CN114156492A - 一种燃料电池金属双极板用精密带材及其加工工艺 - Google Patents

一种燃料电池金属双极板用精密带材及其加工工艺 Download PDF

Info

Publication number
CN114156492A
CN114156492A CN202111391684.9A CN202111391684A CN114156492A CN 114156492 A CN114156492 A CN 114156492A CN 202111391684 A CN202111391684 A CN 202111391684A CN 114156492 A CN114156492 A CN 114156492A
Authority
CN
China
Prior art keywords
rolling
bipolar plate
fuel cell
strip
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111391684.9A
Other languages
English (en)
Other versions
CN114156492B (zh
Inventor
曾祥旭
丁春华
刘扬
杨谦
龚麟
郁浩然
李盛荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Stal Precision Stainless Steel Co ltd
Original Assignee
Shanghai Stal Precision Stainless Steel Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Stal Precision Stainless Steel Co ltd filed Critical Shanghai Stal Precision Stainless Steel Co ltd
Priority to CN202111391684.9A priority Critical patent/CN114156492B/zh
Publication of CN114156492A publication Critical patent/CN114156492A/zh
Application granted granted Critical
Publication of CN114156492B publication Critical patent/CN114156492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Rolling (AREA)

Abstract

本发明公开了一种燃料电池金属双极板用精密带材及其加工工艺,包括原料初轧、中坯固溶退火、成品精轧和成品固溶退火步骤,得到成品厚度0.08~0.1mm、面粗糙度Sa<0.3μm的成品钢带,可实现工业化大批量生产,高延伸率有利于提高双极板流道成形性,亚光工作辊轧制出的面粗糙度Sa<0.3μm的成品钢带有利于降低双极板与阳极表面接触电阻从而提高燃料电池效率。

Description

一种燃料电池金属双极板用精密带材及其加工工艺
技术领域
本发明涉及精密带材生产领域,具体为一种燃料电池金属双极板用精密带材及其加工工艺。
背景技术
质子交换膜燃料电池(PEMFC)单体包括第一双极板阳极侧、阳极扩散层、阳极催化层、质子交换膜、阴极催化层、阴极扩散层、第二双极板阴极侧。氢气从第一双极板阳极侧进入,空气从第二双极板阴极侧进入,氢原子在阳极失去电子变成质子,质子穿过质子交换膜到达阴极,电子同时经由外部回路也到达阴极,而在阴极催化剂层表面质子、电子与氧气结合生成水,水通过扩散层进入流道,由流道的气体带出燃料电池。燃料电池的效率通常用电池实际输出电压与理想电压的比值表示,由于内阻的存在导致实际输出电压小于理想电压,其中电极与双极板之间的接触电阻是燃料电池电路总内阻的一个不可忽视的关键因素之一。根据参考文献《质子交换膜燃料电池接触电阻数学建模与参数分析吴芝亮》中P93-94可以得知:当电极一定时,在一定范围内,双极板微观表面凸起高度偏差越小,凸起的曲率半径越大,凸起密度越大,接触电阻越小。因此如何通过控制双极板微观表面分布对减小接触电阻,提高燃料电池效率是本领域研究人员亟需解决的问题,这对于双极板用精密带材的表面质量提出了比较高的要求。
发明内容
本发明提供了一种燃料电池金属双极板用精密带材及其加工工艺,可以解决现有的双极板与阳极表面接触电阻过高的问题。
为实现上述目的,第一方面,在本申请的实施例中,提供如下技术方案:一种燃料电池金属双极板用精密带材的加工工艺,包括以下步骤:
S1、原料初轧:将厚度0.9~1.5mm的原料母卷轧制到厚度0.32~0.4mm的中坯半成品钢卷;
S2、中坯固溶退火:初轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度20~40m/min,全程使用高浓度大流量氢气保护;
S3、成品精轧:固溶退火后的半成品钢卷经过5-9道次轧制,其中末三道次轧制每道次变形量不超过10%,每道次轧制速度不超过150m/min,且末三道次中每道次需要更换全新的亚光工作辊轧制,得到成品厚度0.08~0.1mm、面粗糙度Sa<0.3μm的成品钢带;
S4、成品固溶退火:精轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度50~70m/min,全程使用高浓度大流量氢气气氛保护。
作为优选,所述的亚光工作辊表面颗粒细腻均匀,轧辊表面Ra<0.3μm。
作为优选,步骤S1中使用森吉米尔二十辊轧机对原料母卷进行轧制。
作为优选,步骤S1中轧制的变形量>70%,轧制的道次数为≥7道次,每道次速度不超过300m/min。
第二方面,本申请还提供一种燃料电池金属双极板用精密带材,所述的燃料电池金属双极板用精密带材由第一方面所述的加工工艺生产得到。
与现有技术相比,本发明的有益效果是:
采用全新的制备方法,主要是对原料轧制工艺进行比较大的更改。在精轧工艺中末三道采用亚光工作辊进行轧制,每道次钢带的变形量不超过10%,通过对末三道轧制的精确控制,使工艺可以得到厚度0.08~0.1mm、表面粗糙度Sa<0.3μm的成品钢带,可实现工业化大批量生产;高延伸率有利于提高双极板流道成形性;亚光工作辊轧制出的面粗糙度Sa<0.3μm的成品钢带有利于降低双极板与阳极表面接触电阻从而提高燃料电池效率。
附图说明
图1为本发明的加工工艺的流程图;
图2为本发明的成品表面3D图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供为了解决现有的双极板与阳极表面接触电阻过高的问题,本发明提供如下技术方案:
如图1-2所示,一种燃料电池金属双极板用精密带材的加工工艺,包括以下步骤:
S1、原料初轧:将厚度0.9~1.5mm的原料母卷轧制到厚度0.32~0.4mm的中坯半成品钢卷,在本工序中,要求轧制的变形量>70%,降低钢卷的厚度,轧制的道次数为≥7道次,一般前几道次变形量较大以消除原料氧化层,每道次变形量呈逐渐减小的趋势,可以采用比较快的轧制速度,每道次速度不超过300m/min,在本工序中,优选使用森吉米尔二十辊轧机对原料母卷进行轧制。
S2、中坯固溶退火:初轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度20~40m/min,全程使用高浓度大流量氢气保护,氢气保护气体的浓度可以达到99.99%,由于初轧后的钢带比较厚,所以可以降低退火速度,以保证退火的质量。
S3、成品精轧:固溶退火后的半成品钢卷经过7道次轧制,其中末三道次轧制每道次变形量不超过10%,每道次轧制速度不超过150m/min,且末三道次中每道次需要更换全新亚光工作辊轧制,得到成品厚度0.08~0.1mm、面粗糙度Sa<0.3μm的成品钢带,其中,所述的亚光工作辊表面颗粒细腻均匀,轧辊表面Ra<0.3μm。
末三道的每道次的轧制可以采用相同的亚光工作辊,也可以采用不同的亚光工作辊,但都需要保证亚光工作辊表面粗糙度Ra<0.3μm,优选为全新的亚光工作辊,亚光工作辊的宽度700-1400mm,直径45-55mm。
S4、成品固溶退火:精轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度50~70m/min,全程使用高浓度大流量氢气气氛保护,氢气保护气体的浓度可以达到99.99%,由于精轧完成后钢带比较薄,所以可以采用比较快的退火速度,提高效率。
实施例1
采用以下步骤进行生产:
S1、原料初轧:将厚度1.5mm的原料母卷轧制到厚度0.4mm的中坯半成品钢卷,在本工序中,要求轧制的变形量>70%,降低钢卷的厚度,轧制的道次数为9道次,由于每道次轧制的变形量都在10%左右,而且初轧对精度的要求不高,可以采用比较快的轧制速度,每道次速度不超过300m/min,在本工序中,使用森吉米尔二十辊轧机对原料母卷进行轧制。
S2、中坯固溶退火:初轧完成后钢带经过连续退火炉固溶退火处理,退火温度1100℃,退火速度40m/min,全程使用高浓度大流量氢气保护。
S3、成品精轧:固溶退火后的半成品钢卷经过7道次轧制,其中末三道次轧制每道次变形量不超过10%,每道次轧制速度不超过150m/min,且末三道次中每道次需要更换亚光工作辊轧制,得到成品厚度0.1mm、面粗糙度Sa<0.3μm的成品钢带,其中,所述的亚光工作辊表面颗粒细腻均匀,轧辊表面Ra<0.3μm。
S4、成品固溶退火:精轧完成后钢带经过连续退火炉固溶退火处理,退火温度1100℃,退火速度70m/min。
采用以上工艺形成的成品的显微维氏硬度HV140-170,断后延伸率≥55%。表面3D图像见附图2,微观凸起平均高度2.0μm。
本申请采用全新的制备方法,主要是对原料轧制工艺进行比较大的更改。在精轧工艺中末三道采用亚光工作辊进行轧制,每道次钢带的变形量不超过10%,通过对末三道轧制的精确控制,使工艺可以得到厚度0.08~0.1mm、表面粗糙度Sa<0.3μm的成品钢带,可实现工业化大批量生产,高延伸率有利于提高双极板流道成形性,超细亚光工作辊轧制出的面粗糙度Sa<0.3μm的成品钢带有利于降低双极板与阳极表面接触电阻从而提高燃料电池效率。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。

Claims (5)

1.一种燃料电池金属双极板用精密带材的加工工艺,其特征在于,包括以下步骤:
S1、原料初轧:将厚度0.9~1.5mm的原料母卷轧制到厚度0.32~0.4mm的中坯半成品钢卷;
S2、中坯固溶退火:初轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度20~40m/min,全程使用高浓度大流量氢气保护;
S3、成品精轧:固溶退火后的半成品钢卷经过7道次轧制,其中末三道次轧制每道次变形量不超过10%,每道次轧制速度不超过150m/min,且末三道次中每道次需要更换全新的亚光工作辊轧制,得到成品厚度0.08~0.1mm、面粗糙度Sa<0.3μm的成品钢带;
S4、成品固溶退火:精轧完成后钢带经过连续退火炉固溶退火处理,退火温度950~1100℃,退火速度50~70m/min,全程使用高浓度大流量氢气气氛保护。
2.根据权利要求1所述的燃料电池金属双极板用精密带材的加工工艺,其特征在于:所述的亚光工作辊表面颗粒细腻均匀,轧辊表面Ra<0.3μm。
3.根据权利要求1所述的燃料电池金属双极板用精密带材的加工工艺,其特征在于:步骤S1中使用森吉米尔二十辊轧机对原料母卷进行轧制。
4.根据权利要求1所述的燃料电池金属双极板用精密带材的加工工艺,其特征在于:步骤S1中轧制的变形量>70%,轧制的道次数为≥7道次,每道次速度不超过300m/min。
5.一种燃料电池金属双极板用精密带材,其特征在于:所述的燃料电池金属双极板用精密带材由权利要求1-4中任意一项所述的加工工艺生产得到。
CN202111391684.9A 2021-11-19 2021-11-19 一种燃料电池金属双极板用精密带材及其加工工艺 Active CN114156492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111391684.9A CN114156492B (zh) 2021-11-19 2021-11-19 一种燃料电池金属双极板用精密带材及其加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111391684.9A CN114156492B (zh) 2021-11-19 2021-11-19 一种燃料电池金属双极板用精密带材及其加工工艺

Publications (2)

Publication Number Publication Date
CN114156492A true CN114156492A (zh) 2022-03-08
CN114156492B CN114156492B (zh) 2024-01-19

Family

ID=80457387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111391684.9A Active CN114156492B (zh) 2021-11-19 2021-11-19 一种燃料电池金属双极板用精密带材及其加工工艺

Country Status (1)

Country Link
CN (1) CN114156492B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514460A (zh) * 2015-12-29 2016-04-20 北京科技大学 一种高导电率金属双极板的高效轧制成形工艺
CN109055673A (zh) * 2018-08-27 2018-12-21 山西太钢不锈钢精密带钢有限公司 锅仔片用不锈钢精密薄带生产工艺
CN109332378A (zh) * 2018-08-31 2019-02-15 山西太钢不锈钢精密带钢有限公司 精密不锈钢特殊表面轧制生产工艺
CN109622613A (zh) * 2018-12-18 2019-04-16 佛山市三水晨曦不锈钢有限公司 201冷轧不锈钢带的加工方法
CN110306026A (zh) * 2019-06-19 2019-10-08 江苏甬金金属科技有限公司 高端家用电器面板用精密不锈钢带加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514460A (zh) * 2015-12-29 2016-04-20 北京科技大学 一种高导电率金属双极板的高效轧制成形工艺
CN109055673A (zh) * 2018-08-27 2018-12-21 山西太钢不锈钢精密带钢有限公司 锅仔片用不锈钢精密薄带生产工艺
CN109332378A (zh) * 2018-08-31 2019-02-15 山西太钢不锈钢精密带钢有限公司 精密不锈钢特殊表面轧制生产工艺
CN109622613A (zh) * 2018-12-18 2019-04-16 佛山市三水晨曦不锈钢有限公司 201冷轧不锈钢带的加工方法
CN110306026A (zh) * 2019-06-19 2019-10-08 江苏甬金金属科技有限公司 高端家用电器面板用精密不锈钢带加工方法

Also Published As

Publication number Publication date
CN114156492B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
CA2559589C (en) Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
EP1990855B1 (en) Separator for solid polymer fuel cell and method for manufacturing the same
EP2770567B1 (en) Stainless steel for fuel-cell separators
CN104611658B (zh) 一种卷式生产ta3钛板的退火方法
US20090226785A1 (en) Stainless Steel, Titanium, or Titanium Alloy Solid Polymer Fuel Cell Separator and Its Method of Produciton and Method of Evaluation of Warp and Twist of Separator
DE102013209918B4 (de) Verfahren zum Abscheiden einer dauerhaften dünnen Goldbeschichtung auf Brennstoffzellen-Bipolarplatten
JP6112262B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス薄鋼板
CN102414347B (zh) 阳极氧化层的形成方法、模具的制造方法以及模具
CN104131143B (zh) 一种制备镁合金超薄带材的方法
CN116136892A (zh) 一种二十辊轧机轧制力的计算方法及系统
CN108396126A (zh) 超薄精密软态不锈钢带制作方法
Liu et al. Mechanical properties, corrosion resistance, and rubber pad forming of cold differential speed-rolled pure titanium for bipolar plates of proton-exchange membrane fuel cells
JP4700393B2 (ja) 多段ロール成形装置
CN114156492A (zh) 一种燃料电池金属双极板用精密带材及其加工工艺
EP3395990B1 (en) Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
CN108511773A (zh) 在双极板中制造通道的系统和方法
CN116197680B (zh) 一种精密金属掩模板条的制作方法
CN105880287A (zh) 一种均匀细晶高密度钼或钼合金板材的制备方法
CN107252820B (zh) 一种高纯镍板带材的制备方法
US20100330389A1 (en) Skin pass for cladding thin metal sheets
CN100479943C (zh) 预涂感光版用铝基材热连轧工艺
CN109926458A (zh) 一种表面油膜稳定的薄带钢及其生产方法
CN114147064A (zh) 一种汽车装饰条用不锈钢精密带材及其加工工艺
Zhong et al. Simulation optimization and experimental research on three-stage stamping of micro-channels with titanium ultra-thin sheet used for PEM fuel cell bipolar plates
Ma et al. Forming of large scale bipolar plates for high power fuel cell stacks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant