CN114210334B - 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法 - Google Patents

一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法 Download PDF

Info

Publication number
CN114210334B
CN114210334B CN202111246037.9A CN202111246037A CN114210334B CN 114210334 B CN114210334 B CN 114210334B CN 202111246037 A CN202111246037 A CN 202111246037A CN 114210334 B CN114210334 B CN 114210334B
Authority
CN
China
Prior art keywords
catalyst
zinc
copper
hydrogenation
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111246037.9A
Other languages
English (en)
Other versions
CN114210334A (zh
Inventor
刘庆
刘佳
梁鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202111246037.9A priority Critical patent/CN114210334B/zh
Publication of CN114210334A publication Critical patent/CN114210334A/zh
Application granted granted Critical
Publication of CN114210334B publication Critical patent/CN114210334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及能源催化领域,具体涉及一种CO2加氢制甲酸甲酯的铜锌基催化剂及其制备方法。本发明以九水合硅酸钠与水溶性铜盐、锌盐和第三过渡金属(M=Fe,Co或Ni)盐为原料,利用水热法“一步”制备铜锌基多金属页硅酸盐催化剂,将其还原后得到SiO2负载的Cu‑M合金和ZnO复合型催化剂,进一步采用酸刻蚀去合金化后得到高分散的Cu‑ZnO/SiO2催化剂,用于CO2加氢制甲酸甲酯串联反应。本发明得到的催化剂可替代传统的贵金属基催化剂,具有价廉易得、高催化活性、高选择性、金属铜抗烧结能力强、稳定性高等优点,适用于CO2加氢制甲酸甲酯反应。

Description

一种CO2加氢制甲酸甲酯的铜锌基催化剂及其制备方法
技术领域
本发明涉及能源催化领域,具体涉及一种CO2加氢制甲酸甲酯的铜锌基催化剂及其制备方法。
背景技术
在严峻的气候变化形势下,碳中和成为各国政府、企业、活动组织方乃至个人应对气候变化、减缓全球变暖的主要目标。利用CO2作为碳原料,通过化学合成的方法制取有价值的产品成为研究的热点。CO2转化为有机化学品主要通过CO2加氢反应来实现。甲酸是一种很有前途的可再生氢气储存能源载体,二氧化碳加氢制可以将温室气体二氧化碳转化为具有广泛用途的甲酸及其衍生物。甲酸甲酯(MF)被认为是一种具有发展前景的“万能中间体”,从甲酸甲酯出发可以衍生出许多种化合物,其可以用作农药杀虫剂、果品干燥剂、汽油添加剂,防腐剂等。所以,以CO2为原料加氢与甲醇制甲酸甲酯是降低二氧化碳排放,从而减轻温室效应的可行战略。
甲酸甲酯主要有以下几种合成方法:直接酯化法、甲醇羰基化法、甲醇脱氢法、甲醇氧化脱氢法、甲醛二聚法、合成气一步合成法和CO2与甲醇加氢法。采用CO2与甲醇加氢法可以在温和的条件下实现CO2的利用与有价值化学品转化,此过程主要涉及如下反应:CH3OH+CO2+H2→HCOOCH3+H2O。
据文献报道(孟亚平.Pd-UiO MOFs催化剂的设计、制备及其串联催化CO2加氢、酯化制甲酸乙酯的性能[D].厦门大学,2017),由CO2加氢合成甲酸甲酯需要经过两步反应。第一步是CO2加氢生成甲酸盐中间体,第二步是生成的甲酸盐中间体与甲醇酯化反应合成甲酸甲酯。其中第一步需要金属纳米颗粒(如Pd、Cu等)作为加氢反应的活性中心,第二步酯化反应需要酸或酸性位点作为活性中心。因此由CO2加氢、酯化串联制备MF的反应来说,其催化剂需要同时具有加氢和酯化两种催化活性位点。将两者放在同一个体系中,实现串联催化CO2加氢制甲酸甲酯目前己有许多研究者证明其可行。但是具有两种反应位点串联催化剂的设计尚存在问题,如何巧妙地将二者设计在同一个体系中且相互之间不受影响,是该反应催化剂设计的关键点。
据报道的CO2直接氢化制甲酸甲酯催化剂有Pd/Cu/ZnO/Al2O3纳米催化剂(Journalof the American ChemicalSociety,2007,129(20):6360),膦聚合物锚定的Ru配合物(Ru@pDPPE)催化剂(ChemSusChem 2019,12,3278)和Ag/SiO2(Journal ofthe AmericanChemicalSociety,2018, 140)等,以上催化剂虽然具有不错的活性,但都要需要一定的贵金属为活性组分且稳定性差。 Cu基纳米催化剂已广泛用于CO2氢化,但其稳定性差也限制了进一步的工业应用。此外,以 Cu纳米颗粒为CO2加氢的活性中心的催化剂在制备期间容易发生团聚和烧结。所以,开发一种金属分散性高、抗团聚和烧结能力强并具有高稳定性的CO2加氢制甲酸甲酯催化剂具有重要意义。
近年来,页硅酸盐材料被广泛应用于不同领域,如催化、吸附剂、超级电容器和电池等。第三过渡金属如Ni、Co、Fe和Cu可以很容易地融入到页硅酸盐结构中,与传统的金属浸渍在SiO2上的催化剂相比,页硅酸盐的高比表面积使得金属原子可以很好地分散。在相同的负载量和较高的分散度下,页硅酸盐结构可能比常规催化剂具有更多的活性中心,对反应具有较高的活性和稳定性。目前尚未有应用于CO2加氢制甲酸甲酯页硅酸盐催化剂的相关研究。
去合金化是一个选择性腐蚀过程,可将其应用于制备多孔纳米材料,如专利CN112877764A将合金型材利用电化学的方法进行去合金化腐蚀制备宏观尺寸多孔ZnO;专利 CN112921228A通过去合金化处理得到开放式连续的微纳米孔状结构,调控孔状结构得到3D 高熵合金骨架。目前,去合金化法尚未有应用于CO2加氢制甲酸甲酯催化剂的相关研究。
发明内容
为了克服现有CO2加氢制甲酸甲酯反应催化剂依赖贵金属的问题,本发明的目的在于提供一种CO2加氢制甲酸甲酯的铜锌基催化剂及其制备方法。本发明采用水热法制备铜锌基多金属页硅酸盐催化剂,还原后得到SiO2负载的Cu-M合金和ZnO复合型催化剂,进一步采用酸刻蚀去合金化后得到高分散的Cu-ZnO/SiO2催化剂,提供了一种高金属分散性、高催化活性、高选择性的CO2加氢制甲酸甲酯的铜锌基多金属页硅酸盐催化剂。
本发明所述的一种CO2加氢制甲酸甲酯的铜锌基催化剂及其制备方法,其特征在于制备方法为:称取水溶性铜盐、锌盐和第三过渡金属盐于去离子水、无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加氨水,搅拌30min后缓慢滴加由九水合硅酸钠配成的溶液,搅拌 30min,将上述混合物转移至高压反应釜中在160~220℃下水热12~48h。冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中以2℃·min-1升温速率加热至400~ 500℃焙烧2~4h,制得铜锌基多金属页硅酸盐催化剂。在H2气氛下以5℃·min-1升温速率加热至500~750℃还原1~2h,用0.001~0.01mol·L-1盐酸溶液浸泡0.5~5min,用去离子水洗涤,室温真空干燥后得到Cu-ZnO/SiO2催化剂。
进一步,前面方法中所述的水溶性铜盐、锌盐和第三过渡金属盐为硝酸盐、氯化物或醋酸盐。
进一步,前面方法中所述的水溶性第三过渡金属M为铁、钴或镍中的一种。
进一步,前面方法中所述的水溶性铜盐、锌盐和第三过渡金属盐的摩尔比为6:1:0.3~ 15:1:3.75。
进一步,前面方法中所述的氨水与加入的水溶性盐摩尔比为10:1~20:1。
进一步,前面方法中所述的去合金化操作用0.001~0.01mol·L-1盐酸溶液浸泡0.5~5 min。
进一步,前面方法中所述的将混合物转移至高压反应釜中在160~220℃下水热12~ 48h。取出冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中400~ 500℃下焙烧2~4h,制得铜锌基多金属页硅酸盐催化剂。在H2气氛下500~750℃还原1~ 2h,用0.001~0.01mol·L-1盐酸溶液浸泡0.5~5min,用去离子水洗涤,室温真空干燥后得到Cu-ZnO/SiO2催化剂。
下面将详细地说明本发明:
本发明采用简单水热法合成了铜锌基多金属页硅酸盐催化剂,页硅酸盐的合成能够增强金属载体相互作用,提高催化剂的稳定性。页硅酸盐还原后,第三过渡金属M(铁、钴或镍)与铜形成Cu-M合金,锌物种已氧化锌形式存在;通过酸刻蚀选择性刻蚀掉Cu-M合金中的第三过渡金属M,并保留ZnO,使剩余的活性位点金属Cu的分散性提高,从而构筑高活性的铜锌基Cu-ZnO/SiO2催化剂。其中,金属Cu作为CO2加氢制甲酸的活性组分,ZnO作为甲醇与甲酸反应制甲酸甲酯反应的活性组分。添加ZnO可以降低催化剂的碱性和表面Cu+的比例,有助于抑制甲酸甲酯的分解反应,从而提高甲酸甲酯选择性。
本发明的催化剂活性评价操作方法为:
催化测试在连续流动固定床微反应系统中进行。将300mg催化剂(造粒、粉碎并筛分至 100–300mm)装入管式反应器并于400℃和大气压下在Ar(10%)和H2(90%)流中预还原1h。还原后,将固定床冷却至室温。然后,将反应混合物(摩尔比CO2/H2/CH3OH=4/4/1)以59 Nml/min的流速引入反应器中。高压热质量流量控制器用于保持H2-Ar混合物的恒定流量,而两个注射泵用于供给液化CO2和CH3OH。反应器中的压力由自动背压调节器调节。在指定温度(140–280℃)和压力(300bar)下反应的稳态操作期间,在配备TCD和FID检测器的GC-7820 型气相色谱仪(北京中科惠分)上对产物进行定性定量分析。TCD检测器配备PorapakQ-S(1 m)和5A分子筛柱(3m)连用,使用高纯氦气作载气。FID检测器配备DB-WAXETR柱,柱长50m,柱径为0.320nm,使用高纯氮气作载气。甲酸甲酯的产量由内标法计算得出。
附图说明
图1为实施例1未还原态铜锌基多金属页硅酸盐催化剂的SEM图像;
图2为实施例1未还原态铜锌基多金属页硅酸盐催化剂的广角XRD图谱;
图3为实施例1、2、3中还原态Cu-ZnO/SiO2催化剂的广角XRD图谱;
图4为实施例1–6中的催化剂在CO2加氢制甲酸甲酯反应中CO2转化率(a)及MF选择性(b);
图5为实施例2催化CO2加氢制甲酸甲酯反应的稳定性测试性能图:(a)CO2转化率及(b)MF选择性;
图6为实施例2稳定性测试后催化剂的广角XRD图谱。
具体实施方式
以下通过是实施例对本发明技术方案做进一步说明,但本发明不局限于以下实施例。
实施例1
称取8.10mmol CuCl2·2H2O、0.68mmol ZnCl2和1.22mmol FeCl2·6H2O(CuCl2·2H2O、ZnCl2和FeCl2·6H2O的摩尔比为12:1:1.8)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加10.5mL氨水(氨水与水溶性盐摩尔比为14:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在200℃下水热12h。冷却后抽滤用去离子水洗涤几次,置于60℃烘箱中过夜干燥,再在空气氛围中400℃下以2℃·min-1升温速率焙烧4h,在H2气氛下以5℃·min-1升温速率至500℃还原2h,用0.01mol·L-1盐酸溶液浸泡1min,用去离子水洗涤,室温真空干燥后得到的催化剂标记为12CuZn/SiO2
实施例2
称取8.26mmol Cu(NO3)2·3H2O、0.92mmol Zn(NO3)2·6H2O和0.82mmol Fe(NO3)3·9H2O (Cu(NO3)2·3H2O、Zn(NO3)2·6H2O和Fe(NO3)3·9H2O的摩尔比为9:1:0.9)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加12.0mL氨水(氨水与水溶性盐摩尔比为16:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在180℃下水热24h。冷却后抽滤用去离子水洗涤几次,置于60℃烘箱中过夜干燥,再在空气氛围中450℃下以2℃·min-1升温速率焙烧3h,在 H2气氛下以5℃·min-1升温速率至550℃还原1h,用0.002mol·L-1盐酸溶液浸泡2min,用去离子水洗涤,室温真空干燥后得到的催化剂标记为9CuZn/SiO2
实施例3
称取8.22mmol Cu(NO3)2·3H2O、1.37mmol Zn(NO3)2·6H2O和0.41mmol Co(NO3)2·6H2O (Cu(NO3)2·3H2O、Zn(NO3)2·6H2O和Co(NO3)2·6H2O的摩尔比为6:1:0.3)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加7.5mL氨水(氨水与水溶性盐摩尔比为10:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在160℃下水热48h。冷却后抽滤用去离子水洗涤几次,置于60℃烘箱中过夜干燥,再在空气氛围中450℃下以2℃·min-1升温速率焙烧4h,在 H2气氛下以5℃·min–1升温速率至750℃还原1h,用0.008mol·L-1盐酸溶液浸泡0.5min,用去离子水洗涤,室温真空干燥后得到的催化剂标记为6CuZn/SiO2
实施例4
称取7.62mmol Cu(CH3COO)2·H2O、0.95mmol Zn(CH3COO)2·2H2O和1.43mmol Co(CH3COO)2·4H2O(Cu(CH3COO)2·H2O、Zn(CH3COO)2·2H2O和Co(CH3COO)2·4H2O的摩尔比为8:1:1.5)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加9.0mL氨水(氨水与水溶性盐摩尔比为12:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在220℃下水热12h。冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中500℃下以2℃·min-1升温速率焙烧2h,在H2气氛下以5℃·min–1升温速率至700℃还原2h,用0.005mol·L-1盐酸溶液浸泡3min,用去离子水洗涤数次,室温真空干燥后得到的催化剂标记为8CuZn/SiO2
实施例5
称取8.47mmol CuCl2·2H2O、0.85mmol ZnCl2和0.68mmol NiCl2·6H2O(CuCl2·2H2O、ZnCl2和NiCl2·6H2O的摩尔比为10:1:0.8)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加13.5mL氨水(氨水与水溶性盐摩尔比为18:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在180℃下水热36h。取出冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中470℃下以2℃·min-1升温速率焙烧3h,在H2气氛下以5℃·min–1升温速率至700℃还原1h,用0.001mol·L-1盐酸溶液浸泡1min,用去离子水洗涤,室温真空干燥后得到的催化剂标记为10CuZn/SiO2
实施例6
称取7.59mmol Cu(CH3COO)2·H2O、0.51mmol Zn(CH3COO)2·2H2O和1.90mmol Ni(CH3COO)2·4H2O(Cu(CH3COO)2·H2O、Zn(CH3COO)2·2H2O和Ni(CH3COO)2·4H2O的摩尔比为15:1:3.75)于20mL去离子水、40mL无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加15.0mL氨水(氨水与水溶性盐摩尔比为20:1),搅拌30min后缓慢滴加由10mmol Na2SiO3·9H2O配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在200℃下水热24h。冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中450℃下以2℃·min-1升温速率焙烧4h,在H2气氛下以5℃·min–1升温速率至650℃还原1.5h,用0.002mol·L-1盐酸溶液浸泡5min,用去离子水洗涤,室温真空干燥后得到的催化剂标记为15CuZn/SiO2
图1是实施例1中制得的未还原态铜锌基多金属页硅酸盐催化剂的SEM图像,图2为实施例1未还原态铜锌基多金属页硅酸盐催化剂的广角XRD图谱,可以看到,21.3、30.7、34.8和57.1°衍射峰对应于页硅酸铜,19.2、27.1和35.1°为页硅酸锌的特征峰,35.7、57.8和62.7°的峰归属于页硅酸铁,说明用此种方法制备得到了铜锌基多金属页硅酸盐催化剂。
图3给出了实施例1、2、3中所制备的还原态12CuZn/SiO2、9CuZn/SiO2和6CuZn/SiO2催化剂的XRD谱图。其中2θ=43.3°和2θ=74.2°的峰为CO2加氢制甲酸甲酯串联反应第一步加氢反应活性中心Cu的特征峰,2θ=36.3°和2θ=47.6°是第二步酯化反应活性中心ZnO的特征峰,由此可见,用此方法获得了用于CO2加氢制甲酸甲酯的Cu-ZnO/SiO2催化剂。
催化剂性能评价。
对实施例1–6进行催化CO2加氢制甲酸甲酯反应的性能测试。
图4为实施例1–6中的催化剂在CO2加氢制甲酸甲酯反应中CO2转化率(a)及MF选择性(b),由图4可知,制备的六种Cu-ZnO/SiO2催化剂的CO2转化率在140–280℃随温度逐渐升高,250℃基本达到稳定;甲酸甲酯的选择性几乎保持不变,保持在99%左右,所以制备的CO2加氢制甲酸甲酯的铜锌基Cu-ZnO/SiO2催化剂具有优异的催化活性。
对实施例2进行催化CO2加氢制甲酸甲酯反应的稳定性测试。
图5为实施例2催化剂9CuZn/SiO2在压力为300bar、温度为250℃时进行的稳定性测试性能图,结果表明制备的CO2加氢制甲酸甲酯的铜锌基多金属页硅酸盐催化剂在使用100 h后CO2转化率和MF选择性保持稳定;图6为实施例2催化剂9CuZn/SiO2进行100h稳定性测试后的XRD谱图,代表活性中心的峰与稳定性测试前变化不大,说明制备的CO2加氢制甲酸甲酯的铜锌基多金属页硅酸盐催化剂的金属铜抗烧结能力强;稳定性测试结果进一步说明水热法“一步”制备的铜锌基多金属页硅酸盐催化剂经过还原、酸刻蚀去合金化后得到的Cu-ZnO/SiO2催化剂具有高稳定性。所以本发明提出的一种CO2加氢制甲酸甲酯的铜锌基多金属页硅酸盐催化剂具有广阔的应用前景。

Claims (3)

1.一种铜锌基催化剂在CO2加氢制甲酸甲酯中的应用,其特征在于,所述铜锌基催化剂的制备方法为:称取水溶性铜盐、锌盐和第三过渡金属盐于去离子水、无水乙醇混合溶液中,在三口烧瓶中搅拌溶解,滴加氨水,搅拌30min后缓慢滴加由九水合硅酸钠配成的溶液,搅拌30min,将上述混合物转移至高压反应釜中在160~220℃下水热反应12~48h;冷却后抽滤用去离子水洗涤,置于60℃烘箱中过夜干燥,再在空气氛围中以2℃·min−1升温速率加热至400~500℃焙烧2~4h,制得铜锌基多金属页硅酸盐催化剂;在H2气氛下以5℃·min−1升温速率加热至500~750℃还原1~2h,用0.001~0.01mol·L−1盐酸溶液浸泡0.5~5min,用去离子水洗涤,室温真空干燥后得到Cu-ZnO/SiO2催化剂;
第三过渡金属为铁、钴或镍中的一种;
铜盐、锌盐和第三过渡金属盐的摩尔比为6:1:0.3~15:1:3.75。
2.如权利要求1所述的铜锌基催化剂在CO2加氢制甲酸甲酯中的应用,其特征在于,水溶性铜盐、锌盐和第三过渡金属盐为硝酸盐、氯化物或醋酸盐。
3.如权利要求1所述的铜锌基催化剂在CO2加氢制甲酸甲酯中的应用,其特征在于,氨水与加入的水溶性盐总物质量的摩尔比为10:1~20:1。
CN202111246037.9A 2021-10-26 2021-10-26 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法 Active CN114210334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111246037.9A CN114210334B (zh) 2021-10-26 2021-10-26 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111246037.9A CN114210334B (zh) 2021-10-26 2021-10-26 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN114210334A CN114210334A (zh) 2022-03-22
CN114210334B true CN114210334B (zh) 2024-01-30

Family

ID=80696272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111246037.9A Active CN114210334B (zh) 2021-10-26 2021-10-26 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114210334B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274278A (zh) * 2007-03-28 2008-10-01 中国科学院大连化学物理研究所 一种用于甲醇合成的催化剂的制备方法
CN104437510A (zh) * 2014-10-30 2015-03-25 中国石油化工股份有限公司 一种co2加氢制甲醇用铜锌基催化剂的制备方法
CN105645375A (zh) * 2015-12-17 2016-06-08 天津工业大学 一种在纳米多孔铜上直接生长多孔碳纳米管的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274278A (zh) * 2007-03-28 2008-10-01 中国科学院大连化学物理研究所 一种用于甲醇合成的催化剂的制备方法
CN104437510A (zh) * 2014-10-30 2015-03-25 中国石油化工股份有限公司 一种co2加氢制甲醇用铜锌基催化剂的制备方法
CN105645375A (zh) * 2015-12-17 2016-06-08 天津工业大学 一种在纳米多孔铜上直接生长多孔碳纳米管的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review;Dien-Thien To、Yu-Chuan Lin;《Catalysts》;第11卷;1-36 *
Perfomance enhancement of Cu/SiO2 catalyst for hydrogenation ofimethyl oxalate to ethylene glycol through zinc incorporation;Wang Qi et al.;《Catalysis Communications》;68-72 *

Also Published As

Publication number Publication date
CN114210334A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
KR102524420B1 (ko) 탄소-코팅된 전이금속 나노복합체, 이의 제조 및 용도
Idem et al. Production of hydrogen from methanol. Part 1. Catalyst characterization studies
EP2418017B1 (en) Catalyst comprising palladium on crystalline zinc chromite and its use in acetone self-condensation
CN109675569A (zh) 一种负载型镍基合金催化剂及其制备方法和应用
CN107952437B (zh) 用于二氧化碳加氢合成甲醇的Cu/二氧化钛纳米片催化剂及其制备方法
Bu et al. Efficient synthesis of imine from alcohols and amines over different crystal structure MnOX catalysts
CN113209958B (zh) 一种掺杂Zn元素的固溶体催化剂及制备和应用
She et al. Bimetallic CuZn-MOFs derived Cu-ZnO/C catalyst for reductive amination of nitroarenes with aromatic aldehydes tandem reaction
Li et al. CO 2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid
Li et al. Iron promoted MOF-derived carbon encapsulated NiFe alloy nanoparticles core-shell catalyst for CO2 methanation
CN109847756B (zh) 一种中空结构的镍基纳米催化剂及其制备方法与应用
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN114210334B (zh) 一种co2加氢制甲酸甲酯的铜锌基催化剂及其制备方法
Fu et al. Highly dispersed rhodium atoms supported on defect-rich Co (OH) 2 for the chemoselective hydrogenation of nitroarenes
CN104959149A (zh) 一种α,β不饱和醛选择性加氢催化剂及其制备方法
JP4701455B2 (ja) 水素製造用触媒とその製造方法及び水素の製造方法
CN114917929B (zh) 用于有机液体储氢材料加氢与脱氢的催化剂及其制备方法和应用
Jiang et al. Efficient C= O bond hydrogenation of cinnamaldehyde over PtCu alloy frame: Insight into the morphology and Pt species state
CN114160137B (zh) 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及制备方法和使用方法
CN113145127B (zh) 一种用于甲醇水蒸气重整制氢的Cu催化剂及其制备方法和应用
CN111495375B (zh) 一种蠕虫状CuNi/Al2O3催化剂、其制备方法及应用
CN112206789A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法和应用
Ananthan et al. Liquid phase selective hydrogenation of citral over bimetallic transition metal catalysts
CN111495374B (zh) 一种包覆型CoNi/Al2O3催化剂、其制备方法及应用
Li et al. CoNi alloy catalyst supported on Zr-modified Y2O3 for ammonia decomposition to COx-free hydrogen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant