CN114210994A - 一种金纳米盘的制备方法 - Google Patents

一种金纳米盘的制备方法 Download PDF

Info

Publication number
CN114210994A
CN114210994A CN202111561866.6A CN202111561866A CN114210994A CN 114210994 A CN114210994 A CN 114210994A CN 202111561866 A CN202111561866 A CN 202111561866A CN 114210994 A CN114210994 A CN 114210994A
Authority
CN
China
Prior art keywords
gold
solution
sodium hydroxide
chloroauric acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111561866.6A
Other languages
English (en)
Inventor
沈德元
王飞
李敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mid Infrared Laser Research Institute Jiangsu Co ltd
Original Assignee
Mid Infrared Laser Research Institute Jiangsu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mid Infrared Laser Research Institute Jiangsu Co ltd filed Critical Mid Infrared Laser Research Institute Jiangsu Co ltd
Priority to CN202111561866.6A priority Critical patent/CN114210994A/zh
Publication of CN114210994A publication Critical patent/CN114210994A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种金纳米盘的制备方法,首先在离心管中加入十六烷基三甲基氯化铵、碘化物、氯金酸、氢氧化钠和双氧水;混合后其中的双氧水作为弱还原剂将氯金酸还原为一价金离子,接着再加入氢氧化钠溶液,氢氧化钠溶液用来调节混合溶液的pH值,此时在混合溶液中开始形成小的金核,一价金离子在小的金核表面生长,由于表面活性剂和碘化物的共同影响,在设定的pH值范围内,一价金离子在小的金核表面沿着特殊的晶面持续缓慢生长,最终形成尺寸能达到微米级的金纳米盘。整个制备过程中无需加热或降温,无需搅拌或超声,也无需事先制备金纳米种子颗粒,就能一次制备出金纳米盘且其尺寸能达到微米级。

Description

一种金纳米盘的制备方法
技术领域
本发明涉及纳米材料技术领域,具体是一种金纳米盘的制备方法。
背景技术
贵金属纳米材料因其特有的光学性质,在物理、化学及生物医学等领域显示出重要的应用价值。与球形贵金属纳米颗粒相比,各向异性贵金属纳米颗粒例如二维盘状金纳米材料,它的横向尺寸远大于厚度,显示出独特的表面等离子激元光学特性,且其横向尺寸越大则其性能越高,在光电子学、催化及生物化学传感等领域具有一定的优势。因此,金纳米盘的制备极具现实意义。
目前作为金纳米盘的制备方法主要有物理法、化学还原法、光还原法等。其中化学还原法是应用最多的制备金纳米盘的方法。采用化学还原法制备金纳米盘的过程中,通常需要加入表面活性剂来避免纳米粒子的团聚,并加入还原剂还原氯金酸得到一价金离子,在碘离子的作用下,一价金离子在事先合成(种子法)或者原位形成(无种子法)的金核表面沿着特殊晶面生长,从而得到金纳米盘。常用的表面活性剂有十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、聚乙烯吡咯烷酮。然而,十六烷基三甲基溴化铵在温度低于28摄氏度时易结晶,因此在常温环境进行制备过程中需要持续加热来帮助十六烷基三甲基溴化铵溶解。采用聚乙烯吡咯烷酮作为表面活性剂通常需要加热或加入事先制备好的金纳米种子颗粒。而其中一种采用十六烷基三甲基氯化铵作为表面活性剂(参考非专利文献:L.Scarabelli,M.Coronado-Puchau,J.J.Giner-Casares,J.Langer,L.M.Liz-Marzán,ACSNano 8,5833,(2014))制备金纳米盘,在该制备过程中也需要加入事先制备好的金纳米种子颗粒。上述方法均需要在制备过程中的温度进行加热、搅拌或加入事先制备金纳米种子颗粒,持续加热或搅拌需要额外消耗能源,增加制备流程工序及成本,而加入事先制备金纳米种子颗粒也需要额外增加一个制备金纳米种子颗粒的过程,因此上述方法均存在制备流程复杂的问题。
另一种采用十六烷基三甲基氯化铵作为表面活性剂(参考非专利文献:L.Chen,F.Ji,Y.Xu,L.He,Y.Mi,F.Bao,B.Sun,X.Zhang,Q.Zhang,Nano Lett.14,7201(2014))制备得到金纳米三角片,其制备过程不需加热,也不需加入事先制备好的金纳米种子颗粒。然而其所得金纳米三角片的边长范围在45~147nm,这个尺寸远小于采用加热或加入金纳米种子颗粒方法制得的金纳米盘尺寸,故采用该方法一次无法直接得到更大尺寸的金纳米盘;因此如何能提供一种制备方法,使其在常温环境中无需加热或降温,无需搅拌或超声,也无需事先制备金纳米种子颗粒,就能制备出金纳米盘,且其尺寸与采用加热或加入金纳米种子颗粒制备的尺寸相当,是本行业的研究方向。
发明内容
针对上述现有技术存在的问题,本发明提供一种金纳米盘的制备方法,制备过程操作简单且在常温条件下进行,整个制备过程中无需加热或降温,无需搅拌或超声,也无需事先制备金纳米种子颗粒,就能一次制备出金纳米盘且其尺寸能达到微米级。
为了实现上述目的,本发明采用的技术方案是:一种金纳米盘的制备方法,具体步骤为:
步骤一:配制十六烷基三甲基氯化铵溶液、碘化钾溶液、氯金酸溶液和氢氧化钠溶液;
步骤二:在离心管中加入十六烷基三甲基氯化铵溶液、碘化钾溶液、氯金酸溶液、氢氧化钠溶液和双氧水,轻柔摇动5~10秒,使其混合均匀形成混合溶液;其中,十六烷基三甲基氯化铵和氯金酸的摩尔比为80:1,碘化钾和氯金酸的摩尔比为0.375:1,氢氧化钠和氯金酸的摩尔比为1:1;双氧水和氯金酸的摩尔比为90~243:1;
步骤三:在步骤二的混合溶液中再加入氢氧化钠溶液,调节混合溶液的pH值为6.8~7.3,并在室温环境下静置24~48h,然后将离心管放入离心机中进行离心洗涤,最终得到金纳米盘。
进一步,所述步骤一中十六烷基三甲基氯化铵溶液的浓度为0.1M;氯金酸溶液的浓度为5mM;碘化钾溶液的浓度为0.01M,氢氧化钠溶液的浓度为0.1M。
进一步,所述氢氧化钠溶液的浓度为0.1M。
一种金纳米盘在可饱和吸收体、表面增强拉曼光谱芯片和催化领域的应用。
与现有技术相比,本发明首先在离心管中加入十六烷基三甲基氯化铵、碘化物、氯金酸、氢氧化钠和双氧水;混合后其中的双氧水作为弱还原剂将氯金酸还原为一价金离子,接着再加入氢氧化钠溶液,氢氧化钠溶液用来调节混合溶液的pH值,在pH值为6.8~7.3的条件下,此时在混合溶液中开始形成小的金核,一价金离子在小的金核表面生长,由于十六烷基三甲基氯化铵作为表面活性剂和碘化物的共同影响,在设定的pH值范围内,一价金离子在小的金核表面沿着特殊的晶面持续缓慢生长,最终形成尺寸能达到微米级的金纳米盘。
由此可知,本发明制备过程操作简单且在常温条件下进行,整个制备过程中无需加热或降温,无需搅拌或超声,也无需事先制备金纳米种子颗粒,就能一次制备出金纳米盘且其尺寸能达到微米级。此外,由于其尺寸较大,因此本发明制备的金纳米盘可直接应用或者滴涂在基底上进行应用,从而能有效满足可饱和吸收体、表面增强拉曼光谱芯片和催化等的应用要求。
附图说明
图1为本发明实例1制备的金纳米盘的扫描电子显微镜图片。
具体实施方式
下面将对本发明作进一步说明。
实施例1:
步骤一:配制浓度为0.1M的十六烷基三甲基氯化铵溶液、浓度为0.01M的碘化钾溶液、5mM的氯金酸溶液和0.1M的氢氧化钠溶液;
步骤二:在离心管中加入6.4mL水,1.28mL十六烷基三甲基氯化铵溶液、0.06mL碘化物溶液、0.32mL氯金酸溶液、0.016mL氢氧化钠溶液和0.01mL双氧水,轻柔摇动8秒,使其混合均匀形成混合溶液;
步骤三:在步骤二的混合溶液中再加入0.006mL氢氧化钠溶液,调节混合溶液的pH值为6.9,在室温环境下静置48h,然后将离心管放入离心机中进行离心洗涤,最终得到金纳米盘。
如图1所示,实施例1制备的金纳米盘的边长可以达到微米量级,所制备的金纳米盘可直接应用或者滴涂在基底上进行应用,从而能有效满足可饱和吸收体、表面增强拉曼光谱芯片和催化等的应用要求。
实施例2:
步骤一:配制浓度为0.1M的十六烷基三甲基氯化铵溶液、浓度为0.01M的碘化钾溶液、5mM的氯金酸溶液和0.1M的氢氧化钠溶液;
步骤二:在离心管中加入6.4mL水,1.28mL十六烷基三甲基氯化铵溶液、0.06mL碘化钾溶液、0.32mL氯金酸溶液、0.016mL氢氧化钠溶液和0.01mL双氧水,轻柔摇动6秒,使其混合均匀形成混合溶液;
步骤三:在步骤二的混合溶液中再加入0.014mL氢氧化钠溶液,调节混合溶液的pH值为7.2,在室温环境下静置24h,然后将离心管放入离心机中进行离心洗涤,最终得到金纳米盘。
实施例3:
步骤一:配制浓度为0.1M的十六烷基三甲基氯化铵溶液、浓度为0.01M的碘化钾溶液、5mM的氯金酸溶液和0.1M的氢氧化钠溶液;
步骤二:在离心管中加入6.4mL水,1.28mL十六烷基三甲基氯化铵溶液、0.06mL碘化钾溶液、0.32mL氯金酸溶液、0.016mL氢氧化钠溶液和0.01mL双氧水,轻柔摇动9秒,使其混合均匀形成混合溶液;
步骤三:在步骤二的混合溶液中再加入0.01mL氢氧化钠溶液,调节混合溶液的pH值为7,在室温环境下静置36h,然后将离心管放入离心机中进行离心洗涤,最终得到金纳米盘。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种金纳米盘的制备方法,其特征在于,具体步骤为:
步骤一:配制十六烷基三甲基氯化铵溶液、碘化钾溶液、氯金酸溶液和氢氧化钠溶液;
步骤二:在离心管中加入十六烷基三甲基氯化铵溶液、碘化钾溶液、氯金酸溶液、氢氧化钠溶液和双氧水,轻柔摇动5~10秒,使其混合均匀形成混合溶液;其中,十六烷基三甲基氯化铵和氯金酸的摩尔比为80:1,碘化钾和氯金酸的摩尔比为0.375:1,氢氧化钠和氯金酸的摩尔比为1:1;双氧水和氯金酸的摩尔比为90~243:1;
步骤三:在步骤二的混合溶液中再加入氢氧化钠溶液,调节混合溶液的pH值为6.8~7.3,并在室温环境下静置24~48h,然后将离心管放入离心机中进行离心洗涤,最终得到金纳米盘。
2.根据权利要求1所述的一种金纳米盘的制备方法,其特征在于,所述步骤一中十六烷基三甲基氯化铵溶液的浓度为0.1M;氯金酸溶液的浓度为5mM;碘化钾溶液的浓度为0.01M,氢氧化钠溶液的浓度为0.1M。
3.根据权利要求1所述的一种金纳米盘的制备方法,其特征在于,所述氢氧化钠溶液的浓度为0.1M。
4.一种根据权利要求1至3任一项所述的制备方法制得的金纳米盘在可饱和吸收体、表面增强拉曼光谱芯片和光催化领域的应用。
CN202111561866.6A 2021-12-17 2021-12-17 一种金纳米盘的制备方法 Pending CN114210994A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111561866.6A CN114210994A (zh) 2021-12-17 2021-12-17 一种金纳米盘的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111561866.6A CN114210994A (zh) 2021-12-17 2021-12-17 一种金纳米盘的制备方法

Publications (1)

Publication Number Publication Date
CN114210994A true CN114210994A (zh) 2022-03-22

Family

ID=80704253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111561866.6A Pending CN114210994A (zh) 2021-12-17 2021-12-17 一种金纳米盘的制备方法

Country Status (1)

Country Link
CN (1) CN114210994A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446300A (zh) * 2022-09-23 2022-12-09 昆明贵研新材料科技有限公司 一种金微米片的绿色高效制备方法
CN115740481A (zh) * 2022-11-17 2023-03-07 江苏师范大学 一种片状纳米金粒子的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273079A (zh) * 2013-05-10 2013-09-04 安徽医科大学 一种金纳米花的制备方法及其应用
CN103406549A (zh) * 2013-08-15 2013-11-27 南京邮电大学 一种盛开状花形金纳米颗粒及其制备方法
CN104308179A (zh) * 2014-10-16 2015-01-28 苏州大学 一种高产率金纳米三角片的快速制备方法
CN104625086A (zh) * 2015-02-10 2015-05-20 纳米籽有限公司 金纳米三角片的制备方法以及基于该方法制备金纳米圆盘及金纳米六角片的方法
CN108817414A (zh) * 2018-06-27 2018-11-16 河南科技大学 一种离子液体水溶液中金纳米花的制备方法
CN113695584A (zh) * 2021-08-18 2021-11-26 杭州师范大学 一种快速合成高纯度金纳米三角片的方法
CN113770372A (zh) * 2021-09-13 2021-12-10 中红外激光研究院(江苏)有限公司 一种金纳米颗粒聚集体材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273079A (zh) * 2013-05-10 2013-09-04 安徽医科大学 一种金纳米花的制备方法及其应用
CN103406549A (zh) * 2013-08-15 2013-11-27 南京邮电大学 一种盛开状花形金纳米颗粒及其制备方法
CN104308179A (zh) * 2014-10-16 2015-01-28 苏州大学 一种高产率金纳米三角片的快速制备方法
CN104625086A (zh) * 2015-02-10 2015-05-20 纳米籽有限公司 金纳米三角片的制备方法以及基于该方法制备金纳米圆盘及金纳米六角片的方法
CN108817414A (zh) * 2018-06-27 2018-11-16 河南科技大学 一种离子液体水溶液中金纳米花的制备方法
CN113695584A (zh) * 2021-08-18 2021-11-26 杭州师范大学 一种快速合成高纯度金纳米三角片的方法
CN113770372A (zh) * 2021-09-13 2021-12-10 中红外激光研究院(江苏)有限公司 一种金纳米颗粒聚集体材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNHO LEE, JI WON HA: "Elucidating the contribution of dipole resonance mode to polarization-dependent optical properties in single triangular gold nanoplates" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446300A (zh) * 2022-09-23 2022-12-09 昆明贵研新材料科技有限公司 一种金微米片的绿色高效制备方法
CN115446300B (zh) * 2022-09-23 2024-04-12 昆明贵研新材料科技有限公司 一种金微米片的绿色高效制备方法
CN115740481A (zh) * 2022-11-17 2023-03-07 江苏师范大学 一种片状纳米金粒子的合成方法

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes
Wu et al. Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction
CN114210994A (zh) 一种金纳米盘的制备方法
Quinlan et al. Reverse micelle synthesis and characterization of ZnSe nanoparticles
Saunders et al. Growth kinetics and metastability of monodisperse tetraoctylammonium bromide capped gold nanocrystals
Nadagouda et al. Microwave-assisted shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol) solutions
Jiang et al. Acetate-mediated growth of drumlike YBO3: Eu3+ crystals
Pol et al. Synthesis of europium oxide nanorods by ultrasound irradiation
Libert et al. Model of controlled synthesis of uniform colloid particles: cadmium sulfide
Li et al. Monodisperse lanthanide fluoride nanocrystals: synthesis and luminescent properties
Chandra et al. Synthesis, morphology, and optical characterization of nanocrystalline Er3+: Y2O3
JP5484442B2 (ja) 銀ナノ粒子の調製方法
Liu et al. Selective synthesis of hexagonal Ag nanoplates in a solution-phase chemical reduction process
Lin et al. Morphology evolution and pure red upconversion mechanism of β-NaLuF4 crystals
Xie et al. Influence of concentration effect and Au coating on photoluminescence properties of YVO4: Eu3+ nanoparticle colloids
Kaneko et al. Synthesis of ZnO particles by ammonia-catalyzed hydrolysis of zinc dibutoxide in nonionic reversed micelles
CN103286312A (zh) 一种表面共增强荧光及表面增强拉曼的多层核壳结构的复合微粒及其制备方法
Li et al. NaGd (MoO4) 2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties
Jia et al. Facile chemical conversion synthesis and luminescence properties of uniform Ln3+ (Ln= Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks
Lu et al. Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering
Li et al. Room Temperature Synthesis and Catalytic Properties of Surfactant‐Modified Ag Nanoparticles
Pan et al. Highly Luminescent YVO4− Eu3+ Nanocrystals Coating on Wirelike Y (OH) 3− Eu3+ and Y2O3− Eu3+ Microcrystals by Chemical Corrosion
Safiei et al. Experimental investigation on preparation and stability of Al2O3 nanofluid in deionized water and ethylene glycol
Gu et al. Effect of aqueous ammonia addition on the morphology and size of silver particles reduced by ascorbic acid
Fang et al. Synthesis of In2O3@ SiO2 Core–Shell Nanoparticles with Enhanced Deeper Energy Level Emissions of In2O3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220322