例3
实施例3的具体步骤与实施1基本相同,所不同的是将热处理温度由250℃换成400℃。称取8.6844g Ce(NO3)3·6H2O和4.2000g1,3,5-H3BTC,分别加入到100mL去离子水中,在室温下以500rpm搅拌速率搅拌至完全溶解。然后将两种前驱体溶液进行混合,依次加入200mL的去离子水和400mL无水乙醇,继续在室温下搅拌30min,再静置1h。对静置后的溶液进行离心,离心速率为4000rpm,得到白色固体产物,随后用去离子水离心洗涤3次,在60℃条件下真空干燥12h。通过研磨得到白色固体粉末状的Ce-BTC。随后在空气中以1℃/min的速率升温程序从室温升至400℃,对Ce-BTC进行6h热处理,得到CeO2-400催化剂。
实施例4
实施例4的具体步骤与实施1基本相同,所不同的是将热处理温度由250℃换成500℃。称取8.6844g Ce(NO3)3·6H2O和4.2000g1,3,5-H3BTC,分别加入到100mL去离子水中,在室温下以500rpm搅拌速率搅拌至完全溶解。然后将两种前驱体溶液进行混合,依次加入200mL的去离子水和400mL无水乙醇,继续在室温下搅拌30min,再静置1h。对静置后的溶液进行离心,离心速率为4000rpm,得到白色固体产物,随后用去离子水离心洗涤3次,在60℃条件下真空干燥12h。通过研磨得到白色固体粉末状的Ce-BTC。随后在空气中以1℃/min的速率升温程序从室温升至500℃,对Ce-BTC进行6h热处理,得到CeO2-500催化剂。
由图1XRD结果可知,本发明实施例1-4主要的衍射峰均对应于CeO2(PDF No.43-1002)的立方萤石结构,且未发现其他氧化物杂峰,因此可以判断Ce-BTC在空气条件下热处理后形成了CeO2晶体。另外,随着焙烧温度的提高,CeO2衍射峰的峰强增强,且峰宽变窄,说明温度越高,对金属有机骨架中金属簇的氧化更充分,生成的氧化物结晶度越高。
实施例5
实施例5的具体步骤:将本发明实施例1-4催化剂装填在等离子体反应器中,考察其对VOCs的催化活性。等离子体反应器采用的是线筒式介质阻挡(DBD)反应器,其使用的介质材料为石英玻璃管,内外径分别为6.0mm和8.0mm。内电极(高压极)为不锈钢材质,直径为2.0mm,固定在石英玻璃管中心,外电极(接地极)为不锈钢网,用铜丝缠绕固定。反应器放电间隙为3.0mm,放电区长度为10.0mm。催化剂用量为0.1g,用石英棉固定在等离子体放电区域末端。反应器两端的转接头处分别设计了反应气的进出口。反应时,将含目标挥发性有机物——甲醇的混合气体通入反应器中,甲醇浓度为400ppm,以20%(O2/N2)为平衡气,重时空速为60000mL·g-1·h-1,等离子体放电的输入能量密度为180~650J/L。反应器进出口气体中的有机组分、CO和CO2采用气相色谱仪进行检测分析。
图3为单独等离子体和本发明实施例1-4催化剂协同等离子体催化氧化甲醇的性能评价图。从图中可以看出,在常温常压条件下,单独等离子体系统中输入能量密度为600J/L时,甲醇转化率依然<60%,且CO2选择性<20%。而引入了本发明实施例1-4催化剂之后甲醇转化率和CO2选择性大大提高,在输入的能量密度为500J/L时,甲醇转化率即可达到80%以上,同时CO2选择性高于40%。图3的结果首先表明,装填本发明实施例1-4催化剂的等离子体催化系统VOCs降解性能明显高于单独等离子体系统,且能耗更低。说明实施例1-4催化剂与等离子体之间存在协同作用,二者的结合提高了甲醇转化率和CO2选择性,同时有效降低了反应能耗。此外,装填实施例2的等离子体催化系统对甲醇的转化率最高,在输入的能量密度为464J/L时,甲醇转化率和CO2选择性分别高达100%和90.1%。
图4为实施例2协同等离子体降解甲醇的长时间反应稳定性测试数据,可以观察到本发明所制备的CeO2催化剂具有良好的长期反应稳定性。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种与低温等离子体协同作用的铈基金属有机骨架衍生材料的制备方法,其特征在于,预先合成Ce-BTC作为牺牲模板,然后在空气中对其进行热处理,通过控制热处理温度制备高活性位点暴露的氧化铈催化剂,与低温等离子体协同作用,包括如下步骤:
(1)首先将六水合硝酸铈和均苯三甲酸分别分散于去离子水中,搅拌至完全溶解,得到溶液A和溶液B;然后将溶液A和溶液B进行混合得到溶液C,再依次加入去离子水和无水乙醇,继续搅拌,得到溶液D;对溶液D进行离心洗涤、真空干燥、研磨后得到固体粉末状的有机Ce-BTC;
(2)将Ce-BTC置于管式炉中,在空气气氛下进行升温,在不同温度下热处理,得到CeO2催化剂,即一种与低温等离子体协同作用的铈基金属有机骨架衍生材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述六水合硝酸铈与均苯三甲酸的摩尔质量比为1:1;所述铈盐与去离子水的摩尔质量比为0.086~0.087:1;所述均苯三甲酸与去离子水的摩尔质量比为0.042~0.043:1;所述溶液C与去离子水的体积比为1:1;所述溶液C与无水乙醇的体积比为1:2。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述搅拌反应的速率为400~600rpm,搅拌温度为25~35℃,所述搅拌时间为0.5~1h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述离心转速为3500~4000rpm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,真空干燥温度为60~80℃,所述干燥时间为8~12h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述热处理升温速率为0.5~1.5℃/min,所述热处理温度为250~500℃,所述热处理时间为5~15h。
7.由权利要求1~6任一项所述制备方法制备得到一种与低温等离子体协同作用的铈基金属有机骨架衍生材料,其特征在于,与等离子体协同的CeO2催化剂具有高效降解VOCs的性能,在输入能量密度为464J/L时,甲醇转化率和CO2选择性分别高达100%和90.1%。
8.权利要求7所述一种与低温等离子体协同作用的铈基金属有机骨架衍生材料的应用,其特征在于,用于大气污染控制、有机合成化工生产领域和挥发性有机物净化领域。
9.权利要求7所述一种与低温等离子体协同作用的铈基金属有机骨架衍生材料的应用,其特征在于,所述铈基金属有机骨架衍生材料应用于低温等离子体催化装置,低温等离子体产生类型为介质阻挡、表面放电。
10.根据权利要求7所述与低温等离子体协同作用的铈基金属有机骨架衍生材料的应用,其特征在于,将CeO2催化剂置于低温等离子体反应器内部或者串联在后面,形成等离子体催化装置,用于挥发性有机物催化氧化反应。
CN202111406982.0A 2021-11-24 2021-11-24 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用 Pending CN114225969A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111406982.0A CN114225969A (zh) 2021-11-24 2021-11-24 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111406982.0A CN114225969A (zh) 2021-11-24 2021-11-24 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN114225969A true CN114225969A (zh) 2022-03-25

Family

ID=80750956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111406982.0A Pending CN114225969A (zh) 2021-11-24 2021-11-24 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114225969A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832824A (zh) * 2022-06-10 2022-08-02 江苏大学 等离子体处理金属有机框架制备高效金属氧化物催化剂的方法
RU2800447C1 (ru) * 2022-08-10 2023-07-21 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Металлорганическая каркасная структура бензолтрикарбоксилата церия (III) Ce-BTC и способ её получения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689713A (zh) * 2015-02-13 2015-06-10 华南理工大学 以金属有机骨架材料为催化剂的等离子体催化系统净化有机废气的方法
CN105536777A (zh) * 2015-12-17 2016-05-04 杭州电子科技大学 一种用于催化燃烧的活性组分高分散催化剂及其制备方法
CN106390983A (zh) * 2016-09-30 2017-02-15 上海理工大学 一种以Ce基金属有机骨架为前驱体的CeO2催化剂、其制备方法和在防治大气污染中的应用
WO2017066328A1 (en) * 2015-10-12 2017-04-20 The University Of Chicago Stabilization of active metal catalysts at metal-organic framework nodes for highly efficient organic transformations
CN107983329A (zh) * 2017-11-22 2018-05-04 华南理工大学 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689713A (zh) * 2015-02-13 2015-06-10 华南理工大学 以金属有机骨架材料为催化剂的等离子体催化系统净化有机废气的方法
WO2017066328A1 (en) * 2015-10-12 2017-04-20 The University Of Chicago Stabilization of active metal catalysts at metal-organic framework nodes for highly efficient organic transformations
CN105536777A (zh) * 2015-12-17 2016-05-04 杭州电子科技大学 一种用于催化燃烧的活性组分高分散催化剂及其制备方法
CN106390983A (zh) * 2016-09-30 2017-02-15 上海理工大学 一种以Ce基金属有机骨架为前驱体的CeO2催化剂、其制备方法和在防治大气污染中的应用
CN107983329A (zh) * 2017-11-22 2018-05-04 华南理工大学 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YIWEN JIANG ET AL.: ""Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template"", 《CHEMICAL ENGINEERING JOURNAL》 *
王雪青: ""低温等离子体催化降解甲醇反应系统中CeO2的形貌效应"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
王雪青等: ""等离子体场内CeO2催化降解甲醇的表面活性氧物种来源与作用研究"", 《环境科学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832824A (zh) * 2022-06-10 2022-08-02 江苏大学 等离子体处理金属有机框架制备高效金属氧化物催化剂的方法
CN114832824B (zh) * 2022-06-10 2023-10-10 江苏大学 等离子体处理金属有机框架制备高效金属氧化物催化剂的方法
RU2800447C1 (ru) * 2022-08-10 2023-07-21 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Металлорганическая каркасная структура бензолтрикарбоксилата церия (III) Ce-BTC и способ её получения

Similar Documents

Publication Publication Date Title
Jiang et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor
CN108940304B (zh) 一种Mn/Ce/Cu基低温等离子体催化剂及制备与应用
Gong et al. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature
CN112547092B (zh) 一种构建等离子体催化净化空气体系的钙钛矿基催化剂及其制备方法
CN113181902B (zh) 富含金属缺陷的四氧化三锰催化剂的制备方法及其应用
CN114618589B (zh) 一种基于铁基有机骨架的臭氧降解催化剂制备方法与应用
CN113000046A (zh) 一种用于氮氧化物和挥发性有机物协同净化的改性锰基莫来石型催化剂、其制备方法和应用
CN115676896B (zh) 一种非晶态锰氧化物复合材料及其制备方法和应用
CN115155647B (zh) 一种负载双金属单原子的bcn气凝胶催化剂的制备方法及其应用
CN108906044A (zh) 一种锰铈钌复合氧化物催化剂及其制备方法和用途
CN113181956A (zh) 处理含氮挥发性有机复合污染物的组合催化剂和方法
CN113042036A (zh) 一种铈改性的非晶锰氧化物催化剂的制备方法和应用
CN114225969A (zh) 一种与低温等离子体协同作用的铈基金属有机骨架衍生材料及其制备方法与应用
Zhoua et al. Promoting effect of Ce doping on catalytic performance and water resistance ability for toluene catalytic combustion over the cheap and efficient Mn8Ni2CeaOx catalysts
Chen et al. Enhanced dual-catalytic elimination of NO and VOCs by bimetallic oxide (CuCe/MnCe/CoCe) modified WTiO2 catalysts: Boosting acid sites and rich oxygen vacancy
Feng et al. Magnesium-enhanced redox property and surface acidity-basicity of LaMnO3 perovskites for efficient methane purification
CN115722220B (zh) 一种催化氧化催化剂及其制备方法和应用
CN109772423B (zh) 一种磷、铋共掺杂的多孔石墨相氮化碳光催化剂及其用途
Xue et al. Preparation, characterization and catalytic properties of yttrium-zirconium-pillared montmorillonite and their application in supported Ce catalysts
JP2021126599A (ja) Voc除去触媒及びその製造方法
CN113101923A (zh) 降解VOCs的Mn-Zr-La-Ce催化剂和制备方法及其低温等离子体协同催化应用
CN113398939A (zh) 用于VOCs治理的铁铈复合氧化物催化剂及制备方法
CN115253666B (zh) 类水滑石耦合低温等离子体去除VOCs的方法及应用
Feng et al. Magnesium-Enhanced Redox Property and Surface Acidity-Basicity of Lamno3 Perovskites for Efficient Methane Purification
CN115155307B (zh) 一种低温等离子体耦合锰铈钛催化剂稳定高效脱除NOx的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220325