CN114160399A - 同频异构的压电超声波换能器及其制备方法 - Google Patents
同频异构的压电超声波换能器及其制备方法 Download PDFInfo
- Publication number
- CN114160399A CN114160399A CN202111462511.1A CN202111462511A CN114160399A CN 114160399 A CN114160399 A CN 114160399A CN 202111462511 A CN202111462511 A CN 202111462511A CN 114160399 A CN114160399 A CN 114160399A
- Authority
- CN
- China
- Prior art keywords
- pmut
- same
- electrode
- ultrasonic transducer
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000005530 etching Methods 0.000 claims description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 206010063385 Intellectualisation Diseases 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
本发明公开了一种同频异构的压电超声波换能器及其制备方法。所述同频异构的压电超声波换能器包括:形成于同一衬底上的用于发射超声波的第一PMUT单元及用于接收超声波的第二PMUT单元;其中,所述第一PMUT单元和所述第二PMUT单元的结构互不相同。本发明提供的同频异构的压电超声波换能器,通过在同一衬底上形成结构不同的第一PMUT单元和第二PMUT单元,第一PMUT单元和第二PMUT单元的具体结构可以根据实际所需的发射性能和接收性能进行设计,从而达到兼顾发射性能和接收性能的效果;而且第一PMUT单元和第二PMUT单元集成在同一芯片上,能够保证了两者的谐振频率相同。
Description
技术领域
本发明是关于超声波换能器领域,特别是关于一种同频异构的压电超声波换能器及其制备方法。
背景技术
压电超声波换能器(PMUT)能够实现声信号与电信号相互转化,但是传统的压电超声波换能器采用机械加工方式制作,体积大、功耗高、不利于集成。随着微机械加工技术的发展,压电超声波换能器因其体积小、重量轻、成本低、功耗低、可靠性高、频率控制灵活、频带宽、灵敏度高、以及易于与电路集成和实现智能化等特点,完美贴合了现代社会智能化、集成化的发展方向,能够广泛应用于智能家居、无人驾驶、无损检测、医学成像等领域。
压电超声换能器按照用途不同可分为发射型超声换能器和接收型超声换能器,不同用途的换能器对性能要求不一样。虽然现有技术中也实现了在单个芯片上的PMUT既发射超声波又接收超声波,但是发射超声波和接收超声波的PMUT单元结构相同,无法同时保证发射性能和接收性能都较好。
因此,针对上述技术问题,有必要提供一种同频异构的压电超声波换能器。
发明内容
本发明的目的在于提供一种同频异构的压电超声波换能器及其制备方法,该压电超声波换能器在单颗芯片上集成了两种不同结构的PMUT单元,能够在确保两种PMUT单元的谐振频率相同的情况下,大大提高压电超声波换能器的整体性能。
为实现上述目的,本发明提供的技术方案如下:
第一方面,本发明提供了一种同频异构的压电超声波换能器,其包括:形成于同一衬底上的用于发射超声波的第一PMUT单元及用于接收超声波的第二PMUT单元;其中,所述第一PMUT单元和所述第二PMUT单元的结构互不相同。
在一个或多个实施方式中,所述第一PMUT单元包括形成于所述衬底上的第一槽形空腔及覆盖于所述第一槽形空腔上方的第一振动膜;所述第一振动膜包括依次层叠设置的第一机械层、第一下电极、第一压电层和第一上电极,所述第一上电极包括内电极和围绕于所述内电极外周的外电极,并且所述内电极和所述外电极之间形成有间隙。
在一个或多个实施方式中,所述外电极上形成有开口部,所述开口部用于布置与所述内电极电连接的导电线路。
在一个或多个实施方式中,所述第一振动膜上形成有镂空结构,所述镂空结构在所述第一振动膜上界定形成至少一个位于所述外电极外周的悬梁部。
在一个或多个实施方式中,其特征在于,所述第二PMUT单元包括形成于所述衬底上的第二槽形空腔及覆盖于所述第二槽形空腔上方的第二振动膜;所述第二振动膜包括依次层叠设置的第二机械层、第二下电极、第二压电层和第二上电极。
在一个或多个实施方式中,所述第一上电极的所述外电极与所述第二上电极电连接,所述第一下电极和所述第二下电极被配置成连续共通,所述第一机械层和所述第二机械层被配置成连续共通。
在一个或多个实施方式中,所述衬底为SOI硅片,和/或所述第一压电层和所述第二压电层的材料为氮化铝、氧化锌、锆钛酸铅压电陶瓷或掺钪的氮化铝。
在一个或多个实施方式中,所述第一下电极和所述第二下电极的材料为金、铂、铝或锡,和/或所述第一上电极和所述第二上电极的材料为钼、铂、铝或锡。
在一个或多个实施方式中,所述同频异构的压电超声波换能器包括多个第二PMUT单元,并且所述多个第二PMUT单元分布于所述第一PMUT单元外周。
第二方面,本发明提供了一种同频异构的压电超声波换能器的制备方法,其包括以下步骤:
提供衬底;
在衬底的一面上依次溅射形成下电极和压电层薄膜;
刻蚀形成结构互不相同的第一PMUT结构和第二PMUT结构;
在所述压电层薄膜溅射形成分别对应于所述第一PMUT结构和所述第二 PMUT结构的上电极;
在所述衬底的另一面刻蚀形成分别对应于所述第一PMUT结构和所述第二PMUT结构的槽形空腔,得到同频异构的压电超声波换能器。
与现有技术相比,本发明提供的同频异构的压电超声波换能器,通过在同一衬底上形成结构不同的第一PMUT单元和第二PMUT单元,第一PMUT单元和第二PMUT单元的具体结构可以根据实际所需的发射性能和接收性能进行设计,从而达到兼顾发射性能和接收性能的效果;而且第一PMUT单元和第二PMUT单元集成在同一芯片上,能够保证了两者的谐振频率相同。
附图说明
图1是本发明一实施例中同频异构的压电超声波换能器的俯视图;
图2是图1所示实施例中第一PMUT单元的剖视图;
图3是图1所示实施例中第二PMUT单元的剖视图;
图4是本发明另一实施例中同频异构的压电超声波换能器的俯视图;
图5是本发明另一实施例中同频异构的压电超声波换能器的俯视图;
图6是本发明另一实施例中同频异构的压电超声波换能器的俯视图;
图7是本发明另一实施例中同频异构的压电超声波换能器的俯视图;
图8是本发明另一实施例中同频异构的压电超声波换能器的俯视图。
主要附图标记说明:
1-第一PMUT单元,11-第一槽形空腔,12-第一振动膜,13-第一机械层, 14-第一下电极,15-第一压电层,16-第一上电极,17-镂空结构,18-悬梁部, 161-内电极,162-外电极,163-开口部,2-第二PMUT单元,21-第二槽形空腔, 22-第二振动膜,23-第二机械层,24-第二下电极,25-第二压电层,26-第二上电极,3-衬底。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
请参照图1至图3所示,本发明一实施方式中的提供的同频异构的压电超声波换能器,其包括:形成于同一衬底3上的用于发射超声波的第一PMUT 单元1及用于接收超声波的第二PMUT单元2。其中,第一PMUT单元1和第二PMUT单元2的结构互不相同。
第一PMUT单元1用于发射超声波其被设计成具有较强的发射性能,第一PMUT单元1用于接收超声波其被设计成具有较强的接收性能。例如,可以根据对发射性能和接收性能的实际需求,将第一PMUT单元1和第二PMUT 单元2的电极结构和振动膜结构设置成不同结构。
在本实施方式中,通过在同一衬底3上形成结构不同的第一PMUT单元 1和第二PMUT单元2,第一PMUT单元1和第二PMUT单元2的具体结构可以根据实际所需的发射性能和接收性能进行设计,从而达到兼顾发射性能和接收性能的效果;而且第一PMUT单元1和第二PMUT单元2集成在同一芯片上,能够保证了两者的谐振频率相同。
一示例性的实施例中,请参照图2所示,第一PMUT单元1包括形成于衬底3上的第一槽形空腔11及覆盖于第一槽形空腔11上方的第一振动膜12。第一振动膜12包括依次层叠设置的第一机械层13、第一下电极14、第一压电层15和第一上电极16,第一上电极16包括内电极161和围绕于述内电极 161外周的外电极162,并且内电极161和外电极162之间形成有间隙。
需要说明的是,第一槽形空腔11的深度可以等于或略小于衬底3的厚度。第一槽形空腔11通过背刻的方式刻蚀形成,背刻型的空腔可以减小声波在空腔内的反射,从而降低对振动膜振动的影响。
一示例性的实施例中,第一上电极16的外电极162上形成有开口部163,开口部163用于布置与内电极161电连接的导电线路,与内电极161相连的导电线路可以从开口部163延伸至外电极162外部用以耦合激励信号。通过开口部163的设置可以在布置导电线路时,可避免导电线路将内电极161和外电极162导通。
一示例性的实施例中,第一振动膜12上形成有镂空结构17,镂空结构17 在第一振动膜12上界定形成至少一个位于外电极162外周的悬梁部18。通过镂空结构17的设置,能够使第一振动膜12形成悬膜结构,悬梁部18用以锚固第一振动膜12上外电极162所对应的区域,使第一振动膜12的该部分区域悬空于第一槽形空腔11上方,进而形成悬膜结构,悬膜结构具有较大的振幅,能够输出较大的声压,从而增强第一PMUT单元1获得的发射性能。
优选的,在具有悬梁部18多个时,这些悬梁部18被配置成均布于第一振动膜12上外电极162所对应的区域的外周,将多个悬梁部18均布设置,可以在第一振动膜12振动时振幅相对稳定。
具体的,第一上电极16、第一压电层15以及第一槽形空腔11的水平截面的形状可以为圆形、方形或多边形,并且上电极的水平截面小于压电层的水平截面。不同结构的振动频率、电容、阻抗等性能会有不同,在实际应用场景中可以需求进行选择。
一示例性的实施例中,请参照图3所示,第二PMUT单元2包括形成于衬底3上的第二槽形空腔21及覆盖于第二槽形空腔21上方的第二振动膜22;第二振动膜22包括依次层叠设置的第二机械层23、第二下电极24、第二压电层25和第二上电极26。
在本实施例中,第二PMUT单元2为传统的PMUT结构,第二PMUT单元2和第一PMUT单元1具有大致相同的结构,两者的区别在于第一PMUT 单元1的第一上电极16为具有内、外电极的双电极结构,并且第一PMUT单元1具有镂空结构17。第一PMUT单元1的镂空结构17、悬梁部18、内电极161及外电极162结构可在第二PMUT单元2的结构基础上通过刻蚀工艺来形成。因此,在制备形成第一PMUT单元1和第二PMUT单元2时,可基于同一套工艺步骤来完成,而不会增加额外的工艺。
一示例性的实施例中,第一上电极16的外电极162与第二上电极26电连接,第一下电极14和第二下电极24被配置成连续共通,第一机械层13和第二机械层23被配置成连续共通。
具体的,第二上电极26、第二压电层25以及第二槽形空腔21的水平截面的形状可以为圆形、矩形或多边形,并且上电极的水平截面小于压电层的水平截面。不同结构的振动频率、电容、阻抗等性能会有不同,在实际应用场景中可以需求进行选择。
一示例性的实施例中,衬底3可以为SOI硅片,SOI硅片通常具有三层结构,即位于底层的基底硅、位于中间层的二氧化硅和位于上层的单晶硅。在衬底3上形成第一槽形空腔11和第二槽形空腔21时,可由衬底3的基底硅层刻蚀形成,衬底3的二氧化硅和单晶硅层则可作为第一机械层13和第二机械层23。
在其他实施例中,衬底3的材料可以为硅,此时可以在衬底3上形成二氧化硅、硅、氮化硅或氮化铝等薄膜作为机械层。
一示例性的实施例中,第一压电层15和第二压电层25的材料可以为氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)压电陶瓷、掺钪的氮化铝、聚偏氟乙烯(PVDF)、铌酸锂(LiNbO3)、石英(Quartz)、铌酸钾(KNbO3) 或钽酸锂(LiTaO3)等材料以及它们的组合。
一示例性的实施例中,第一下电极14和第二下电极24的材料为金、铂、铝或锡以及它们的合金,和/或第一上电极16和第二上电极26的材料为钼、铂、铝或锡以及它们的合金。
一示例性的实施例中,同频异构的压电超声波换能器包括多个第二PMUT 单元2,并且该多个第二PMUT单元2分布于第一PMUT单元1外周。将用于接收后超声波的第二PMUT单元2布置于用于发射超声波的第一PMUT单元1的外周形成阵列结构,能够有利于接受超声波。第一PMUT单元1的数量也可以为多个,具体可以根据实际需要进行配置。
请参照图4所示,本发明一实施例中的同频异构的压电超声波换能器中第一PMUT单元1和第二PMUT单元2的排布结构。在本实施例中具有一个方形的第一PMUT单元1和三个方形的第二PMUT单元2,并且三个方形的第二PMUT单元2分布于第一PMUT单元1的外周。其中,第一PMUT单元 1的外电极162与第二PMUT单元2的上电极连接,第一PMUT单元1的内电极连接用于耦合激励信号的导电线路。在三个第二PMUT单元2中,其中一个第二PMUT单元2的上电极连接用于输出电信号的导电线路,其中另一个第二PMUT单元2的下电极连接用于接地的导电线路。
请参照图5所示,本发明一实施例中的同频异构的压电超声波换能器中第一PMUT单元1和第二PMUT单元2的排布结构。在本实施例中具有一个方形的第一PMUT单元1和三个圆形的第二PMUT单元2。其中,第一PMUT 单元1和第二PMUT单元2的排布连接方式与图4所示的同频异构的压电超声波换能器相同。
请参照图6所示,本发明一实施例中的同频异构的压电超声波换能器中第一PMUT单元1和第二PMUT单元2的排布结构。在本实施例中具有一个圆形的第一PMUT单元1和四个方形的第二PMUT单元2,并且该四个方形的第二PMUT单元2分布于第一PMUT单元1的外周。其中,第一PMUT单元1的外电极162与第二PMUT单元2的上电极连接,第一PMUT单元1的内电极连接用于耦合激励信号的导电线路。在四个第二PMUT单元2中,其中一个第二PMUT单元2的上电极连接用于输出电信号的导电线路,其中另一个第二PMUT单元2的下电极连接用于接地的导电线路。
请参照图7所示,本发明一实施例中的同频异构的压电超声波换能器中第一PMUT单元1和第二PMUT单元2的排布结构。在本实施例中具有一个圆形的第一PMUT单元1、两个方形的第二PMUT单元2和两个圆形的第二 PMUT单元2。本实施例与图6所示的同频异构的压电超声波换能器排布和连接方式相同。
请参照图8所示,本发明一实施例中的同频异构的压电超声波换能器中第一PMUT单元1和第二PMUT单元2的排布结构。在本实施例中具有三个圆形的第一PMUT单元1和五个圆形的第二PMUT单元2。三个第一PMUT 单元1呈线性排布,并且它们的内电极161相连,其中一个内电极连接用于耦合激励信号的导电线路。五个第二PMUT单元2分布于该三个第一PMUT 单元1的外周,第一PMUT单元1的外电极162与第二PMUT单元2的上电极连接。在五个第二PMUT单元2中,其中一个第二PMUT单元2的上电极连接用于输出电信号的导电线路,其中另一个第二PMUT单元2的下电极连接用于接地的导电线路。
本发明还提供了一种用于制备前述同频异构的压电超声波换能器的制备方法,其包括以下步骤:
S1:提供衬底;
S2:在衬底的一面上依次溅射形成下电极和压电层薄膜;
S3:刻蚀形成结构互不相同的第一PMUT结构和第二PMUT结构;
S4:在所述压电层薄膜溅射形成分别对应于所述第一PMUT结构和所述第二PMUT结构的上电极;
S5:在所述衬底的另一面刻蚀形成分别对应于所述第一PMUT结构和所述第二PMUT结构的槽形空腔,得到同频异构的压电超声波换能器。
具体的,前述方法中衬底为SOI硅片,溅射方式为磁控溅射。
具体的,在步骤S3中刻蚀形成第一PMUT结构和第二PMUT结构时,具体包括:采用干法刻蚀压电层薄膜露出下电极,并通过干法刻蚀对下电极图形化。形成第一PMUT结构时还需要刻蚀对应的镂空结构17,以形成悬膜结构。步骤S5中刻蚀形成槽形空腔的方式为深反应离子刻蚀。
综上所述,本发明提供的同频异构的压电超声波换能器,通过在同一衬底 3上形成结构不同的第一PMUT单元1和第二PMUT单元2,第一PMUT单元1和第二PMUT单元2的具体结构可以根据实际所需的发射性能和接收性能进行设计,从而达到兼顾发射性能和接收性能的效果;而且第一PMUT单元1和第二PMUT单元2集成在同一芯片上,能够保证了两者的谐振频率相同。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。
Claims (10)
1.一种同频异构的压电超声波换能器,其特征在于,包括:形成于同一衬底上的用于发射超声波的第一PMUT单元及用于接收超声波的第二PMUT单元;
其中,所述第一PMUT单元和所述第二PMUT单元的结构互不相同。
2.如权利要求1所述的同频异构的压电超声波换能器,其特征在于,所述第一PMUT单元包括形成于所述衬底上的第一槽形空腔及覆盖于所述第一槽形空腔上方的第一振动膜;
所述第一振动膜包括依次层叠设置的第一机械层、第一下电极、第一压电层和第一上电极,所述第一上电极包括内电极和围绕于所述内电极外周的外电极,并且所述内电极和所述外电极之间形成有间隙。
3.如权利要求2所述的同频异构的压电超声波换能器,其特征在于,所述外电极上形成有开口部,所述开口部用于布置与所述内电极电连接的导电线路。
4.如权利要求2所述的同频异构的压电超声波换能器,其特征在于,所述第一振动膜上形成有镂空结构,所述镂空结构在所述第一振动膜上界定形成至少一个位于所述外电极外周的悬梁部。
5.如权利要求2~4中任一项所述的同频异构的压电超声波换能器,其特征在于,所述第二PMUT单元包括形成于所述衬底上的第二槽形空腔及覆盖于所述第二槽形空腔上方的第二振动膜;
所述第二振动膜包括依次层叠设置的第二机械层、第二下电极、第二压电层和第二上电极。
6.如权利要求5所述的同频异构的压电超声波换能器,其特征在于,所述第一上电极的所述外电极与所述第二上电极电连接,所述第一下电极和所述第二下电极被配置成连续共通,所述第一机械层和所述第二机械层被配置成连续共通。
7.如权利要求5所述的同频异构的压电超声波换能器,其特征在于,所述衬底为SOI硅片,和/或
所述第一压电层和所述第二压电层的材料为氮化铝、氧化锌、锆钛酸铅压电陶瓷或掺钪的氮化铝。
8.如权利要求5所述的同频异构的压电超声波换能器,其特征在于,所述第一下电极和所述第二下电极的材料为金、铂、铝或锡,和/或
所述第一上电极和所述第二上电极的材料为钼、铂、铝或锡。
9.如权利要求1所述的同频异构的压电超声波换能器,其特征在于,所述同频异构的压电超声波换能器包括多个第二PMUT单元,并且所述多个第二PMUT单元分布于所述第一PMUT单元外周。
10.一种同频异构的压电超声波换能器的制备方法,其特征在于,包括:
提供衬底;
在衬底的一面上依次溅射形成下电极和压电层薄膜;
刻蚀形成结构互不相同的第一PMUT结构和第二PMUT结构;
在所述压电层薄膜溅射形成分别对应于所述第一PMUT结构和所述第二PMUT结构的上电极;
在所述衬底的另一面刻蚀形成分别对应于所述第一PMUT结构和所述第二PMUT结构的槽形空腔,得到同频异构的压电超声波换能器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111462511.1A CN114160399B (zh) | 2021-12-02 | 2021-12-02 | 同频异构的压电超声波换能器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111462511.1A CN114160399B (zh) | 2021-12-02 | 2021-12-02 | 同频异构的压电超声波换能器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114160399A true CN114160399A (zh) | 2022-03-11 |
CN114160399B CN114160399B (zh) | 2022-12-02 |
Family
ID=80482501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111462511.1A Active CN114160399B (zh) | 2021-12-02 | 2021-12-02 | 同频异构的压电超声波换能器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114160399B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116140175A (zh) * | 2023-03-08 | 2023-05-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | 压电微机械超声波换能器及超声探测系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050168102A1 (en) * | 2004-02-04 | 2005-08-04 | Hitachi Media Electronics Co., Ltd. | Film bulk acoustic wave resonator, film bulk acoustic wave resonator filter and method of manufacturing film bulk acoustic wave resonator |
WO2015028314A1 (en) * | 2013-08-27 | 2015-03-05 | Koninklijke Philips N.V. | Dual mode cmut transducer |
CN110560352A (zh) * | 2019-08-15 | 2019-12-13 | 武汉大学 | 基于Helmholtz共振腔的可调频超声传感器阵列 |
CN110681560A (zh) * | 2019-09-10 | 2020-01-14 | 武汉大学 | 具有亥姆霍兹谐振腔的mems超声定位传感器 |
CN111001553A (zh) * | 2019-12-18 | 2020-04-14 | 武汉大学 | 一种可调谐的超声传感器阵列 |
-
2021
- 2021-12-02 CN CN202111462511.1A patent/CN114160399B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050168102A1 (en) * | 2004-02-04 | 2005-08-04 | Hitachi Media Electronics Co., Ltd. | Film bulk acoustic wave resonator, film bulk acoustic wave resonator filter and method of manufacturing film bulk acoustic wave resonator |
WO2015028314A1 (en) * | 2013-08-27 | 2015-03-05 | Koninklijke Philips N.V. | Dual mode cmut transducer |
CN110560352A (zh) * | 2019-08-15 | 2019-12-13 | 武汉大学 | 基于Helmholtz共振腔的可调频超声传感器阵列 |
CN110681560A (zh) * | 2019-09-10 | 2020-01-14 | 武汉大学 | 具有亥姆霍兹谐振腔的mems超声定位传感器 |
CN111001553A (zh) * | 2019-12-18 | 2020-04-14 | 武汉大学 | 一种可调谐的超声传感器阵列 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116140175A (zh) * | 2023-03-08 | 2023-05-23 | 中国科学院苏州纳米技术与纳米仿生研究所 | 压电微机械超声波换能器及超声探测系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114160399B (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9327316B2 (en) | Multi-frequency acoustic array | |
US4462092A (en) | Arc scan ultrasonic transducer array | |
CN111182429B (zh) | 高填充率mems换能器 | |
CN111001553A (zh) | 一种可调谐的超声传感器阵列 | |
US3952216A (en) | Multiple-frequency transducer | |
WO2021135014A1 (zh) | 单晶压电结构及具有其的电子设备 | |
CN110560351B (zh) | 基于Helmholtz共振腔的可调频声波接收装置 | |
CN114160399B (zh) | 同频异构的压电超声波换能器及其制备方法 | |
CN112350679A (zh) | 基于硅上压电薄膜结构的体声波谐振器及制备方法 | |
JP6805630B2 (ja) | 超音波デバイス、超音波モジュール、及び超音波測定装置 | |
US20200171541A1 (en) | Microelectromechanical systems, devices, and methods for fabricating a microelectromechanical systems device, and methods for generating a plurality of frequencies | |
JPH07136164A (ja) | 超音波探触子 | |
CN113258900B (zh) | 一种体声波谐振器组件、制备方法以及通信器件 | |
CN214390968U (zh) | 一种mems压电超声换能器 | |
US6333590B1 (en) | Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof | |
JPH07194517A (ja) | 超音波探触子 | |
US20200070205A1 (en) | Capacitive Device and Piezoelectric Device | |
CN114130636B (zh) | 一种压电式mems超声换能器 | |
KR100872164B1 (ko) | 압전성 단결정을 이용한 압전형 전기 음향 변환기 | |
JP2020161888A (ja) | 超音波センサ | |
CN213879775U (zh) | 硅基压电薄膜体声波谐振器 | |
EP3905716B1 (en) | Ultrasound device | |
JP2021007117A (ja) | 圧電トランスデューサ及び圧電モジュール | |
JP2623643B2 (ja) | 超音波セラミックマイクロホン | |
JP2001285996A (ja) | 超音波探触子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |