CN114141955A - 一种稳定高效钙钛矿太阳能电池的制备方法 - Google Patents

一种稳定高效钙钛矿太阳能电池的制备方法 Download PDF

Info

Publication number
CN114141955A
CN114141955A CN202111354584.9A CN202111354584A CN114141955A CN 114141955 A CN114141955 A CN 114141955A CN 202111354584 A CN202111354584 A CN 202111354584A CN 114141955 A CN114141955 A CN 114141955A
Authority
CN
China
Prior art keywords
preparation
nickel
transport layer
top electrode
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111354584.9A
Other languages
English (en)
Inventor
黄福志
貊艳平
杨凯中
卓玉铃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202111354584.9A priority Critical patent/CN114141955A/zh
Publication of CN114141955A publication Critical patent/CN114141955A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种稳定高效钙钛矿太阳能电池的制备方法,清洗FTO玻璃基底,并利用激光进行刻蚀;将经UV处理后的FTO玻璃浸入SnCl2稀释液中并密封,利用化学浴沉积法制备SnO2电子传输层;采用反溶剂法在SnO2电子传输层上制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05;将Spiro‑OMeTAD溶液均匀涂敷于冷却后的钙钛矿活性层表面,形成空穴传输层;采用真空蒸镀法蒸镀镍/金薄膜作为顶电极;本发明制备工艺简单,重复性强,具有商业化前景;器件光电转换效率较高,显著提高了器件的光照稳定性;采用蒸镀法制备组合顶电极有利于之后大面积制备。

Description

一种稳定高效钙钛矿太阳能电池的制备方法
技术领域
本发明属于钙钛矿太阳能电池技术领域,具体涉及一种稳定高效钙钛矿太阳能电池的制备方法,尤其是电极的制备方法。
背景技术
随着化石能源越来越稀缺,能源问题变得更加突出。为了减缓化石能源的耗尽,可再生能源变得越来越重要。在可再生能源中,清洁能源太阳能取之不尽,成为了目前最有前景的能源之一。其中,光伏材料钙钛矿具有光吸收系数强、载流子寿命长、带隙可调控、工艺多样化且制作简单等诸多优势,从2009年被用于太阳能器件的3.8%光电转化效率到现在的25.5%效率,受到大家广泛的关注和研究,钙钛矿太阳能电池也成为最具有潜力的太阳能电池。
在钙钛矿太阳能电池的研究,长期稳定性仍然是阻碍其发展的关键问题。钙钛矿太阳能电池结构主要包括顶电极层,钙钛矿层与电荷传输层。对电极是最外侧的一个功能层,起到将电荷导出外电路的作用。金属电极材料与钙钛矿间的腐蚀反应,相对致密的界面层虽然具有阻隔作用,但仍然具有离子渗漏导致反应发生的问题。需要强调的是,卤化物钙钛矿材料对几乎所有金属都具有强腐蚀性,文献中常见的Au,Ag,Cu,Al,Cr等电极材料都会与卤化物钙钛矿在一定老化条件下(光、热、偏压、气氛)发生不可逆的化学反应(作用)。随着电池器件老化时间的延长,被腐蚀的金属电极会穿过界面层,慢慢渗透到钙钛矿活性层的内部,对钙钛矿薄膜形成掺杂而导致深能级缺陷的产生,这是器件性能不可逆蜕化的一个重要路径。在70℃时,Au可以扩散到钙钛矿材料中,导致太阳能电池的性能显著退化。与金电极相比,价格低廉的银电极在器件制备后的几天内会变黄,相比于使用金电极的参比器件,颜色的变化也伴随着能量转换效率的显著降低。因此在器件的顶电极与空穴层之间制备致密的界面层,阻挡金属原子(离子)扩散对提高器件的长期稳定性至关重要。
发明内容
本发明目的在于提高钙钛矿太阳能电池的长期稳定性,提出了一种镍-金组合金属层作为顶电极的钙钛矿太阳能电池制备方法,该制备方法简单易行,显著提高了钙钛矿太阳能电池的光照稳定性。
为达到上述目的,采用技术方案如下:
一种稳定高效钙钛矿太阳能电池的制备方法,包括如下步骤:
1)清洗FTO玻璃基底,并利用激光进行刻蚀;
2)将经UV处理后的FTO玻璃浸入SnCl2稀释液中并密封,利用化学浴沉积法制备SnO2电子传输层;
3)采用反溶剂法在SnO2电子传输层上制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05
4)将Spiro-OMeTAD溶液均匀涂敷于冷却后的钙钛矿活性层表面,形成空穴传输层;
5)采用真空蒸镀法蒸镀镍/金薄膜作为顶电极。
按上述方案,步骤5中镍/金薄膜作为顶电极的制备方法如下;
在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
本发明还提供了一种稳定高效钙钛矿太阳能电池顶电极的制备方法,包括以下步骤:
在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
本发明还提供了一种提高钙钛矿太阳能电池长期稳定性的方法,包括以下步骤:
在FTO玻璃基底上完成电子传输层、钙钛矿活性层、空穴传输层的制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
太阳能电池器件的长期稳定性是目前钙钛矿太阳能电池面临最大的挑战,其中顶电极金属原子扩散、与卤素离子反应、接触空气发生氧化反应等等都是造成器件不稳定的因素。本发明与现有技术相比,具有如下优点:
1)制备工艺简单,重复性强,具有商业化前景;
2)器件光电转换效率较高;
3)显著提高了器件的光照稳定性;
4)采用蒸镀法制备组合顶电极有利于之后大面积制备。
附图说明
图1:对比例1中金薄膜为顶电极的钙钛矿太阳能电池的J-V曲线图;
图2:实施例1中镍/金薄膜为顶电极的钙钛矿太阳能电池的J-V曲线图;
图3:镍/金电极器件与金电极器件连续光照反向扫描稳定性对比。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。
一种稳定高效钙钛矿太阳能电池的制备方法,具体为:
1)清洗FTO玻璃基底,并利用激光进行刻蚀;
2)将经UV处理后的FTO玻璃浸入SnCl2稀释液中并密封,利用化学浴沉积法制备SnO2电子传输层;
3)采用反溶剂法在SnO2电子传输层上制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05
4)将Spiro-OMeTAD溶液均匀涂敷于冷却后的钙钛矿活性层表面,形成空穴传输层;
5)在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
本发明还提供了一种稳定高效钙钛矿太阳能电池顶电极的制备方法:
在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
本发明还提供了一种提高钙钛矿太阳能电池长期稳定性的方法:
在FTO玻璃基底上完成电子传输层、钙钛矿活性层、空穴传输层的制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
对比例1
1)清洗FTO玻璃基底,并利用激光进行刻蚀。用蘸有洗洁精的无尘布擦拭由飞秒激光器刻蚀好的玻璃基片表面,祛除表面的污渍,至基片表面能被水浸润,再将基片放入装有洗涤剂、去离子水及乙醇的容器中各超声30min,保证玻璃基片表面的清洁、无污渍。随后,用气枪吹干玻璃表面,用无尘布包好待用,使用前放入UV清洗机内处理15min。
3)SnO2电子传输层的制备:量取1.096g SnCl2·2H2O,5g尿素,5mL浓盐酸,100μL巯基乙酸溶于400mL蒸馏水中,摇匀后放冰箱备用。取SnCl2溶液20mL,加入100mL H2O稀释,将洗净的FTO玻璃在UV机中清洗15min,在玻璃容器中倒入SnCl2稀释液,并放入FTO玻璃,密封,在90℃烘箱里放置3h后,用去离子水冲洗干净表面。最后,用气枪吹干玻璃表面,放置在热台上180℃下退火1h。
4)采用反溶剂法制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05。具体的配方为:0.07MMABr,0.07M PbBr2,0.5M MACl,1.4M FAI以及1.53M PbI2,溶于1mL DMF/DMSO(v/v=8:1)的混合溶剂中,充分振荡。取35μL钙钛矿前驱液滴在玻璃基板上,用移液枪头使其能够均匀平铺,但不能触及玻璃基底。本发明采用一步法,旋涂步骤分为两步,第一步的转速为1000rpm,时间为10s;第二步的转速为5000rpm,时间为30s(加速度均为2000rpm/s),在第二步骤的第十秒滴加110μL乙酸乙酯(EA)溶液作为反溶剂,得到透亮的亮橙色的液膜。随后,将基片放置在100℃热台上退火1h。
5)称取91.4mg Spiro-OMeTAD,溶解于1mL氯苯(CBZ)中,再加入35.6μL t-BP,11.4μL钴的离子溶液(300mg Co-TFSI溶于1ML乙腈(CAN)中),21μL锂的离子溶液(520mg Li-TFSI溶于1mL ACN中),并充分振荡。待基片冷却室温后,将35μL溶液均匀涂覆在其表面,转速为4000rpm,加速度为2000rpm/s,时间为20s。
6)金属顶电极的制备:金电极采用真空热蒸镀法,在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.4x10-4Pa开始蒸镀80nm左右的薄膜作为顶电极。
对本实验制备得到的钙钛矿太阳能电池进行测试,测试条件为一个光强,测试面积为0.16cm2,测试光源为AAA级别,结果显示,电池反向扫描光电转换效率为20.18%,其中开路电压为1082mV,短路电流为24.22mA/cm2,填充因子为0.771;电池正向扫描光电转换效率为15.64%,其中开路电压为1077mV,短路电流为24.38mA/cm2,填充因子为0.596。
实施例1
1)清洗FTO玻璃基底,并利用激光进行刻蚀。用蘸有洗洁精的无尘布擦拭由飞秒激光器刻蚀好的玻璃基片表面,祛除表面的污渍,至基片表面能被水浸润,再将基片放入装有洗涤剂、去离子水及乙醇的容器中各超声30min,保证玻璃基片表面的清洁、无污渍。随后,用气枪吹干玻璃表面,用无尘布包好待用,使用前放入UV清洗机内处理15min。
3)SnO2电子传输层的制备:量取1.096g SnCl2·2H2O,5g尿素,5mL浓盐酸,100μL巯基乙酸溶于400mL蒸馏水中,摇匀后放冰箱备用。取SnCl2溶液20mL,加入100mL H2O稀释,将洗净的FTO玻璃在UV机中清洗15min,在玻璃容器中倒入SnCl2稀释液,并放入FTO玻璃,密封,在90℃烘箱里放置3h后,用去离子水冲洗干净表面。最后,用气枪吹干玻璃表面,放置在热台上180℃下退火1h。
4)采用反溶剂法制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05。具体的配方为:0.07MMABr,0.07M PbBr2,0.5M MACl,1.4M FAI以及1.53M PbI2,溶于1mL DMF/DMSO(v/v=8:1)的混合溶剂中,充分振荡。取35μL钙钛矿前驱液滴在玻璃基板上,用移液枪头使其能够均匀平铺,但不能触及玻璃基底。本发明采用一步法,旋涂步骤分为两步,第一步的转速为1000rpm,时间为10s;第二步的转速为5000rpm,时间为30s(加速度均为2000rpm/s),在第二步骤的第十秒滴加110μL乙酸乙酯(EA)溶液作为反溶剂,得到透亮的亮橙色的液膜。随后,将基片放置在100℃热台上退火1h。
5)称取91.4mg Spiro-OMeTAD,溶解于1mL氯苯(CBZ)中,再加入35.6μL t-BP,11.4μL钴的离子溶液(300mg Co-TFSI溶于1ML乙腈(CAN)中),21μL锂的离子溶液(520mg Li-TFSI溶于1mL ACN中),并充分振荡。待基片冷却室温后,将35μL溶液均匀涂覆在其表面,转速为4000rpm,加速度为2000rpm/s,时间为20s。
6)以镍/金薄膜作为组合顶电极:镍/金组合电极采用电子束蒸发与热蒸发结合,在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.4x10-4Pa,首先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,镍/金薄膜作为顶电极。
对本实施例制备得到的钙钛矿太阳能电池进行测试,测试条件为一个光强,测试面积为0.16cm2,测试光源为AAA级别,结果显示,电池反向扫描光电转换效率为19.65%,其中开路电压为1056mV,短路电流为24.29mA/cm2,填充因子为0.766;电池正向扫描光电转换效率为16.85%,其中开路电压为1012mV,短路电流为24.33mA/cm2,填充因子为0.684。
图1为对比例1所制备以金薄膜为顶电极的钙钛矿太阳能电池的J-V曲线图;反向扫描效率为20.18%。
图2为实施例1所制备以镍/金薄膜为顶电极的钙钛矿太阳能电池的J-V曲线图;与对比例1所制备的器件相比,电压与填充因子有小幅度下降,导致器件光电转换效率有略微下降。
图3为实施例1所制备镍/金电极器件与对比例1制备的金电极器件连续反向扫描光照稳定性对比,从图中可以看出以镍/金组合电极为顶电极的器件在连续光照反向扫描10次后稳定性明显优于以金薄膜为顶电极的器件。

Claims (4)

1.一种稳定高效钙钛矿太阳能电池的制备方法,其特征在于包括如下步骤:
1)清洗FTO玻璃基底,并利用激光进行刻蚀;
2)将经UV处理后的FTO玻璃浸入SnCl2稀释液中并密封,利用化学浴沉积法制备SnO2电子传输层;
3)采用反溶剂法在SnO2电子传输层上制备钙钛矿活性层(FAPbI3)0.95(MAPbBr3)0.05
4)将Spiro-OMeTAD溶液均匀涂敷于冷却后的钙钛矿活性层表面,形成空穴传输层;
5)采用真空蒸镀法蒸镀镍/金薄膜作为顶电极。
2.如权利要求1所述稳定高效钙钛矿太阳能电池的制备方法,其特征在于步骤5中镍/金薄膜作为顶电极的制备方法如下;
在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
3.一种稳定高效钙钛矿太阳能电池顶电极的制备方法,其特征在于包括以下步骤:
在完成空穴传输层制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
4.一种提高钙钛矿太阳能电池长期稳定性的方法,其特征在于包括以下步骤:
在FTO玻璃基底上完成电子传输层、钙钛矿活性层、空穴传输层的制备后将电池转移至真空热蒸镀仪中,抽真空至2.0x10-4Pa,先采用电子束蒸发蒸镀金属镍5-10nm左右,接着采用热蒸发在镍金属表面蒸镀75-80nm左右的金膜,得到镍/金薄膜作为顶电极。
CN202111354584.9A 2021-11-16 2021-11-16 一种稳定高效钙钛矿太阳能电池的制备方法 Pending CN114141955A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111354584.9A CN114141955A (zh) 2021-11-16 2021-11-16 一种稳定高效钙钛矿太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111354584.9A CN114141955A (zh) 2021-11-16 2021-11-16 一种稳定高效钙钛矿太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN114141955A true CN114141955A (zh) 2022-03-04

Family

ID=80393393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111354584.9A Pending CN114141955A (zh) 2021-11-16 2021-11-16 一种稳定高效钙钛矿太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN114141955A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994118A (zh) * 2017-11-13 2018-05-04 华中科技大学鄂州工业技术研究院 钙钛矿太阳能电池、双层金属电极及其制备方法
CN109273599A (zh) * 2018-08-21 2019-01-25 电子科技大学 一种制造柔性光电探测器的方法
CN109563108A (zh) * 2016-07-21 2019-04-02 洛桑联邦理工学院 混合的阳离子钙钛矿固态太阳能电池及其制造
KR102145211B1 (ko) * 2019-05-03 2020-08-18 울산과학기술원 광전 소자의 제조방법 및 광전 소자
CN112670412A (zh) * 2019-10-16 2021-04-16 杭州纤纳光电科技有限公司 金属阻挡层和钙钛矿太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563108A (zh) * 2016-07-21 2019-04-02 洛桑联邦理工学院 混合的阳离子钙钛矿固态太阳能电池及其制造
CN107994118A (zh) * 2017-11-13 2018-05-04 华中科技大学鄂州工业技术研究院 钙钛矿太阳能电池、双层金属电极及其制备方法
CN109273599A (zh) * 2018-08-21 2019-01-25 电子科技大学 一种制造柔性光电探测器的方法
KR102145211B1 (ko) * 2019-05-03 2020-08-18 울산과학기술원 광전 소자의 제조방법 및 광전 소자
CN112670412A (zh) * 2019-10-16 2021-04-16 杭州纤纳光电科技有限公司 金属阻挡层和钙钛矿太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
Liu et al. 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO 2/SnO 2 bilayer as the electron transport layer
Yang et al. Improved interface of ZnO/CH 3 NH 3 PbI 3 by a dynamic spin-coating process for efficient perovskite solar cells
Yang et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement
Sun et al. 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H 2 generation
Wang et al. Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode
CN106025085A (zh) 基于Spiro-OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
Li et al. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting
CN104218109B (zh) 一种高效率钙钛矿薄膜太阳电池及其制备方法
Jin et al. Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent
CN111430554A (zh) 添加三碘化物的钙钛矿薄膜和电池的制备方法及其电池
WO2020082151A1 (ru) Кремниевый солнечный элемент и способ его изготовления
Wang et al. Influence of a compact CdS layer on the photovoltaic performance of perovskite-based solar cells
Guo et al. Highly efficient perovskite solar cells based on a dopant-free conjugated DPP polymer hole transport layer: influence of solvent vapor annealing
CN105336816A (zh) 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
Guo et al. Fabrication of an ultrathin PEG-modified PEDOT: PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique
Chen et al. Performance enhancement of perovskite solar cells via material quality improvement assisted by MAI/IPA solution post-treatment
CN109851571B (zh) 一种共轭有机小分子界面修饰材料、制备方法及其构成的有机太阳电池
Lee et al. Efficient and stable back-illuminated sub-module dye-sensitized solar cells by decorating SiO 2 porous layer with TiO 2 electrode
CN114141955A (zh) 一种稳定高效钙钛矿太阳能电池的制备方法
CN114805150B (zh) 一种应用于铅基钙钛矿太阳能电池的界面修饰分子
WO2020077710A1 (zh) 一种聚合物-金属螯合物阴极界面材料及其应用
CN109830604A (zh) 一种以聚氧化乙烯薄膜钝化电子传输层与光敏层间界面的钙钛矿光伏电池及其制备方法
CN114497380A (zh) 一种通过粒界钝化改善钙钛矿电池性能的方法
CN117645622B (zh) 一种铈基配合物空穴掺杂剂及钙钛矿太阳能电池制备方法
CN114824105B (zh) 一种钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination