CN114161788B - 一种双模式热管理器件及其制备方法 - Google Patents

一种双模式热管理器件及其制备方法 Download PDF

Info

Publication number
CN114161788B
CN114161788B CN202111540213.XA CN202111540213A CN114161788B CN 114161788 B CN114161788 B CN 114161788B CN 202111540213 A CN202111540213 A CN 202111540213A CN 114161788 B CN114161788 B CN 114161788B
Authority
CN
China
Prior art keywords
layer
thermal management
management device
cooling
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111540213.XA
Other languages
English (en)
Other versions
CN114161788A (zh
Inventor
马儒军
张权
吕艺文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202111540213.XA priority Critical patent/CN114161788B/zh
Publication of CN114161788A publication Critical patent/CN114161788A/zh
Application granted granted Critical
Publication of CN114161788B publication Critical patent/CN114161788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesive Tapes (AREA)

Abstract

本发明公布了一种双模式热管理器件及其制备方法,属于纳米材料与应用领域。使用掺杂有二氧化钛纳米颗粒的邻苯二甲酸二辛脂改性聚(4‑甲基‑1‑戊烯)作为器件的冷却层,具有可逆形状记忆效应的二次形状记忆聚合物作为驱动层,镀有三氧化二铬纳米颗粒的铝板作为加热层。本发明制备的双模式热管理器件,可通过感知温度自发调节电磁光谱特性。加热模式下,平均加热功率密度为859.8W/m2(对应光热转化效率为91%);冷却模式下,平均冷却功率密度为126.0W/m2。整个工作过程不产生任何外部能量消耗。

Description

一种双模式热管理器件及其制备方法
技术领域
一种高效、智能自切换、零能耗的双模式热管理器件,涉及利用无机颗粒掺杂调控复合材料光谱选择性,具有可逆形状记忆效应聚氨酯的合成,以及双模式器件结构设计的研究,属于纳米材料与应用领域。
背景技术
热管理在人类活动中扮演着重要角色。根据应用场景要求的不同,研究者开发了各种热管理技术,但它们大多是以消耗能源特别是化石能源为代价实现高效的控温能力,这使得能源问题越来越严重。另外,化石能源燃烧过程中产生的温室气体严重破坏了全球气候,造成了极端天气的频繁出现。因此,开发低能耗甚至零能耗的高效热管理技术是十分必要的。
辐射热管理被认为是一种可行的无能耗热管理方法,受到越来越多的关注。这一技术的关键是热管理材料具有独特的电磁频谱,能够充分利用自然界中的辐射热源-太阳和超低温冷源-外太空。一个不能回避的问题是,地球上的环境条件是动态的。这就要求辐射热管理器件能够根据环境温度的变化,动态调整热管理模式,从而获得稳定的控温效果。
现有的双模式热管理技术中,尽管可以依靠太阳加热或辐射冷却实现无能耗的热管理,但仍需消耗能源(例如电能或机械能)实现热管理模式的切换。这些热管理技术只能称为低能耗或准零能耗,并未完全发挥辐射热管理技术零能耗的特点。因此,开发一种能够根据所处环境的动态变化自主选择合适的热管理模式,且从模式切换到热管理整体运行过程中实现真正零能耗的双模式热管理器件,仍是一项挑战。
发明内容
本发明公布了一种双模式热管理器件及其制备方法,目的在于提供了一种智能、零能耗双模式的辐射热管理技术,克服现有技术,在热管理及热管理模式切换过程中存在能耗的缺点。该器件的冷能耗加热和制冷完全由两个高选择性的电磁频谱实现,而两种热管理模式之间的无能耗切换是通过温度灵敏的形状记忆材料自发形态调整实现的。
本发明采用的技术方案是:
本发明提供一种双模式热管理器件,所述器件包含辐射冷却层、感温驱动层和太阳加热层。
所述辐射冷却层上层由含有二氧化钛纳米颗粒的邻苯二甲酸二辛酯改性聚(4-甲基-1-戊烯)构成,下层由水性粘接剂构成。
所述感温驱动层由具有可逆形状记忆效应的聚氨酯构成。
所述太阳加热层由镀有三氧化二铬纳米颗粒的铝板构成。
所述高效、智能自切换、零能耗的双模式热管理器件,由辐射冷却层粘接在具有可逆形状记忆效应的聚氨酯薄膜表面,利用双面胶带将上述两层的薄膜直接粘接到太阳加热层的边界处,获得完整器件结构。
本发明的一种双模式热管理器件的制备方法,该热管理器件是将辐射冷却层和感温驱动层直接粘接作为整体,利用双面胶带将上述两层的薄膜直接粘接到太阳加热层的边界处,获得完整器件结构。包括以下步骤:
(1)将聚(4-甲基-1-戊烯)颗粒完全溶解于环己烷溶剂中,将二氧化钛纳米颗粒和邻苯二甲酸二辛酯按比例与聚(4-甲基-1-戊烯)溶液混合,超声获得均匀分散的混合液作为冷却层的前驱体溶液;多次刮涂-烘干,获得冷却层;将水性粘接剂刮涂在冷却层表面,烘干后获得薄膜即为辐射冷却层;
(2)将聚己内酯和聚四氢呋喃按照比例在室温下完全溶解于三氯甲烷中,按比例加入六亚甲基二异氰酸酯和二月桂酸二丁基锡至溶液中,室温下反应,将反应产物倒入模具中,待溶剂挥发即得到具有形状记忆效应的聚氨酯薄膜;
(3)将聚氨酯薄膜90℃高温状态下拉长,并保持状态冷却至室温;将拉长后的聚氨酯薄膜在55℃下恢复,即完成编程处理,得到具有可逆形状记忆效应的聚氨酯薄膜;将辐射冷却胶带与编程后的形状记忆聚氨酯薄膜粘贴在一起,制成辐射冷却胶带-形状记忆聚氨酯层压结构;多条层压结构并排放置,由透明胶带连接,构成一定大小的层压薄膜;
(1)利用双面胶带,将辐射冷却胶带-形状记忆聚氨酯层压薄膜与太阳加热层粘接,
完成双模式热管理器件的组装。
本发明有益效果是:
本发明提供的双模式热管理器件,具有高效、智能自切换、零能耗的特点。
(1)本发明提出的器件制备方法简单,且原材料价格低廉易得,成本低;
(2)本发明提供的双模式热管理器件,利用高选择性的电磁光谱实现无能耗的热管理。加热模式下,太阳辐射吸收率>90%,红外发射率小于<10%;冷却模式下,太阳辐射反射率>85%,红外发射率大于>90%;
(3)本发明提供的双模式热管理器件,通过感知温度变化,无能耗的自动调节电磁光谱特性;
(4)本发明制备得到的热管理器件,可以在958.7W/m2的平均太阳辐射下,加热模式获得859.8W/m2的平均加热功率密度(光热转化效率为91%),冷却模式获得126.0W/m2的平均冷却功率密度。在热管理以及工作模式切换过程中,均没有任何外部能量消耗。
附图说明
图1双模式热管理器件的结构示意图;
图2双模式热管理器件在加热和冷却模式下的吸收率/发射率电磁光谱;
图3双模式热管理器件在实际测试中的时间分辨太阳加热和辐射冷却热通量曲线。
具体实施方式
为了让器件的制作过程及其特性更加清晰易懂,下面将结合具体实施方式和附图,对本发明做进一步的详细说明。
根据上述目的,一种双模式热管理器件及其制备方法,该方法包括:
(1)取0.5g聚(4-甲基-1-戊烯)颗粒加入至20ml环己烷中,在60℃下搅拌至颗粒完全溶解;然后取1.355g金红石二氧化钛颗粒以及0.148g邻苯二甲酸二辛酯加入溶液中,通过超声使其均匀分散得到混合液作为冷却层的前驱体溶液;取适量前驱体溶液于洁净干燥的不锈钢钢板上刮涂,完成后将不锈钢钢板置于80℃的热台上,使溶剂完全挥发,重复所述刮涂步骤,至辐射冷却层厚度达到75μm为止;最后取适量的水溶性胶水作为粘合剂,均匀涂抹在辐射冷却层表面,制成辐射冷却胶带。
(2)取聚四氢呋喃(Mn=250)0.06125g和聚己内酯(平均Mn=36000)0.18g加入至15ml三氯甲烷中,在室温下搅拌至完全溶解;然后取六亚甲基二异氰酸酯80μl以及适量二月桂酸二丁基锡(三种单体质量和的1%)加入溶液中,室温下反应3.5h;待反应完成后,将酯化反应产物倒入光滑平整的不锈钢培养皿中,室温下挥发溶剂即可得到具有二阶段可逆形状记忆效应的聚氨酯薄膜,作为感温驱动层。
(3)将(2)中的形状记忆聚氨酯薄膜在90℃下预拉伸至自身长度的5倍,将拉伸后的薄膜置于55℃的热台上沿拉伸方向收缩至一定程度,即完成编程步骤;然后将一条同一大小的辐射冷却胶带粘贴在薄膜上,即可制好辐射冷却胶带-形状记忆聚氨酯薄膜层压结构;重复所述制备步骤,制备多条层压结构,并排放置,用透明胶带连接成一定大小的层压薄膜,所述层压薄膜在室温下卷曲,在55℃下展开。
(4)裁剪涂覆纳米氧化铬粉末的黑色铝板,大小等同于辐射冷却胶带-形状记忆聚氨酯层压薄膜,两部分之间使用一条1mm的VHB双面胶带粘接,制成完整的热管理器件,如图1所示即为器件分层结构示意图。
(5)图2展示了双模式热管理器件在加热/冷却模式下的吸收率/发射率。加热模式下,太阳辐射吸收率为91%,中红外发射率为8%;冷却模式下,太阳辐射反射率为85%,中红外发射率为97%。
(6)图3展示了双模式热管理器件在实际测试中时间分辨的太阳加热和辐射冷却热通量曲线。在958.7W/m2的平均太阳辐射下,所述器件加热模式下,可获得859.8W/m2的平均加热功率密度(光热转化效率为91%);冷却模式下,可获得126.0W/m2的平均冷却功率密度。
以上所述仅为本发明的较佳实施例而已,正是用来解释说明本发明,并非用来限定本发明的保护范围。另外在本发明的精神和权利要求保护的范围之内,对本发明作用的任何修改和改变,都落入本发明的保护范围。

Claims (7)

1.一种双模式热管理器件的制备方法,其特征在于:该热管理器件是将辐射冷却层和感温驱动层直接粘接作为整体,利用双面胶带将上述两层的薄膜直接粘接到太阳加热层的边界处,获得完整器件结构;
所述辐射冷却层上层由含有二氧化钛纳米颗粒的邻苯二甲酸二辛酯改性聚(4-甲基-1-戊烯)构成,下层由水性粘接剂构成;
所述感温驱动层由具有可逆形状记忆效应的聚氨酯构成;
所述太阳加热层由镀有三氧化二铬纳米颗粒的铝板构成;
包括以下步骤:
(1)将聚(4-甲基-1-戊烯)颗粒完全溶解于环己烷溶剂中,将二氧化钛纳米颗粒和邻苯二甲酸二辛酯按比例与聚(4-甲基-1-戊烯)溶液混合,超声获得均匀分散的混合液作为冷却层的前驱体溶液;多次刮涂-烘干,获得冷却层;将水性粘接剂刮涂在冷却层表面,烘干后获得薄膜即为辐射冷却层;
(2)将聚己内酯和聚四氢呋喃按照比例在室温下完全溶解于三氯甲烷中,按比例加入六亚甲基二异氰酸酯和二月桂酸二丁基锡至溶液中,室温下反应,将反应产物倒入模具中,待溶剂挥发即得到具有形状记忆效应的聚氨酯薄膜;
(3)将聚氨酯薄膜90℃高温状态下拉长,并保持状态冷却至室温;将拉长后的聚氨酯薄膜在55℃下恢复,即完成编程处理,得到具有可逆形状记忆效应的聚氨酯薄膜;将辐射冷却胶带与编程后的形状记忆聚氨酯薄膜粘贴在一起,制成辐射冷却胶带-形状记忆聚氨酯层压结构;多条层压结构并排放置,由透明胶带连接,构成一定大小的层压薄膜;
(4)利用双面胶带,将辐射冷却胶带-形状记忆聚氨酯层压薄膜与太阳加热层粘接,完成双模式热管理器件的组装。
2.根据权利要求1所述的双模式热管理器件的制备方法,其特征在于:所述辐射冷却层,将含有金红石二氧化钛纳米颗粒的邻苯二甲酸二辛酯改性聚(4-甲基-1-戊烯)作为冷却层,将水性粘接剂作为粘接层。
3.根据权利要求1所述的双模式热管理器件的制备方法,其特征在于:辐射冷却层的太阳辐射反射率>85%,中红外发射率>90%。
4.根据权利要求1所述的双模式热管理器件的制备方法,其特征在于:太阳加热层的太阳辐射吸收率>90%,中红外发射率<10%。
5.根据权利要求1所述的双模式热管理器件的制备方法,其特征在于:辐射冷却层和感温驱动层的整体在室温下卷曲,在55℃下展开。
6.根据权利要求1所述的双模式热管理器件的制备方法,其特征在于:该器件依靠感知温度变化实现热管理模式切换,加热模式下,获得859.8W/m2的平均加热功率密度;冷却模式下,获得126.0W/m2的平均冷却功率密度。
7.一种双模式热管理器件,通过权利要求1-6任一项所述的方法制备得到。
CN202111540213.XA 2021-12-16 2021-12-16 一种双模式热管理器件及其制备方法 Active CN114161788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111540213.XA CN114161788B (zh) 2021-12-16 2021-12-16 一种双模式热管理器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111540213.XA CN114161788B (zh) 2021-12-16 2021-12-16 一种双模式热管理器件及其制备方法

Publications (2)

Publication Number Publication Date
CN114161788A CN114161788A (zh) 2022-03-11
CN114161788B true CN114161788B (zh) 2024-02-09

Family

ID=80487107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111540213.XA Active CN114161788B (zh) 2021-12-16 2021-12-16 一种双模式热管理器件及其制备方法

Country Status (1)

Country Link
CN (1) CN114161788B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992631A (zh) * 2014-05-29 2014-08-20 理大产学研基地(深圳)有限公司 具有双向形状记忆的聚合物材料及其制备方法
CN109760855A (zh) * 2019-03-01 2019-05-17 哈尔滨工业大学 一种柔性空间太阳能帆板
CN110028648A (zh) * 2019-04-29 2019-07-19 中国科学院长春应用化学研究所 一种自修复水性聚氨酯材料及其制备方法
CN113025219A (zh) * 2021-03-10 2021-06-25 南开大学 可拉伸辐射冷却胶带及其制备方法和应用
CN113419580A (zh) * 2021-06-29 2021-09-21 武汉理工大学 基于被动辐射冷却和太阳加热的智能控温器件及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739525B2 (en) * 2009-05-08 2014-06-03 GM Global Technology Operations LLC Thermally-active material assemblies including phase change materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992631A (zh) * 2014-05-29 2014-08-20 理大产学研基地(深圳)有限公司 具有双向形状记忆的聚合物材料及其制备方法
CN109760855A (zh) * 2019-03-01 2019-05-17 哈尔滨工业大学 一种柔性空间太阳能帆板
CN110028648A (zh) * 2019-04-29 2019-07-19 中国科学院长春应用化学研究所 一种自修复水性聚氨酯材料及其制备方法
CN113025219A (zh) * 2021-03-10 2021-06-25 南开大学 可拉伸辐射冷却胶带及其制备方法和应用
CN113419580A (zh) * 2021-06-29 2021-09-21 武汉理工大学 基于被动辐射冷却和太阳加热的智能控温器件及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jiaqi Liu,etc..《A Temperature Self-Adapting Heat Sink For Improving The Heat Dissipation Ability By Weakening The Dust Accumulation》.2020 21st International Conference on Electronic Packaging Technology (ICEPT).2020,5pp. *
胡金莲等.《形状记忆纺织材料》.北京:中国纺织出版社,2006,第55-60页. *

Also Published As

Publication number Publication date
CN114161788A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN103525320B (zh) 热致变色pvb中间膜及其制备方法
CN103640299B (zh) 一种共挤双向拉伸功能聚酯智能调光膜及其制备方法
Yang et al. Phase change material enhanced radiative cooler for temperature-adaptive thermal regulation
Du et al. Daytime radiative cooling coating based on the Y2O3/TiO2 microparticle-embedded PDMS polymer on energy-saving buildings
CN113025219B (zh) 可拉伸辐射冷却胶带及其制备方法和应用
CN112965312B (zh) 一种智能热控薄膜器件
CN106972068A (zh) 提高太阳能光伏发电板光伏转换效率的方法
CN109560186A (zh) 一种n型热电薄膜及其制备和应用
CN105669194B (zh) 一种热致变红外发射率二氧化钒薄片的制备方法
CN114161788B (zh) 一种双模式热管理器件及其制备方法
Guo et al. Dynamic thermal radiation regulation for thermal management
CN101797893B (zh) 一种风能、可见光-红外太阳能电动燃油混合动力汽车
CN109695966B (zh) 一种选择性吸光材料的新用途及新型光热系统
Tao et al. Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating
CN109292820A (zh) VO2/ZnO双层薄膜及其制备方法
US20230383092A1 (en) Durability-enhanced thermochromic film and method of manufacturing same
CN113968992B (zh) 一种基于MXene复合材料及其制备方法和应用
CN202334382U (zh) 透光体调控式光电光热一体化装置
CN115742488A (zh) 一种自动调温的智能热控复合薄膜及制备方法
CN113698645B (zh) 一种基于pmma多孔辐射制冷薄膜的制备方法
CN114801378B (zh) 一种低于室温的柔性彩色辐射制冷器件及其制备方法
CN109373618A (zh) 一种选择性太阳能吸收复合涂层的制备方法
CN113290964B (zh) 集温度调节与雨量传感功能的汽车天窗功能膜
WO2023239424A2 (en) Temperature-adaptive radiative coating for all-season thermal regulation
Wang et al. Environmentally Adaptive Passive Temperature-Regulating Flexible Energy-Saving Radiator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant