CN114196031A - 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用 - Google Patents

一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用 Download PDF

Info

Publication number
CN114196031A
CN114196031A CN202111035037.4A CN202111035037A CN114196031A CN 114196031 A CN114196031 A CN 114196031A CN 202111035037 A CN202111035037 A CN 202111035037A CN 114196031 A CN114196031 A CN 114196031A
Authority
CN
China
Prior art keywords
mofs
pots
coating
hydrophobic
thiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111035037.4A
Other languages
English (en)
Inventor
刘峥
程夏
邢淋慧
郭雨婷
吴富城
韦文厂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202111035037.4A priority Critical patent/CN114196031A/zh
Publication of CN114196031A publication Critical patent/CN114196031A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明提供了一种基于噻吩类MOFs的POTS超疏水改性材料,该超疏水改性材料的主要原料为由三乙氧基‑1H,1H,2H,2H‑十三氟代正辛基硅烷(POTS),以及由铜盐、3,4‑乙撑二氧基噻吩‑2,5‑二羧酸、2,2′‑联吡啶。所述的Cu‑MOFs/POTS疏水性材料,可作为助剂,应用于环氧树脂涂层中,可以极大提高涂层的防腐性能。

Description

一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及 应用
技术领域
本发明属于一种疏水材料制备技术领域,具体涉及基于噻吩类MOFs的 POTS超疏水改性材料的制备方法及其在环氧树脂涂层中的应用。
背景技术
涂料助剂在涂料配方用量少,但对增强涂料的性能起到关键作用。涂料助剂总共有大约40种不同功能的类型(乳化剂、分散剂、消泡剂、增稠剂、防缩孔剂、干燥促进剂、杀菌剂等)。由于助剂的价值相对较高,配方设计时应尽可能地选择最优助剂,尽可能使用最少的助剂发挥最大的效果。涂料助剂的应用和应用水平,已成为衡量涂料生产技术水平的标志之一。
由于水性防腐涂料中残留水性基团导致疏水性能、机械性能较差,针对这一特点,在水性防腐涂料所用助剂除了一些基础助剂之外,还需加入少量特殊助剂到水性防腐涂料配方中,如目前被研究人员报道的助剂有石墨烯、纳米二氧化硅、多壁碳纳米管、纳米氧化铝颗粒、稀土助剂以及MOFs助剂等,这些助剂在配方中用量虽少,但明显提高水性防腐涂料的综合性能。
MOFs材料的比表面积高、表面曲率大,更容易形成纳米复合材料涂层。将 MOFs材料作为防腐助剂加入水性防腐涂料中,可以提高涂层的机械性能、热稳定性和防腐性能。因此关于MOFs材料作为防腐助剂应用于水性防腐涂料,已成为新型防腐涂料性能改善与开发的研究重点。
Kumaraguru等人将合成出的Co-MOFs、Ni-MOFs、Cu-MOsF作为助剂加入到水性丙烯酸树脂中,然后涂刷到碳钢表面,采用电化学阻抗谱(EIS)研究涂覆了不同MOFs的低碳钢在3.5wt.%NaCl和0.1mol/LHCl溶液中上的腐蚀速率,结果发现分别涂覆有Co-MOFs、Ni-MOFs、Cu-MOFs的碳钢片的腐蚀速度均比只涂覆水性丙烯酸树脂的碳钢片慢很多。作者认为添加了MOFs的涂层能抑制低碳钢表面附近的Cl-扩散并与低碳钢存在着稳定的协同作用,进而增强涂料的防腐能力。
水性防腐涂料由于以水为溶剂,导致涂料成膜时的疏水性与机械强度等有所欠缺,这会导致腐蚀介质容易与基材表面发生接触,从而降低涂层对基材的防腐作用。在这一背景下,研究人员开始对MOFs材料进行改性,希望改性后的MOFs 材料可以提高水性涂料形成的涂层的机械性能、防腐性能、疏水性能等。对MOFs 助剂进行改性是改善水性涂料性能的重要发展方向之一。
本发明提出了一种制备疏水性MOFs复合材料的策略。通过POTS对 Cu-MOFs粒子表面进行修饰,制备Cu-MOFs/POTS疏水性材料。再将 Cu-MOFs/POTS疏水性材料作为助剂添加到环氧树脂(EP)防腐涂层中,制备出超疏水Cu-MOFs/POTS/EP复合涂层。测定了水滴在所有涂层表面的水接触角,以验证涂层的疏水性能;利用电化学测试技术,系统的研究了空白碳钢片试样和超疏水防腐涂层在3.5wt.%NaCl溶液中的电化学腐蚀的变化情况。
发明内容
发明目的:目前对碳钢进行腐蚀防护最简单有效的方法就是在碳钢的表面涂上一层有机涂层。但有机涂层存在疏水性差,易产生缩孔,对抗机械性能较弱,分散稳定性差的问题。在防腐涂层中添加一些助剂特别是疏水性助剂是解决这些问题的重要手段。本发明制备一种基于噻吩类MOFs的POTS超疏水改性材料作为助剂,添加进入环氧树脂涂层中,提高了涂层的防腐性能。
发明思路:
首先,噻吩类羧酸配体有良好的刚性结构,而且其氧和硫原子均可参与可配位,使配位模式丰富。S原子的孤对电子在噻吩环的富电子共轭体系内容易离域,可优化配合物的性能。因此,利用含噻吩羧酸配体设计并合成新型功能配合物的材料是一个重要策略。结合噻吩羧酸配体的以上特点,预先进行结构设计,完成配体连接和金属节点的空间排布,可得到预期的框架结构。因此噻吩类羧酸是一类构筑MOFs材料的理想配体。
其次,三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS)对MOFs进行疏水改性可以进一步提高MOFs的疏水性。因为POTS中的氟原子(下式)几乎将 C-C-C键完全包围起来,水分子很难进入破坏C-C键,因此,POTS具有优异的疏水性能,可以提高MOFs材料的疏水性能。由于噻吩羧酸配体具有富电性和刚性结构特点,POTS对其进行疏水改性后不会改变其结构特点。
Figure BDA0003246807330000031
本发明提出的一种基于噻吩类MOFs的POTS超疏水改性材料的制备方及应用方案主要包括以下内容:
所述的基于噻吩类MOFs的POTS超疏水材料,其特征在于,其制备方法为:
(1)将0.345g3,4-乙撑二氧基噻吩-2,5-二羧酸配体和0.234g2,2′-联吡啶 (2,2′-bipy)溶于含7mLN,N-二甲基甲酰胺(DMF)的烧杯1中,0.393g二水合氯化铜溶于含7mL去离子水烧杯2中,分别磁力搅拌至完全溶解后,将烧杯1 溶液倒入烧杯2中互混,继续搅拌20min,最后移入反应釜中,在100℃下加热 96h,然后每1h降温5℃,直至降至室温,即获得Cu-MOFs沉淀;
(2)将三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS)加入到无水乙醇中进行混合,超声处理40min,再将POTS的乙醇溶液均匀搅拌1个小时后,加入上述步骤(1)获得的Cu-MOFs中,继续搅拌24分钟,得到的悬浊液即为 Cu-MOFs/POTS疏水性材料。
所述的Cu-MOFs/POTS疏水性材料,可作为助剂,应用于环氧树脂涂层中,可以极大提高涂层的防腐性能,其涂层制备过程如下:按质量比10:1:0.05将环氧树脂(EP)、聚酰胺、Cu-MOFs/POTS疏水性材料混合后,利用电动搅拌机不断搅拌,搅拌过程中,取15mL丙酮分三次加入,每隔半个小时滴加一次,每次添加5mL,搅拌均匀,获得Cu-MOFs/POTS/EP超疏水性涂料,在打磨好后的碳钢片上均匀涂覆Cu-MOFs/POTS/EP,固化6h后,可以获得超疏水性防腐涂层。
附图说明
图1Cu-MOFs/POTS红外光谱图(M1P76)
图2Cu-MOFs/POTS的XRD图(M1P77)
图3碳钢(a)及其表面上(b)EP涂层、(c)POTS涂层、(d)Cu-MOFs涂层、 (e)Cu-MOFs/POTS涂层、(f)Cu-MOFs/POTS/EP涂层的水接触角测试结果图。 (M1P82)
图4裸碳钢和涂覆有EP、Cu-MOFs/EP、Cu-MOFs/POTS/EP防腐涂层的时间-电位曲线(M1P83)
图5裸碳钢和涂覆有EP、Cu-MOFs/EP、Cu-MOFs/POTS/EP防腐涂层的动电位极化曲线图(M1P83)
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1
1.Cu-MOFs的制备方法
将0.345g3,4-乙撑二氧基噻吩-2,5-二羧酸配体和0.234g2,2′-联吡啶 (2,2′-bipy)溶于含7mLN,N-二甲基甲酰胺(DMF)的烧杯1中,0.393g二水合氯化铜溶于含7mL去离子水烧杯2中,分别磁力搅拌至完全溶解后,将烧杯1 溶液倒入烧杯2中互混,继续搅拌20min,最后移入反应釜中,在100℃下加热 96h,然后每1h降温5℃,直至降至室温,即获得Cu-MOFs沉淀。
2.Cu-MOFs/POTS疏水性材料的制备方法
将三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS)加入到无水乙醇中进行混合,超声处理40min,再将POTS的乙醇溶液均匀搅拌1个小时后,加入上述步骤(1)获得的Cu-MOFs中,继续搅拌24分钟,得到的悬浊液即为 Cu-MOFs/POTS疏水性材料。
3.Cu-MOFs/POTS疏水性材料在环氧树脂涂层中的应用 Cu-MOFs/POTS疏水性材料,可作为助剂,应用于环氧树脂涂层中,可以极大提高涂层的防腐性能,其涂层制备过程如下:按质量比10:1:0.05将环氧树脂(EP)、聚酰胺、Cu-MOFs/POTS疏水性材料混合后,利用电动搅拌机不断搅拌,搅拌过程中,取15mL丙酮分三次加入,每隔半个小时滴加一次,每次添加5mL,搅拌均匀,获得Cu-MOFs/POTS/EP超疏水性涂料,在打磨好后的碳钢片上均匀涂覆Cu-MOFs/POTS/EP,固化6h后,可以获得超疏水性防腐涂层。
4.Cu-MOFs/POTS红外光谱图测试分析
对Cu-MOFs、POTS和Cu-MOFs/POTS的化学组成进行FTIR光谱表征,结果如附图1所示。Cu-MOFs在3518、2362、1667、1603和728cm-1处有五个特征峰,分别与噻吩类羧酸配体的O-H、C-S、C=O、C-S和Cu-N的振动吸收峰相对应。而Cu-MOFs的红外吸收峰都出现在Cu-MOFs/POTS复合材料的FTIR光谱中,证明复合材料中Cu-MOFs的存在。此外,与Cu-MOFs相比,Cu-MOFs/POTS 的光谱中还出现了三个新的吸附峰,而这些峰与POTS的吸附峰均是一一对应的。 POTS分子中C-F、吸收峰位于1243cm-1,位于1095和951cm-1处的吸附峰,分别对应C-O-Si和Si-O-C2H5的吸收峰。以上FTIR光谱结果分析表明,Cu-MOFs 以及Cu-MOFs/POTS超疏水性材料成功制备。
5.Cu-MOFs/POTS的XRD图测试分析
利用XRD测试研究了Cu-MOFs粒子和Cu-MOFs/POTS复合材料的晶体结构,结果如附图2所示。从Cu-MOFsXRD图谱中可以看到2θ从5°到60°之间具有许多衍射峰,这是由于Cu-MOFs的有序多孔结构产生。而Cu-MOFs/POTS的衍射峰分别和Cu-MOFs/几乎一致,表明POTS对Cu-MOFs/修饰后,晶体结构几乎没有影响,这也进一步说明了Cu-MOFs具有较强的结构稳定性。同时,通过jade5.6软件计算Cu-MOFs/POTS复合材料的平均晶粒尺寸为76.9nm。
6.水接触角测试结果分析
附图3为碳钢(a)及其表面上(b)EP涂层、(c)POTS涂层、(d)Cu-MOFs涂层、 (e)Cu-MOFs/POTS涂层、(f)Cu-MOFs/POTS/EP涂层的水接触角测试结果图。由附图3可知,与纯碳钢片表面相比其接触角非常小,这是由于本专利用水和DMF 作为溶剂来制备MOFs纳米粒子,制备的Cu-MOFs在水中分散性较好,具有亲水性。Cu-MOFs具有多孔结构,根据Wenzel理论,亲水表面粗糙度越大,接触角会越小,因此,Cu-MOFs涂层的接触角只有38.5°。EP涂层的接触角为58.9°,为亲水界面(如图(b))。图(c)是涂覆有POTS/乙醇溶液的接触角照片,水接触角为85.3°,大于未处理之前的纯碳钢片,这是因为POTS本身具有一定的疏水性,但因碳钢片表面较为光滑,疏水性较差。图(e)是将疏水性Cu-MOFs/POTS超疏水性材料涂覆到碳钢片表面后的接触角照片,MOFs本身粗糙表面以及得到 POTS修饰后获得低表面能,使得该涂层疏水性增强,接触角高达127.7°,证实了构建超疏水表面的两个条件分别是一定的粗糙度以及低表面能。与Cu-MOFs/EP涂层相比,图(f)显示超疏水Cu-MOFs/POTS/EP复合涂层表现出更高的疏水性,接触角较Cu-MOFs//EP涂层相比有所增大,达到了154.8°,达到了超疏水级别。这是因为环氧树脂粘结层的存在,提供了微米级的粗糙结构,而 Cu-MOFs/POTS超疏水材料给涂层提供了良好的低表面能,再加上 Cu-MOFs/POTS中的Cu-MOFs及POTS分子具有平面性,因此二者能够形成稳定的超疏水材料;另外超疏水材料中MOFs羧基中的氢能与环氧树脂中的氧能形成氢键,增强了Cu-MOFs/POTS超疏水材料在环氧树脂中的相容性,因此Cu-MOFs/POTS/EP更适合形成超疏水表面。疏水性能的大小为 Cu-MOFs/POTS/EP>Cu-MOFs/EP>POTS>裸碳钢片>Cu-MOFs。
7.时间-电位曲线分析
裸碳钢和涂有EP、Cu-MOFs/EP、Cu-MOFs/POTS/EP复合涂层在 3.5wt.%NaCl溶液中的开路电位(EOCP)与浸泡时间的关系曲线如附图4所示。如附图4所示,对于包括裸碳钢在内的所有样品,开路电位均有不同程度的负移,并在约2000s后达到稳态条件。结果表明,裸碳钢的EOCP值为-0.7176V,纯环氧树脂涂层的EOCP为-0.7140V,Cu-MOFs/EP、Cu-MOFs/POTS/EP涂层的EOCP值分别为-0.5532、-0.5813V。涂覆有复合涂层的EOCP值均比空白裸碳钢和纯环氧树脂防腐涂层的高,说明复合涂层均能较好的保护碳钢不受腐蚀介质的侵蚀。
8.电位极化曲线分析
附图5为裸碳钢和涂覆有EP、Cu-MOFs/EP、Cu-MOFs/POTS/EP复合涂层的碳钢在3.5wt.%NaCl溶液中的动电位极化曲线图。
与裸碳钢相比,涂覆有EP、Cu-MOFs/EP、Cu-MOFs/POTS/EP复合涂层的极化曲线均往下移,腐蚀电流减小,腐蚀电位正向移动,表明碳钢受到保护,腐蚀速率减小。

Claims (3)

1.一种基于噻吩类MOFs的POTS超疏水改性材料,其特征在于:三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS),以及由铜盐、3,4-乙撑二氧基噻吩-2,5-二羧酸、2,2′-联吡啶形成的Cu-MOFs组成。
2.根据权利要求1所述的基于噻吩类MOFs的POTS超疏水材料,其特征在于,其制备方法为:
(1)将0.345g 3,4-乙撑二氧基噻吩-2,5-二羧酸配体和0.234g 2,2′-联吡啶(2,2′-bipy)溶于含7mL N,N-二甲基甲酰胺(DMF)的烧杯1中,0.393g二水合氯化铜溶于含7mL去离子水的烧杯2中,分别磁力搅拌至完全溶解后,将烧杯1溶液倒入烧杯2中互混,继续搅拌20min,最后移入反应釜中,在100℃下加热96h,然后按每1小时降温5℃,直至降至室温,即获得Cu-MOFs沉淀;
(2)将三乙氧基-1H,1H,2H,2H-十三氟代正辛基硅烷(POTS)加入到无水乙醇中进行混合,超声处理40min,再将该POTS乙醇溶液均匀搅拌1个小时后,加入上述步骤(1)获得的Cu-MOFs中,继续搅拌24分钟,得到的悬浊液即为Cu-MOFs/POTS疏水性材料。
3.根据权利要求2所述的Cu-MOFs/POTS疏水性材料,可作为助剂,应用于环氧树脂涂层中,可以极大提高涂层的防腐性能,其涂层制备过程如下:按质量比10:1:0.05将环氧树脂(EP)、聚酰胺、Cu-MOFs/POTS疏水性材料混合后,利用电动搅拌机不断搅拌,搅拌过程中,取15mL丙酮分三次加入,每隔半个小时滴加一次,每次添加5mL,搅拌均匀,获得Cu-MOFs/POTS/EP超疏水性涂料,在打磨好后的碳钢片上均匀涂覆Cu-MOFs/POTS/EP,固化6h后,可以获得Cu-MOFs/POTS/EP超疏水性防腐涂层。
CN202111035037.4A 2021-09-04 2021-09-04 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用 Pending CN114196031A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111035037.4A CN114196031A (zh) 2021-09-04 2021-09-04 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111035037.4A CN114196031A (zh) 2021-09-04 2021-09-04 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN114196031A true CN114196031A (zh) 2022-03-18

Family

ID=80645976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111035037.4A Pending CN114196031A (zh) 2021-09-04 2021-09-04 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114196031A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122409A (ja) * 2002-09-30 2004-04-22 Sumitomo Metal Ind Ltd クリア塗装ステンレス鋼板
CN104861822A (zh) * 2015-05-05 2015-08-26 沈阳化工大学 一种金属有机骨架/水性防腐涂料的制备方法
CN109293933A (zh) * 2018-08-13 2019-02-01 山东工商学院 基于沸石咪唑酯骨架的超疏水自清洁聚合物及其制备方法
CN109722089A (zh) * 2018-12-21 2019-05-07 上海乘鹰新材料有限公司 紫外光固化涂料用抗污助剂
CN111363450A (zh) * 2020-05-08 2020-07-03 江苏冠军科技集团股份有限公司 一种改性环氧防腐涂料及其制备方法和应用
CN112011266A (zh) * 2020-10-29 2020-12-01 宁波富纳新材料科技有限公司 一种uv固化涂层、包含其的保护膜及其制备方法
WO2020246746A2 (ko) * 2019-06-01 2020-12-10 고려대학교 산학협력단 소수성 실란이 코팅된 아민 접지 mof/alumina 복합체 기반 이산화탄소 흡착제
CN112457696A (zh) * 2020-10-28 2021-03-09 桂林理工大学 一种基于喹啉类纳米金属-有机框架材料的自修复涂层及其制备方法
CN113000070A (zh) * 2021-03-11 2021-06-22 辽宁大学 含氟超疏水改性MOFs材料及其作为催化剂在催化制备环状碳酸酯中的应用
CN113214495A (zh) * 2021-06-09 2021-08-06 西南交通大学 一种超疏水Cu-MOFs及其制备方法和增加NO装载与延缓释放的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122409A (ja) * 2002-09-30 2004-04-22 Sumitomo Metal Ind Ltd クリア塗装ステンレス鋼板
CN104861822A (zh) * 2015-05-05 2015-08-26 沈阳化工大学 一种金属有机骨架/水性防腐涂料的制备方法
CN109293933A (zh) * 2018-08-13 2019-02-01 山东工商学院 基于沸石咪唑酯骨架的超疏水自清洁聚合物及其制备方法
CN109722089A (zh) * 2018-12-21 2019-05-07 上海乘鹰新材料有限公司 紫外光固化涂料用抗污助剂
WO2020246746A2 (ko) * 2019-06-01 2020-12-10 고려대학교 산학협력단 소수성 실란이 코팅된 아민 접지 mof/alumina 복합체 기반 이산화탄소 흡착제
CN111363450A (zh) * 2020-05-08 2020-07-03 江苏冠军科技集团股份有限公司 一种改性环氧防腐涂料及其制备方法和应用
CN112457696A (zh) * 2020-10-28 2021-03-09 桂林理工大学 一种基于喹啉类纳米金属-有机框架材料的自修复涂层及其制备方法
CN112011266A (zh) * 2020-10-29 2020-12-01 宁波富纳新材料科技有限公司 一种uv固化涂层、包含其的保护膜及其制备方法
CN113000070A (zh) * 2021-03-11 2021-06-22 辽宁大学 含氟超疏水改性MOFs材料及其作为催化剂在催化制备环状碳酸酯中的应用
CN113214495A (zh) * 2021-06-09 2021-08-06 西南交通大学 一种超疏水Cu-MOFs及其制备方法和增加NO装载与延缓释放的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAIYIN CHEN,等: ""Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research"" *
HUAIYIN CHEN,等: ""Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research"", 《CHEMICAL ENGINEERING JOURNAL》 *
韦文厂,等: ""基于3,4-乙撑二氧基噻吩环配体的铜/锌配合物的合成、晶体结构及性质"" *
韦文厂,等: ""基于3,4-乙撑二氧基噻吩环配体的铜/锌配合物的合成、晶体结构及性质"", 《无机化学学报》 *
魏润芝,等: ""超疏水化合物在金属腐蚀与防护领域的应用进展"" *

Similar Documents

Publication Publication Date Title
Li et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance
Yan et al. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating
Yan et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating
Ramezanzadeh et al. Synthesis and characterization of polyaniline tailored graphene oxide quantum dot as an advance and highly crystalline carbon-based luminescent nanomaterial for fabrication of an effective anti-corrosion epoxy system on mild steel
Yin et al. Enhancement of the anti-corrosion performance of composite epoxy coatings in presence of BTA-loaded copper-based metal-organic frameworks
Wan et al. Anticorrosive reinforcement of waterborne epoxy coating on Q235 steel using NZ/BNNS nanocomposites
CN105238207A (zh) 一种高性能的超双疏导电多功能防腐涂层及其制备方法
CN113604151A (zh) 磷化聚苯胺-二氧化硅接枝改性石墨烯/水性含环氧基硅树脂复合涂层的制备方法
Najmi et al. Design of nacre-inspired 2D-MoS2 nanosheets assembled with mesoporous covalent organic frameworks (COFs) for smart coatings
Xu et al. Effective corrosion protection by PDA-BN@ CeO2 nanocomposite epoxy coatings
Chai et al. Excellent corrosion resistance of FGO/Zn2SiO4 composite material in epoxy coatings
Li et al. Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots
CN113308139A (zh) 一种二维纳米杂化复合防腐涂料填料及其制备方法和应用
CN111876005A (zh) 一种防腐蚀光伏电缆涂层及其制备方法
Wu et al. Construction of a high-performance anti-corrosion and anti-wear coating based on the MXene@ PTA-Zn (II): Electrochemical/tribological investigations
CN103469286A (zh) 一种金属表面有机-无机复合涂层及其制备工艺
Chen et al. Controllable group tailoring enables enhanced pH-responsive behaviors of polydopamine delivery system in smart self-healing anticorrosion coatings
Sheng et al. Synergistic effect of 2D/0D mixed graphitic carbon nitride/Fe 2 O 3 on the excellent corrosion behavior of epoxy-based waterborne coatings
Cheng et al. Synthesis and characterization of poly (o-ethoxyaniline)/nano silica composite and study of its anticorrosion performance
Wang et al. Concurrent alkylation and crosslinking of polyaniline for enhanced anticorrosive performance of waterborne alkyd coating
CN113150654A (zh) 一种包含石墨烯基复合防腐材料的防腐涂料
Cai et al. A high corrosion-resistant waterborne epoxy resin coating improved by addition of multi-interface structured zinc phosphate particles
CN114196031A (zh) 一种基于噻吩类MOFs的POTS超疏水改性材料的制备方法及应用
CN112029314A (zh) 一种纳米填料及其制备方法与应用
Pan et al. Monodispersed Nanodiamonds for Enhanced Anticorrosion of Waterborne Epoxy Coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220318