CN114192132B - 一种同时获取纳米多孔带材和纳米纤维粉末的方法 - Google Patents

一种同时获取纳米多孔带材和纳米纤维粉末的方法 Download PDF

Info

Publication number
CN114192132B
CN114192132B CN202111536664.6A CN202111536664A CN114192132B CN 114192132 B CN114192132 B CN 114192132B CN 202111536664 A CN202111536664 A CN 202111536664A CN 114192132 B CN114192132 B CN 114192132B
Authority
CN
China
Prior art keywords
strip
cutipd
raw materials
alloy
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111536664.6A
Other languages
English (en)
Other versions
CN114192132A (zh
Inventor
张博
鲁直
刘青青
胡青卓
吴东燕
甘雨
周锦涛
陆禹
许苏
鲁迪
黄圆圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202111536664.6A priority Critical patent/CN114192132B/zh
Publication of CN114192132A publication Critical patent/CN114192132A/zh
Application granted granted Critical
Publication of CN114192132B publication Critical patent/CN114192132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种同时获取纳米多孔带材和纳米纤维粉末的方法,是依据脱合金原理,以单辊旋淬法制备的CuTiPd非晶带材作为前驱体,采用一步水热工艺同时制备获得了TiO2纳米纤维粉末和纳米多孔结构的带材。本发明的方法新颖高效,所得产品利用率高,且工艺简单、成本低廉,相较于其它工艺具有更好的工业应用优势。

Description

一种同时获取纳米多孔带材和纳米纤维粉末的方法
技术领域
本发明属于纳米材料制备领域,具体涉及一种同时获取纳米多孔带材和纳米纤维粉末的方法。
背景技术
纳米多孔金属氧化物材料和金属氧化物纳米纤维材料是同时具有成分和结构优势的材料。结构上,纳米多孔骨架是孔径为几纳米至几十纳米、内部具有大量连通的纳米孔隙的结构,纳米纤维是直径为纳米尺度而长度较长的具有一定长径比的线状材料。纳米多孔和纳米纤维的结构特征赋予了材料高比表面积、低密度、高通透性、高导电导热率和结构灵活可调等特点,同时其还具有与其它纳米结构材料一样的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,这些效应赋予了纳米结构材料独特的物理、化学以及力学性能,结合其比表面积高、质轻等特点,使其在能源、催化、过滤、传感等方面具有广阔的应用前景。
成分上,金属氧化物大多是优良的半导体材料,半导体是导电能力介于导体和绝缘体之间的物质,在光捕获和载流子传输方面具有优势。当半导体的尺度缩小到纳米范围时,其物理、化学性质将发生显著变化。这决定了它在太阳能电池、光催化、光电探测等领域的突出性能和应用潜力。
目前,有关金属氧化物纳米纤维结构和纳米多孔金属氧化物材料的研究多集中于制备方法上,两种结构所采用的制备方法差异很大。制备纳米多孔材料的方法主要有模板法、Layer-by-Layer自组装技术和脱合金化法,制备纳米纤维材料的方法多采用静电纺丝法和溶胶凝胶法。除了脱合金法,其它技术常规合成路线成本高、工艺复杂。因此,在不使用模板、昂贵或有毒化学品或外部刺激的情况下通过一步脱合金法实现纳米多孔带材和金属氧化物纳米纤维粉末的同时获得是值得研究的。
此外,传统的脱合金法通常是通过脱去前驱体合金中活泼组分,留下相对惰性的组分形成具有纳米结构的目标材料,人们较少考虑对脱去的活泼金属元素进行进一步的回收和再利用,这样不仅造成了金属成分的浪费,还使腐蚀溶液中溶进了金属组分,增加了腐蚀液净化难度。因此,实现这部分损失组分的再利用也具有研究意义。
发明内容
鉴于此,本发明的目的是提供一种同时获取纳米多孔带材和纳米纤维粉末的方法,使得既能够通过一步水热同时获得纳米纤维粉末和多孔结构的条带,又实现了脱去的活泼金属组分的再利用。
本发明为实现目的,采用如下技术方案:
一种同时获取纳米多孔带材和纳米纤维粉末的制备方法,包括如下步骤:
步骤1、原材料的处理
取Cu、Ti和Pd块作为原料,通过机械打磨、除油、酸洗,除去表面的氧化物和油脂物质;
步骤2、母合金锭的制备
按照成分配比将处理后的原料进行配料,然后在高纯氩气保护下,用真空电弧熔炼炉熔炼,得到CuTiPd母合金铸锭;
步骤3、单辊旋淬法进行甩带制备CuTiPd非晶合金带材
将所得母合金铸锭放入底部有喷射口的石英管中,将石英管放入真空熔炼甩带机中的感应线圈中,在真空条件下将熔融态合金喷射到旋转的铜辊上,利用铜辊的导热将熔融态合金快速冷却,得到连续的CuTiPd非晶合金带材;
步骤4、一步水热法同时制备纳米多孔带材和纳米纤维粉末
在NaOH溶液中加入PdNO3溶液,搅拌均匀,然后加入适量的CuTiPd非晶合金带材;将所得体系转移至高压密封反应釜中,140~160℃水热反应19~21h,使条带中的Ti元素部分析出并生成表面游离有氧化钯颗粒的沉淀物;反应结束后随炉冷却至室温,取出条带,再离心分离获得沉淀物;
将反应后的条带置于稀盐酸中浸泡后,洗滤至中性,即获得纳米多孔带材;
将反应所得沉淀物置于稀盐酸中浸泡后,洗滤至中性、干燥,然后烧结,即获得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末。
作为优选,所述CuTiPd母合金铸锭与所述CuTiPd非晶合金带材按原子百分比的成分为CuxTi100-x-yPdy,30<x<40,0<y≤5。根据三元合金体系制备纳米多孔结构时要满足合金中反应活性较低金属的含量适中:含量太高时,合金不发生腐蚀反应;含量太低时,孔结构坍塌。本发明所选取的成分可以很好的获得多孔结构。
作为优选:所述NaOH溶液是将NaOH颗粒溶于去离子水中配置而成,浓度为10mol/L;所述PdNO3溶液是将0.01~0.02g PdNO3溶于5mL乙醇中;所述NaOH溶液与所述PdNO3溶液的体积比为9:1。目前大多数的制备方法皆采用酸性溶液作为腐蚀液,本发明的研究发现当选用碱性溶液作为脱合金电解液时,CuTiPd合金带材经水热处理后将会获得金属氧化物。同时,NaOH溶液的浓度会影响孔结构,本发明通过实验研究发现选择10mol/LNaOH溶液脱合金处理后获得的多孔结构更均匀。
作为优选:所述稀盐酸的浓度为0.1~0.2M,带材与沉淀物在稀盐酸中的浸泡时间为12~15h。
作为优选:所述干燥的温度为40~70℃、时间为4~6h。
作为优选:所述烧结是在660℃烧结2h。
与现有技术相比,本发明的有益效果体现在:
1、本发明通过一步水热法同时制备获得了易于回收且性能良好的TiO2纳米纤维粉末和具有较好催化性能的纳米多孔带材,方法新颖高效,所得产品利用率高,且工艺简单、成本低廉,相较于其它工艺具有更好的工业应用优势,产品的市场应用空间较大。
2、本发明所得TiO2纳米纤维粉末在光催化降解甲基橙的研究中,在光照射2.5h时降解效率可达到80%以上,具有在光催化降解污染物方面的应用前景。
3、本发明的制备方法操作过程易控、环境友好,无污染物出现,整个制备过程不需要特殊设备,能进行大规模工业化生产。
附图说明
图1为实施例1步骤3所得Cu35Ti60Pd5非晶合金带材的照片;
图2为实施例1步骤3所得Cu35Ti60Pd5非晶合金带材的XRD图谱;
图3为实施例1步骤3所得Cu35Ti60Pd5非晶合金带材的DSC图;
图4为实施例1步骤4所得纳米多孔带材的SEM表面形貌;
图5为实施例1步骤4所得纳米多孔带材的XRD图;
图6本实施例1步骤4所得纳米多孔带材的XPS图,其中(a)为全谱图,(b)-(d)分别为Cu 2p、Ti 2p、Pd 3d的谱图;
图7为实施例1步骤4所得纳米多孔带材表面的EDS能谱图;
图8为实施例1步骤4反应所得沉淀物在烧结前的SEM形貌图((a)与(b)对于不同放大倍数);
图9为实施例1步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的SEM形貌图((a)与(b)对于不同放大倍数);
图10为实施例1步骤4反应所得沉淀物在烧结前的EDS能谱图;
图11为实施例1步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的XRD图;
图12为实施例1步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的XPS图谱,其中(a)为全谱图,(b)-(d)分别为Ti 2p、Pd 3d与O1s的谱图;
图13为实施例1步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末对甲基橙染料的降解曲线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所做的举例和说明,所属本技术领域的技术人员对所描述的具体实施案例做各种各样的修改或补充或采用类似的方式代替,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
下述实施例的CuTiPd非晶合金带材采用熔体旋淬法制备,所用设备型号为:WK,北京物科,中国。
下述实施例所得纳米多孔带材和纳米纤维粉末的物相组成采用X射线衍射仪(XRD)检测,所用设备型号为:X’Pert PRO MPD,帕纳科,荷兰。
下述实施例所得纳米多孔带材的元素化学状态采用X射线光电子能谱仪(XPS)检测,所用设备型号为:ESCALAB250Xi,Thermo,美国。
下述实施例所得纳米多孔带材和纳米纤维粉末的形貌和EDS能谱采用场发射扫描电镜(SEM)检测,所用设备型号为:日立SU8020,日本。
下述实施例所得降解曲线采用UV紫外可见光分度计检测,所用设备型号为:UV-1800,日本。
实施例1
本实施例所用合金原材料Cu、Ti和Pd块纯度为99.9wt.%、其余的原材料纯度均不低于99.99wt.%。
本实施例按如下步骤通过一步水热法同时制备获得纳米纤维粉末和纳米多孔带材:
步骤1、原材料的处理
取Cu、Ti和Pd作为原料,通过机械打磨、除油、酸洗,除去表面的氧化物和油脂物质。
步骤2、母合金锭的制备
按照原子百分比的成分为Cu35Ti60Pd5,将处理后的原料进行配料,然后在高纯氩气保护下,用真空电弧熔炼炉熔炼,为了保证合金成分均匀,母合金在炉内反复翻转熔炼4次以上,得到Cu35Ti60Pd5母合金铸锭。
步骤3、单辊旋淬法进行甩带制备Cu35Ti60Pd5非晶合金带材
将所得母合金铸锭放入底部有喷射口的石英管中,将石英管放入真空熔炼甩带机中的感应线圈中,在真空环境中充入适量氩气,进行熔炼,待石英管中的合金完全融化后,利用石英管上部与真空腔中的压力差在高真空条件下将熔炼的合金熔体喷射到高速旋转的铜辊上,利用铜辊的导热将熔融态合金快速冷却,得到连续的Cu35Ti60Pd5非晶合金带材。
步骤4、一步水热法同时制备纳米多孔带材和纳米纤维粉末
将NaOH颗粒溶于去离子水中配置获得浓度为10mol/L的NaOH溶液;将0.0133gPdNO3溶于5mL乙醇中,获得PdNO3溶液;将NaOH溶液与PdNO3溶液按体积比9:1混合均匀,然后加入适量的Cu35Ti60Pd5非晶合金带材;将所得体系转移至高压密封反应釜中,150℃水热反应20h,使条带中的Ti元素部分析出并生成表面游离有氧化钯颗粒的沉淀物;反应结束后随炉冷却至室温,取出带材,再离心分离获得沉淀物;
将反应后的条带置于0.1M的稀盐酸中浸泡12h后,洗滤至中性,即获得纳米多孔带材;
将反应所得沉淀物置于0.1M的稀盐酸中浸泡12h后,洗滤至中性、60℃干燥5h,然后660℃烧结2h,即获得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末。
图1为本实施例步骤3所得Cu35Ti60Pd5非晶合金带材的照片,图2为其XRD图。可以看出该合金带材的XRD图谱中没有出现明显的尖锐特征峰,而是出现了一个弥漫的“馒头峰”,这是非晶合金的典型特征,证明制备的前驱体带材为非晶合金。
图3为本实施例步骤3所得Cu35Ti60Pd5非晶合金带材的DSC图,图中可以看出样品存在玻璃化转变温度(Tg)和晶化温度(Tx)点,合金从非晶态向晶态转变即从一个混乱无序的亚稳态结构到稳态的热力学结构时,要对外放出能量,对应图上两个晶化放热峰,佐证了样品为非晶结构。非晶结构有利于去合金化后获得单一且均匀的三维双连通纳米多孔结构。
图4为本实施例步骤4所得纳米多孔带材的SEM表面形貌。从图中可以看出带材表面出现了许多大大小小、无规则、均匀分布的表面多孔形貌,这证明本实施例成功制备了纳米多孔形貌带材。
图5为本实施例步骤4所得纳米多孔带材的XRD图,可以看出带材不存在明显特征衍射峰,表明脱合金后的样品内部可能仍保留非晶态或为纳米晶态。
图6为本实施例步骤4所得纳米多孔带材的XPS图,其中(a)为全谱图,(b)-(d)分别为Cu 2p、Ti 2p、Pd 3d的谱图。从图6(a)的全谱图可以看出经脱合金处理后样品中Ti、Pd元素峰值低、含量少,说明Ti元素大部分被脱出,而O1s峰位表明样品含有氧元素,主要来自于表面被氧化生成的氧化物。Cu 2p能谱图由两个峰组成,分别为Cu 2p1/2和Cu 2p3/2,同时存在两个伴随峰,证明了在带材表面有二价形式的Cu存在,说明在水热的过程中Cu元素已经被氧化成CuO。Ti 2p能谱由两个峰组成,分别为Ti 2p1/2和Ti 2p3/2,均对应的是四价形式的Ti。Pd 3d能谱由两个峰组成,分别对应Pd 3d5/2和Pd 3d3/2,表明Pd元素以二价形式存在,可见水热过程条带中Pd元素也被氧化为PdO。
图7为本实施例步骤4所得纳米多孔带材表面的EDS能谱图,从图中可以看出Ti元素从条带中大部分被脱出,从而促使多孔结构的形成。此外,由于带材制备处于空气环境中存放,因此氧原子百分比较大。具体含量如下表所示:
元素 Cu Ti Pd O
原子百分比(%) 28.6 15.3 6.1 50.1
图8为本实施例步骤4反应所得沉淀物在烧结前的SEM形貌图((a)与(b)对于不同放大倍数),可以看出产物呈现出纳米纤维丝状结构。
图9为本实施例步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的SEM形貌图((a)与(b)对于不同放大倍数),可以看出产物呈现纳米纤维棒状结构,且部分纳米纤维上附着有纳米颗粒,说明烧结改变了粉末的纤维形貌,并使其可负载上氧化钯纳米颗粒。
图10为本实施例步骤4反应所得沉淀物在烧结前的EDS能谱图,表明产物成分为TiO2,同时负载了微量的Pd元素。此外由于粉末在水热后处理中可能混入杂质,因此存在微量的Cu杂质元素。
元素 Ti O Pd Cu
原子百分比(%) 30.5 64.1 4.8 0.6
图11为本实施例步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的XRD图,图中出现了TiO2、Pd和PdO的衍射峰,说明粉末中大部分由TiO2、Pd和PdO相组成。
图12为本实施例步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末的XPS图谱,其中(a)为全谱图,(b)-(d)分别为Ti 2p、Pd 3d与O1s的谱图。从图12(a)全谱图可以看出粉末样品表面存在Ti、Pd、O元素。Ti 2p能谱由两个峰组成,分别为Ti 2p1/2和Ti2p3/2,均对应的是四价形式的Ti,说明粉末中得到的确实是TiO2。Pd 3d能谱由两个峰组成,分别对应Pd 3d5/2和Pd 3d3/2,表明Pd元素以二价形式存在,表明粉末中存在的为PdO。O 1s能谱图的两个峰值分别对应O2-,进一步说明了样品粉末为Ti的氧化物。
将5mg二氧化钛纳米纤维粉末加入5mL 20ppm的甲基橙染料中,在可见光照射下进行降解实验,利用UV紫外可见光光度计测试每个降解时间的甲基橙染液的光谱强度值,与降解前甲基橙光谱强度值相比得到降解率,然后统计所有时间段的降解率C/C0。图13为本实施例步骤4所得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末对甲基橙染料的降解曲线,其对甲基橙染料的降解效率能够在2.5h左右达到80%。
以上仅为本发明的较佳实施例而己,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种同时获取纳米多孔带材和纳米纤维粉末的方法,其特征在于,包括如下步骤:
取Cu、Ti和Pd块作为原料,先通过真空电弧熔炼炉制得CuTiPd母合金铸锭,再通过单辊旋淬法进行甩带制得CuTiPd非晶合金带材;
在NaOH溶液中加入PdNO3溶液,搅拌均匀,然后加入适量的CuTiPd非晶合金带材;将所得体系转移至高压密封反应釜中,140~160℃水热反应19~21h,使条带中的Ti元素部分析出并生成表面游离有氧化钯颗粒的沉淀物;反应结束后随炉冷却至室温,取出带材,再离心分离获得沉淀物;所述NaOH溶液是将NaOH颗粒溶于去离子水中配置而成,浓度为10mol/L;所述PdNO3溶液是将0.01~0.02g PdNO3溶于5mL乙醇中获得;所述NaOH溶液与所述PdNO3溶液的体积比为9:1;
将反应后的带材置于浓度为0.1~0.2M的稀盐酸中浸泡12~15h后,洗滤至中性,即获得纳米多孔带材;
将反应所得沉淀物置于稀盐酸中浸泡后,洗滤至中性、干燥,然后660℃烧结2h,即获得表面负载有氧化钯颗粒的二氧化钛纳米纤维粉末。
2.根据权利要求1所述的方法,其特征在于:所述CuTiPd非晶合金带材的制备方法,包括如下步骤:
步骤1、原材料的处理
取Cu、Ti和Pd块作为原料,通过机械打磨、除油、酸洗,除去表面的氧化物和油脂物质;
步骤2、母合金锭的制备
按照成分配比将处理后的原料进行配料,然后在高纯氩气保护下,用真空电弧熔炼炉熔炼,得到CuTiPd母合金铸锭;
步骤3、单辊旋淬法进行甩带制备CuTiPd非晶合金带材
将所得母合金铸锭放入底部有喷射口的石英管中,将石英管放入真空熔炼甩带机中的感应线圈中,在真空条件下将熔融态合金喷射到旋转的铜辊上,利用铜辊的导热将熔融态合金快速冷却,得到连续的CuTiPd非晶合金带材。
3.根据权利要求1或2所述的方法,其特征在于:所述CuTiPd母合金铸锭与所述CuTiPd非晶合带材按原子百分比的成分为CuxTi100-x-yPdy,30<x<40、0<y≤5。
4.根据权利要求1或2所述的方法,其特征在于:所述干燥的温度为40~70℃、时间为4~6h。
CN202111536664.6A 2021-12-15 2021-12-15 一种同时获取纳米多孔带材和纳米纤维粉末的方法 Active CN114192132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111536664.6A CN114192132B (zh) 2021-12-15 2021-12-15 一种同时获取纳米多孔带材和纳米纤维粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111536664.6A CN114192132B (zh) 2021-12-15 2021-12-15 一种同时获取纳米多孔带材和纳米纤维粉末的方法

Publications (2)

Publication Number Publication Date
CN114192132A CN114192132A (zh) 2022-03-18
CN114192132B true CN114192132B (zh) 2024-03-05

Family

ID=80654155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111536664.6A Active CN114192132B (zh) 2021-12-15 2021-12-15 一种同时获取纳米多孔带材和纳米纤维粉末的方法

Country Status (1)

Country Link
CN (1) CN114192132B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184671A (ja) * 2007-01-31 2008-08-14 Tohoku Univ ナノ多孔質金属及びその製造方法
CN103055891A (zh) * 2012-12-03 2013-04-24 天津大学 非晶合金条带上采用恒电压脱合金法制备掺杂Pd的纳米多孔二氧化钛薄膜的方法
KR101331027B1 (ko) * 2013-04-19 2013-11-19 주식회사 셀모티브 균일한 분포의 나노 기공을 가지는 메탈폼 제조방법 및 이에 의해 제조된 메탈폼
CN104475125A (zh) * 2014-11-06 2015-04-01 天津大学 用非晶态合金脱合金制备Pd/CuO复合纳米多孔材料的方法及其应用
CN104538649A (zh) * 2014-12-23 2015-04-22 天津大学 在钛-铜非晶合金上制备铂/二氧化钛复合纳米多孔结构的方法
KR101561966B1 (ko) * 2015-03-26 2015-10-20 부산대학교 산학협력단 다공성 금속의 제조방법
CN105618084A (zh) * 2014-11-06 2016-06-01 天津大学 一种用非晶态合金制备Pd/CuO-TiO2复合材料的方法及其应用
CN106654291A (zh) * 2016-11-17 2017-05-10 天津大学 负载二氧化钛纳米颗粒的钯/氧化铜纳米多孔结构复合材料的制备及应用
CN107507986A (zh) * 2017-08-31 2017-12-22 天津大学 一种纳米多孔结构的PdSn‑CuO复合材料制备及应用
CN108767277A (zh) * 2018-05-25 2018-11-06 辽宁科技大学 一种Fe-Pd基纳米多孔材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184671A (ja) * 2007-01-31 2008-08-14 Tohoku Univ ナノ多孔質金属及びその製造方法
CN103055891A (zh) * 2012-12-03 2013-04-24 天津大学 非晶合金条带上采用恒电压脱合金法制备掺杂Pd的纳米多孔二氧化钛薄膜的方法
KR101331027B1 (ko) * 2013-04-19 2013-11-19 주식회사 셀모티브 균일한 분포의 나노 기공을 가지는 메탈폼 제조방법 및 이에 의해 제조된 메탈폼
CN104475125A (zh) * 2014-11-06 2015-04-01 天津大学 用非晶态合金脱合金制备Pd/CuO复合纳米多孔材料的方法及其应用
CN105618084A (zh) * 2014-11-06 2016-06-01 天津大学 一种用非晶态合金制备Pd/CuO-TiO2复合材料的方法及其应用
CN104538649A (zh) * 2014-12-23 2015-04-22 天津大学 在钛-铜非晶合金上制备铂/二氧化钛复合纳米多孔结构的方法
KR101561966B1 (ko) * 2015-03-26 2015-10-20 부산대학교 산학협력단 다공성 금속의 제조방법
CN106654291A (zh) * 2016-11-17 2017-05-10 天津大学 负载二氧化钛纳米颗粒的钯/氧化铜纳米多孔结构复合材料的制备及应用
CN107507986A (zh) * 2017-08-31 2017-12-22 天津大学 一种纳米多孔结构的PdSn‑CuO复合材料制备及应用
CN108767277A (zh) * 2018-05-25 2018-11-06 辽宁科技大学 一种Fe-Pd基纳米多孔材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ti-Cu-Pd非晶态合金的脱合金技术;何茂山;中国优秀硕士学位论文全文数据库 工程科技I辑(第第7期期);第3.2.1节、第4.2.1-4.3.1节、第4.4节 *
原位Pd掺杂纳米TiO_2材料的合成及光催化性能研究;何茂山;朱胜利;崔振铎;杨贤金;;材料保护(第S2期);第17-19页 *
纳米多孔PtTiCu催化剂的制备及其电化学性能的研究;赵圆圆;印会鸣;何美凤;周凯;潘登;;功能材料(第04期);第04066-04071页 *

Also Published As

Publication number Publication date
CN114192132A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Liu et al. Thermal oxidation strategy towards porous metal oxide hollow architectures
Ge et al. TiO 2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application
Filipič et al. Copper oxide nanowires: a review of growth
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
Bornamehr et al. Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
Li et al. Formation and evolution of ultrathin Cu2O nanowires on NPC ribbon by anodizing for photocatalytic degradation
Chen et al. Hydrogenated Cu2O octahededrons with exposed {111} facets: Enhancing sensing performance and sensing mechanism of 1-coordinated Cu atom as a reactive center
Zhang et al. A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity
CN106192081A (zh) 一种石墨烯骨架多孔纳米纤维的制备方法
CN111039291A (zh) 利用熔盐歧化反应原位制备NbC和/或TaC粉体方法
Wang et al. Electrospun TiO 2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst
Wang et al. Hollow CuO microspheres with open nanoholes: fabrication and photocatalytic properties
Jia et al. Cotton fiber-biotemplated synthesis of Ag fibers: Catalytic reduction for 4-nitrophenol and SERS application
CN106423144B (zh) 一种碳纤维@氧化钨纳米颗粒核壳复合结构及其制备方法
CN114192132B (zh) 一种同时获取纳米多孔带材和纳米纤维粉末的方法
CN109518099B (zh) 一种非晶纳米花材料及其制备方法
KR100990216B1 (ko) 전기방사에 의한 유기 또는 무기 나노입자의 제조방법 및 그에 의한 유기 또는 무기 나노입자
KR102017177B1 (ko) 습식공정을 이용한 고순도 은 나노 분말의 제조 방법
Yang et al. Recent progress in the synthesis of metal-organic-framework-derived carbon materials
CN114015903B (zh) 一种高孔隙率黑色孔状金属薄膜的制备方法
CN115852194A (zh) 一种多级纳米多孔金属的制备方法
CN105256292B (zh) 一种钴镍纳米纤维薄膜的制备方法
Su et al. Fabrication of ZnO with tunable morphology through a facile treatment of Zn-based coordination polymers
CN105734613B (zh) 一种液相电沉积制备纳米银线的方法
Du et al. In situ synthesis of three-dimensional flower-like TiO2/WO3 heterojunction: enhanced visible photocatalytic properties and theoretical calculations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant