CN114153143A - 一种导弹非奇异固定时间滑模制导律的设计方法 - Google Patents

一种导弹非奇异固定时间滑模制导律的设计方法 Download PDF

Info

Publication number
CN114153143A
CN114153143A CN202111201237.2A CN202111201237A CN114153143A CN 114153143 A CN114153143 A CN 114153143A CN 202111201237 A CN202111201237 A CN 202111201237A CN 114153143 A CN114153143 A CN 114153143A
Authority
CN
China
Prior art keywords
time
missile
fixed
formula
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111201237.2A
Other languages
English (en)
Other versions
CN114153143B (zh
Inventor
刘继承
江驹
阴浩博
刘亮
李�荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111201237.2A priority Critical patent/CN114153143B/zh
Publication of CN114153143A publication Critical patent/CN114153143A/zh
Application granted granted Critical
Publication of CN114153143B publication Critical patent/CN114153143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种导弹非奇异固定时间滑模制导律的设计方法,包括如下步骤:(1)建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程;(2)对于步骤(1)所得到的纵向平面内弹目之间相对运动学方程,要求状态变量x1、x2在固定时间内趋近于零;(3)根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋近律形式,设计控制律;(4)针对步骤(3)的未知扰动项,设计固定时间干扰观测器;(5)针对步骤(3)和步骤(4)中所设计的控制器以及干扰观测器,利用Lyapunov稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间上界。本发明可以保证导弹在固定时间内满足落角、导引头视场角约束,以期望的落角精确命中目标。

Description

一种导弹非奇异固定时间滑模制导律的设计方法
技术领域
本发明涉及导弹制导与控制技术领域,尤其是一种导弹非奇异固定时间滑模制导律 的设计方法。
背景技术
随着现代战争的发展,导弹的命中精度越来越高,业界逐渐对于导弹的制导控制系 统提出了新的要求。如在反舰导弹、反坦克导弹的设计中,希望导弹能够以一定的角度击中目标,从而最大化地发挥战斗部的性能,增强对目标的破坏杀伤能力,且希望制导 系统能够快速响应,保证固定时间收敛。为了提高落角约束下导弹末端对目标的击中概 率,充分发挥导弹战斗部的作战效能,如何设计具有强鲁棒性且快速收敛的制导律成为 了导弹制导控制系统设计的关键问题。
滑模变结构控制理论由于其具有快速反应、无需系统辨识、高鲁棒性等优点,被广泛应用于导弹制导系统的设计过程中。近些年来,滑模变结构控制在制导控制律设计领 域得到了即为广泛的应用。为了实现全局滑模,保证制导系统在整个响应过程的鲁棒性, 终端滑模也被应用于导弹制导律的设计当中。考虑到实际的末制导过程十分有限且短暂, 能够实现固定时间内收敛的终端滑模是未来制导系统研究的一个热点。固定时间控制的 概念最早由Polykov于2012年提出,相比于有限时间控制,固定时间控制无论系统初 始状态如何,系统收敛时间都具有一致有界性,即系统收敛时间上界只与控制律参数相 关。双幂次趋近律的应用一方面可以加快滑模面的收敛速度,同时还可以克服抖振问题。 固定时间一致收敛扰动观测器由于其对实时扰动信息的高精度估计,且具有强鲁棒性, 在制导系统中可以实现对目标运动信息的高精度快速估计。
发明内容
本发明所要解决的技术问题在于,提供一种导弹非奇异固定时间滑模制导律的设计 方法,可以保证导弹在固定时间内满足落角、导引头视场角约束,以期望的落角精确命中目标。
为解决上述技术问题,本发明提供一种导弹非奇异固定时间滑模制导律的设计方法, 包括如下步骤:
(1)建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程;
(2)对于步骤(1)所得到的纵向平面内弹目之间相对运动学方程,要求状态变量x1、x2在固定时间内趋近于零;
(3)根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋近律形式,设计控制律;
(4)针对步骤(3)的未知扰动项,设计固定时间干扰观测器;
(5)针对步骤(3)和步骤(4)中所设计的控制器以及干扰观测器,利用Lyapunov 稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间上界。
优选的,步骤(1)中,建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程具体为:
Figure BDA0003304960130000021
式中,VM和VT分别为导弹和目标飞行速度,ηM=q-θM,ηT=q-θT,R为弹目距离,
Figure BDA0003304960130000027
为接近速度,q和
Figure BDA0003304960130000028
分别为视线角和视线角速率,水平基线沿逆时针方向旋转到弹目 视线上时q值为正;
选取状态变量x1=q-qd
Figure BDA0003304960130000022
其中qd为导弹末端期望落角,记
Figure BDA0003304960130000023
为导 弹法向过载,对x1和x2求导并将(1)式代入可以得到
Figure BDA0003304960130000024
式中,
Figure BDA0003304960130000025
为未知扰动项。
优选的,步骤(2)中,对于步骤(1)所得到的不确定纵向平面制导系统方程,要 求状态变量x1、x2在固定时间内趋近于零具体为:
设计新型快速收敛固定时间非奇异终端滑模面如下
s=x2+k0x1+k1sigα(x1)+k2φ(x1) (3)
Figure BDA0003304960130000026
式中,k0,k1,k2>0为正常数,sigα(x1)=|x1|αsign(x1),α>1>β>0,ω1=ιβ-γ,γ>0, ι>0为很小的正常数;
对于式(3)中的滑模面,设计其趋近律形式为
Figure BDA0003304960130000031
式中,λ012>0为正常数,m>1>n>0,从式(5)中看出,当R较大时,趋近 速度较慢,当R→0时,趋近速度迅速增加,保证制导系统快速进入滑动模态。
优选的,步骤(3)中,根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋 近律形式,设计控制律具体为:
Figure BDA0003304960130000032
式中,
Figure BDA0003304960130000033
为式(2)中未知扰动项Δ的估计值。
由于导弹打击的目标为地面固定或低速运动的目标,因此假设未知扰动项Δ有界, 即存在未知有界正常数δ,满足||Δ||<δ。
优选的,步骤(4)中,针对步骤(3)的未知扰动项,设计固定时间干扰观测器具 体为:
Figure BDA0003304960130000034
式中,
Figure BDA0003304960130000035
Figure BDA0003304960130000036
分别为滑模变量s和未知扰动项Δ的估计值,L为待设计参数需满足L≥δ,参数κ1,κ2需满足s21s+κ2=0为Hurwitz,当观测器观测目标加速度在固定 时间收敛后,可完全补偿未知扰动项,即满足
Figure BDA0003304960130000037
优选的,步骤(5)中,针对步骤(3)和步骤(4)中所设计的控制器以及干扰观 测器,利用Lyapunov稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间 上界具体为:
选取Lyapunov函数
Figure BDA0003304960130000041
对V1求导有
Figure BDA0003304960130000042
式中,
Figure BDA0003304960130000043
系统满足固定时间收敛,其中收敛时间上界为
Figure BDA0003304960130000044
系统收敛时间与系统初始状态无关,只与控制器参数相关;
当系统到达滑模面后,将沿滑模面运动直到收敛到原点,此时滑模面满足
s=x2+k0x1+k1sigα(x1)+k2φ(x1)=0 (11)
考虑到
Figure BDA0003304960130000045
则下式成立
Figure BDA0003304960130000046
考虑以下Lyapunov函数
Figure BDA0003304960130000047
当x1≥ι时,对V2求导,并将式(12)代入得到
Figure BDA0003304960130000048
式中,
Figure BDA0003304960130000049
可知系统满足固定时间收敛,收敛时间上界为
Figure BDA0003304960130000051
由式(14)及(15)得,系统状态变量x1在固定时间内进入区间|x1<ι内,对于x2满足
|x2|≤k0ι+k1ια+k2ιβ (16)
当|x1|<ι时,根据滑模面式(3)及式(14)可得
Figure BDA0003304960130000052
将ω1表达式代入上式并化简,同样对于不等式|x2|≤k0ι+k1ια+k2ιβ亦成立;
根据式(9)和式(14)可知,制导系统在控制律(6)以及扰动观测器(7)的作 用下是稳定的,且满足固定时间收敛特性,系统状态将在固定时间内收敛至滑动模态, 然后沿着滑模面运动;对于视线角可在固定时间收敛到其期望值,视线角速率也可收敛 稳定在任意小区域内,系统收敛上界为Tmax=T1max+T2max
本发明的有益效果为:本发明基于固定时间控理论以及滑模变结构控制方法,针对 落角约束下的纵向平面内导弹精确制导问题,设计了固定时间非奇异终端滑模控制器,能够保证闭环制导系统状态的固定时间快速收敛特性,且收敛时间上界与系统初始状态无关,并且具有应对不确定干扰的强鲁棒性,以及满足落角约束和脱靶量要求的制导精 确性,实现对目标的精确打击。
附图说明
图1为本发明导弹再入末端制导段纵向平面内弹目之间相对运动关系图。
图2为本发明三维空间内弹目相对运动轨迹图。
图3为本发明X-Y平面内弹目相对运动轨迹图。
具体实施方式
一种导弹非奇异固定时间滑模制导律的设计方法,包括如下步骤:
(1)建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程;
(2)对于步骤(1)所得到的纵向平面内弹目之间相对运动学方程,要求状态变量x1、x2在固定时间内趋近于零;
(3)根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋近律形式,设计控制律;
(4)针对步骤(3)的未知扰动项,设计固定时间干扰观测器;
(5)针对步骤(3)和步骤(4)中所设计的控制器以及干扰观测器,利用Lyapunov 稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间上界。
本发明实施例提供了纵向制导平面内基于固定时间非奇异终端滑模制导方法的导 弹制导系统的设计,主要涉及到制导系统多个模块的设计,包括弹目相对运动状态空间模型的设计,非奇异固定时间终端滑模面的设计,基于弹目距离的改进双幂次趋近律的 设计,以及对目标运动信息进行估计的固定时间一致收敛扰动观测器的设计。制导系统 的输入包括纵向平面内导弹和目标的位置信息,用以计算弹目视线距离,以及导弹运动 速度在纵向平面内的大小以及方向。输出信息为纵向平面内的导弹法向过载。
以某型导弹末端制导为例,首先建立弹目相对运动状态空间模型,制导系统输入包 括:导弹飞行速度VM,初始弹道倾角θM,期望终端落角qd,导弹初始位置(xM,yM)以 及目标初始位置(xT,yT)以及相应的初始速度VT,对应的表达式为:
Figure BDA0003304960130000061
式中,ηM=q-θM为弹目视线与导弹弹道方向之间的夹角,ηT=q-θT为弹目视线与目标运动速度方向之间的夹角。R为弹目距离,q为弹目视线角,其可以通过下述表达式 求得:
Figure BDA0003304960130000062
进一步,考虑到落角约束的条件时,选取弹目视线角与期望视线角的差值作为其中 一个状态变量x1=q-qd;考虑到对打击脱靶量的要求时,选取弹目视线角速率作为另 一个状态变量
Figure BDA0003304960130000063
结合式(18),在此基础上建立制导系统状态空间模型,对应的表 达式为:
Figure BDA0003304960130000071
式中,
Figure BDA0003304960130000072
目标运动信息,考虑为系统状态空间的未知扰动项,其值将在后面 步骤中由扰动观测器观测得到。
进一步,基于固定时间控制理论以及积分滑模控制方法,对上述制导系统状态空间 模型设计固定时间非奇异终端滑模面,对应的表达式为:
s=x2+k0x1+k1sigα(x1)+k2φ(x1) (21)
Figure BDA0003304960130000073
式中,k0,k1,k2>0为正常数,sigα(x1)=|x1|αsign(x1),α>1>β>0,ω1=ιβ-γ,γ>0, ι>0为很小的正常数。φ(x1)采用分段函数形式的设计方法,通过选取合适的ι值,可以 避免制导系统由于状态量较小时出现的奇异现象。可以保证滑模制导系统在制导末段为 全域工作状态。
进一步,为了保证上述设计的滑模面也在固定时间内收敛,且要求控制输入尽量减 弱抖振现象,需对滑模面的趋近律进行设计,这里采用双幂次趋近律的形式,并将弹目距离引入到趋近律的设计当中,进一步加快滑模面的收敛速度,改进后的双幂次趋近律 表达式如下所示:
Figure BDA0003304960130000074
进一步,利用固定时间一直收敛扰动观测器来对制导系统状态空间模型中的外界扰 动项进行估计和补偿,其中扰动观测器的表达式如下所示:
Figure BDA0003304960130000075
式中,
Figure BDA0003304960130000076
是对状态空间中Δ的估计值,其中估计误差
Figure BDA0003304960130000077
能够实现在固定时间内收敛。
进一步,结合终端滑模面(21)-(22),双幂次趋近律(23)以及固定时间一致收 敛扰动观测器(24)中对未知扰动项的估计值
Figure BDA0003304960130000081
设计制导系统控制输入,即导弹纵向 平面内的法向过载
Figure BDA0003304960130000082
其具体表达式如下所示:
Figure BDA0003304960130000083
式中,α,m>1,1>β,n>0,k0,k1,k2>0,λ012>0。
可以证明,导弹纵向平面制导系统采用如式(25)所示的法向过载输入,可以保证制导系统为Lyapunov意义下的稳定,且满足固定时间收敛特性,系统状态变量也能快 速收敛,收敛时间也有确切上界。
保证固定时间内导弹在此控制输入下弹目视线角达到期望视线角标准,且弹目视线 角旋转角速率能在固定时间内收敛,具有快速响应特性,满足落角约束及脱靶量的要求。 且制导系统无需知道目标具体运动信息,具有较强鲁棒性。
本实施例的数值仿真验证如下,三枚导弹(M1,M2,M3)与三个运动目标(T1,T2,T3),其中(Mi,Ti)位于同一纵向平面内,导弹初始位置分别为:(xM1,yM1,zM1)=(-9,0,10)×103m,(xM2,yM2,zM2)=(-9,3,10)×103m,(xM3,yM3,zM3)=(-9,3,10)×103m,三枚导弹的初始速 度均为620m/s,初始弹道倾角(θ123)=(20°,-10°,30°)。目标初始位置分别为: (xT1,yT1,zT1)=(5,0,5)×103m,(xT2,yT2,zT2)=(5,3,5)×103m,(xT2,yT2,zT2)=(5,6,5)×103m, 目标运动速度均为200m/s。其中三枚导弹均采用本发明中提出的制导算法,则仿真弹目 相对三维运动轨迹如图2所示。纵向平面运动轨迹如图3所示。
从上述仿真结果来看,采用固定时间非奇异终端滑模控制方法的导弹末段制导系统, 各导弹均能快速且精确地击中目标敌机,并且满足落角约束,同时也可以看出,弹目视线角与期望视线角之间的误差最终收敛至零,且弹目视线角速率也在固定时间内收敛。 满足了对目标的精确打击以及对脱靶量的要求。
本发明采用了基于终端非奇异滑模控制下的导弹制导控制问题,利用了滑模变结构 控制具有响应速度快,系统鲁棒性强,精度高,无需识别等优点,且在制导过程中控制输入不会产生奇异现象,降低了系统抖振;本发明考虑了导弹制导末段的落角约束问题,能够更有效地约束终端落角,提高制导导弹对目标的毁伤能力。
本发明基于固定时间控制理论,设计了固定时间滑模,并针对该滑模设计了双幂次 趋近律,加快了系统状态轨迹到达滑模面的速度。采用本发明所涉及的滑模面以及趋近律形式可以保证导弹的视线角及视线角速率快速收敛,且收敛时间与系统初始状态无关,只与制导律设计参数相关,能够大幅度地提升导弹的制导性能。
本发明设计了固定时间一致收敛扰动观测器,无需精确知道目标运信息。且扰动观 测器的估计误差可以在固定时间内收敛。
控制器设计为通用输入设计,可以应用在线性和非线性系统中,满足多种类型导弹 的控制输入要求,适用性较为广泛。

Claims (6)

1.一种导弹非奇异固定时间滑模制导律的设计方法,其特征在于,包括如下步骤:
(1)建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程;
(2)对于步骤(1)所得到的纵向平面内弹目之间相对运动学方程,要求状态变量x1、x2在固定时间内趋近于零;
(3)根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋近律形式,设计控制律;
(4)针对步骤(3)的未知扰动项,设计固定时间干扰观测器;
(5)针对步骤(3)和步骤(4)中所设计的控制器以及干扰观测器,利用Lyapunov稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间上界。
2.如权利要求1所述的导弹非奇异固定时间滑模制导律的设计方法,其特征在于,步骤(1)中,建立导弹再入末端制导段纵向平面内弹目之间相对运动学方程具体为:
Figure FDA0003304960120000011
式中,VM和VT分别为导弹和目标飞行速度,ηM=q-θM,ηT=q-θT,R为弹目距离,
Figure FDA0003304960120000012
为接近速度,q和
Figure FDA0003304960120000013
分别为视线角和视线角速率,水平基线沿逆时针方向旋转到弹目视线上时q值为正;
选取状态变量x1=q-qd
Figure FDA0003304960120000014
其中qd为导弹末端期望落角,记
Figure FDA0003304960120000015
为导弹法向过载,对x1和x2求导并将(1)式代入可以得到
Figure FDA0003304960120000016
式中,
Figure FDA0003304960120000017
为未知扰动项。
3.如权利要求1所述的导弹非奇异固定时间滑模制导律的设计方法,其特征在于,步骤(2)中,对于步骤(1)所得到的不确定纵向平面制导系统方程,要求状态变量x1、x2在固定时间内趋近于零具体为:
设计新型快速收敛固定时间非奇异终端滑模面如下
s=x2+k0x1+k1sigα(x1)+k2φ(x1) (3)
Figure FDA0003304960120000021
式中,k0,k1,k2>0为正常数,sigα(x1)=|x1|αsign(x1),α>1>β>0,ω1=ιβ-γ,γ>0,ι>0为很小的正常数;
对于式(3)中的滑模面,设计其趋近律形式为
Figure FDA0003304960120000022
式中,λ012>0为正常数,m>1>n>0,从式(5)中看出,当R较大时,趋近速度较慢,当R→0时,趋近速度迅速增加,保证制导系统快速进入滑动模态。
4.如权利要求1所述的导弹非奇异固定时间滑模制导律的设计方法,其特征在于,步骤(3)中,根据步骤(2)设计的固定时间非奇异终端滑模面以及其趋近律形式,设计控制律具体为:
Figure FDA0003304960120000023
式中,
Figure FDA0003304960120000024
为式(2)中未知扰动项Δ的估计值。
由于导弹打击的目标为地面固定或低速运动的目标,因此假设未知扰动项Δ有界,即存在未知有界正常数δ,满足||Δ||<δ。
5.如权利要求1所述的导弹非奇异固定时间滑模制导律的设计方法,其特征在于,步骤(4)中,针对步骤(3)的未知扰动项,设计固定时间干扰观测器具体为:
Figure FDA0003304960120000025
式中,
Figure FDA0003304960120000026
Figure FDA0003304960120000027
分别为滑模变量s和未知扰动项Δ的估计值,L为待设计参数需满足L≥δ,参数κ1,κ2需满足s21s+κ2=0为Hurwitz,当观测器观测目标加速度在固定时间收敛后,可完全补偿未知扰动项,即满足
Figure FDA0003304960120000031
6.如权利要求1所述的导弹非奇异固定时间滑模制导律的设计方法,其特征在于,步骤(5)中,针对步骤(3)和步骤(4)中所设计的控制器以及干扰观测器,利用Lyapunov稳定性理论证明其稳定性及固定时间收敛特性,并计算收敛时间上界具体为:
选取Lyapunov函数
Figure FDA0003304960120000032
对V1求导有
Figure FDA0003304960120000033
式中,
Figure FDA0003304960120000034
系统满足固定时间收敛,其中收敛时间上界为
Figure FDA0003304960120000035
系统收敛时间与系统初始状态无关,只与控制器参数相关;
当系统到达滑模面后,将沿滑模面运动直到收敛到原点,此时滑模面满足
s=x2+k0x1+k1sigα(x1)+k2φ(x1)=0 (11)
考虑到
Figure FDA0003304960120000036
则下式成立
Figure FDA0003304960120000037
考虑以下Lyapunov函数
Figure FDA0003304960120000038
当x1≥ι时,对V2求导,并将式(12)代入得到
Figure FDA0003304960120000041
式中,
Figure FDA0003304960120000042
可知系统满足固定时间收敛,收敛时间上界为
Figure FDA0003304960120000043
由式(14)及(15)得,系统状态变量x1在固定时间内进入区间x1<ι内,对于x2满足
x2≤k0ι+k1ια+k2ιβ (16)
当|x1|<ι时,根据滑模面式(3)及式(14)可得
Figure FDA0003304960120000044
将ω1表达式代入上式并化简,同样对于不等式|x2|≤k0ι+k1ια+k2ιβ亦成立;
根据式(9)和式(14)可知,制导系统在控制律(6)以及扰动观测器(7)的作用下是稳定的,且满足固定时间收敛特性,系统状态将在固定时间内收敛至滑动模态,然后沿着滑模面运动;对于视线角可在固定时间收敛到其期望值,视线角速率也可收敛稳定在任意小区域内,系统收敛上界为Tmax=T1max+T2max
CN202111201237.2A 2021-10-15 2021-10-15 一种导弹非奇异固定时间滑模制导律的设计方法 Active CN114153143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111201237.2A CN114153143B (zh) 2021-10-15 2021-10-15 一种导弹非奇异固定时间滑模制导律的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111201237.2A CN114153143B (zh) 2021-10-15 2021-10-15 一种导弹非奇异固定时间滑模制导律的设计方法

Publications (2)

Publication Number Publication Date
CN114153143A true CN114153143A (zh) 2022-03-08
CN114153143B CN114153143B (zh) 2023-10-24

Family

ID=80462535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111201237.2A Active CN114153143B (zh) 2021-10-15 2021-10-15 一种导弹非奇异固定时间滑模制导律的设计方法

Country Status (1)

Country Link
CN (1) CN114153143B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117348402A (zh) * 2023-10-26 2024-01-05 北京航空航天大学 一种基于干扰利用技术的高超声速飞行器三维制导方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096793A1 (en) * 2003-10-30 2005-05-05 Kabushiki Kaisha Toshiba Reference model tracking control system and method
CN110471275A (zh) * 2019-08-30 2019-11-19 哈尔滨工业大学 一种非奇异终端滑模有限时间收敛角度约束制导方法
CN112815787A (zh) * 2020-11-27 2021-05-18 南京理工大学 一种用于多导弹同时攻击机动目标的导弹制导律

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096793A1 (en) * 2003-10-30 2005-05-05 Kabushiki Kaisha Toshiba Reference model tracking control system and method
CN110471275A (zh) * 2019-08-30 2019-11-19 哈尔滨工业大学 一种非奇异终端滑模有限时间收敛角度约束制导方法
CN112815787A (zh) * 2020-11-27 2021-05-18 南京理工大学 一种用于多导弹同时攻击机动目标的导弹制导律

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
尤浩等: "带落角约束的非奇异快速终端二阶滑模制导律", 弹箭与制导学报, vol. 39, no. 6, pages 155 - 159 *
李晓宝等: "带攻击角度约束的非奇异终端滑模固定时间收敛制导律", 控制与决策, vol. 35, no. 2, pages 474 - 482 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117348402A (zh) * 2023-10-26 2024-01-05 北京航空航天大学 一种基于干扰利用技术的高超声速飞行器三维制导方法

Also Published As

Publication number Publication date
CN114153143B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN108168381B (zh) 一种多枚导弹协同作战的控制方法
CN111551080B (zh) 一种攻击时间控制的制导方法
CN111707148B (zh) 一种时变时延条件下多导弹协同制导方法及系统
CN109737812B (zh) 空对地制导武器侧向攻击方法和装置
CN108534614A (zh) 一种三维全向实时预测制导方法
Wang et al. Guidance and control design for a class of spin-stabilized projectiles with a two-dimensional trajectory correction fuze
CN112648886B (zh) 一种组合制导目标拦截方法及系统
CN106091816B (zh) 一种基于滑模变结构理论的半捷联空空导弹制导方法
CN115406312B (zh) 考虑视场角和舵机延时约束的导弹制导控制一体化方法
CN114020021B (zh) 一种多导弹分布式协同制导律的设计方法及系统
CN114035616B (zh) 一种飞行器对移动目标打击控制方法及系统
CN114153143A (zh) 一种导弹非奇异固定时间滑模制导律的设计方法
CN114637304A (zh) 一种察打武器系统及随动跟踪控制方法
CN110471283B (zh) 一种带碰撞角约束的三维鲁棒制导律构建方法
CN109780933B (zh) 一种单兵制导火箭动态目标预测导引方法
CN116360489A (zh) 一种基于成型制导律的协同中制导律设计方法
Van et al. Synthesis of Suboptimal Guidance Law for Anti-Tank Guided Missile with Terminal Impact Angle Constraint Based on the SDRE Technique
CN113835439B (zh) 一种针对初始航迹角自由的控制时间和角度的二维协同制导方法
CN114819055A (zh) 一种基于lstm网络的导弹拦截点预测方法
CN112379599A (zh) 一种针对空中机动目标的三维协同中制导方法
CN115755955B (zh) 基于截获概率的空空导弹协同探测方法
Kumar et al. Adaptive extended kalman filter for ballistic missile tracking
Chen et al. THE STUDY TO APPLY FUZZY WEIGHTED INPUT ESTIMATION FOR THE PREDICTION OF TARGET TRAJECTORY IN A FIRE CONTROL SYSTEM
CN114115325B (zh) 一种基于hp-RPM算法的滑翔弹在线闭环制导方法
Jisi et al. Simulation for two-dimensional trajectory correction projectile with fixed-canard based on modified proportional navigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant