CN114087972B - A shape error measuring device for long hole parts - Google Patents
A shape error measuring device for long hole parts Download PDFInfo
- Publication number
- CN114087972B CN114087972B CN202111463448.3A CN202111463448A CN114087972B CN 114087972 B CN114087972 B CN 114087972B CN 202111463448 A CN202111463448 A CN 202111463448A CN 114087972 B CN114087972 B CN 114087972B
- Authority
- CN
- China
- Prior art keywords
- measuring device
- inner cavity
- oblique
- horizontal
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 70
- 239000000523 sample Substances 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- XEBWQGVWTUSTLN-UHFFFAOYSA-M phenylmercury acetate Chemical compound CC(=O)O[Hg]C1=CC=CC=C1 XEBWQGVWTUSTLN-UHFFFAOYSA-M 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims 3
- 238000005259 measurement Methods 0.000 abstract description 46
- 239000007921 spray Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/06—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/22—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
- G01B21/24—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing alignment of axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
本发明公开了一种长孔类零件形状误差测量装置,属于长孔类零件形状误差测量领域,包括:基础装置包括主壳机构以及车床主轴,滑移装置与主壳机构固定连接,测量装置包括角度测量装置、干涉仪、干涉镜、反射镜、位移测量装置以及超声测量装置,超声测量装置固定于主壳机构上且与车床主轴回转轴线保持水平,反射镜固定于主壳机构以及超声测量单元连接面上,位移传感器与超声测量装置两者的轴线角度始终保持恒定且位于同一竖直平面内,标定装置包括标定球以及标定基准板,干涉仪以及干涉镜与反射镜同轴线设置,本发明结构简单、成本低廉、使用便捷,可以实现对长孔类零件的圆度和轴线直线度误差精确、高效的在线测量。
The invention discloses a shape error measurement device for long hole parts, which belongs to the field of shape error measurement for long hole parts. Angle measuring device, interferometer, interferometer, reflector, displacement measuring device and ultrasonic measuring device, the ultrasonic measuring device is fixed on the main shell mechanism and kept horizontal with the rotation axis of the lathe spindle, and the reflector is fixed on the main shell mechanism and the ultrasonic measuring unit On the connection surface, the axis angles of the displacement sensor and the ultrasonic measuring device are always kept constant and located in the same vertical plane. The calibration device includes a calibration ball and a calibration reference plate, an interferometer, and an interferometer and a mirror coaxial arrangement. The invention has the advantages of simple structure, low cost and convenient use, and can realize precise and efficient on-line measurement of roundness and axis straightness errors of long-hole parts.
Description
技术领域technical field
本发明属于长孔类零件形状误差测量领域,更具体的说是涉及一种长孔类零件形状误差测量装置。The invention belongs to the field of measuring the shape error of long-hole parts, and more specifically relates to a shape error measuring device for long-hole parts.
背景技术Background technique
随着现代装备生产的快速发展,高精度长孔类零件被广泛应用于航空、船舶、石油化工和冶金等制造业领域,长孔类零件的加工质量会直接影响整机性能,作为衡量长孔类零件加工质量的重要技术指标,圆度和轴线直线度误差超差会造成零件应力集中,降低其使用寿命,甚至会带来一定的安全隐患,由于长孔类零件一般长径比较大,测量过程受到内部空间狭小、轴向尺寸较大等因素的限制,对其形状误差测量仍然存在一定的困难,使用传统的误差测量设备,如三坐标测量机、圆度仪、塞规和量规等,均难以满足制造业对长孔类零件形状误差测量过程中仪器使用方便、精准、快速的要求,因此,如何提供一种便捷、精准、高效地检测长孔类零件的圆度和轴线直线度误差的装置是本领域技术人员亟需解决的问题。With the rapid development of modern equipment production, high-precision long-hole parts are widely used in manufacturing fields such as aviation, shipbuilding, petrochemical and metallurgy. The processing quality of long-hole parts will directly affect the performance of the whole machine. As a measure of long-hole An important technical indicator of the processing quality of such parts, the error of roundness and axis straightness will cause the stress concentration of the part, reduce its service life, and even bring certain safety hazards. The process is limited by factors such as narrow internal space and large axial dimensions, and there are still certain difficulties in measuring its shape error. Traditional error measuring equipment is used, such as three-coordinate measuring machines, roundness meters, plug gauges and gauges. It is difficult to meet the requirements of the manufacturing industry for the convenience, accuracy and speed of the instrument in the process of measuring the shape error of long-hole parts. Therefore, how to provide a convenient, accurate and efficient way to detect the roundness and axis straightness errors of long-hole parts The device is a problem that those skilled in the art need to solve urgently.
发明内容Contents of the invention
有鉴于此,本发明提供了一种长孔类零件形状误差测量装置,结构简单,使用方便,能够实现对长孔类零件的圆度和轴线直线度误差进行精准、高效地测量,确保零件使用性能。In view of this, the present invention provides a shape error measuring device for long-hole parts, which has a simple structure and is easy to use, and can accurately and efficiently measure the roundness and axis straightness errors of long-hole parts, ensuring that the parts are used performance.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种长孔类零件形状误差测量装置,包括:基础装置、测量装置、标定装置以及滑移装置;A shape error measuring device for long-hole parts, including: a basic device, a measuring device, a calibration device, and a sliding device;
所述基础装置包括主壳机构以及车床主轴;The basic device includes a main housing mechanism and a lathe spindle;
所述滑移装置包括斜向滑移单元、水平滑移单元以及竖直滑移单元,所述滑移装置与所述主壳机构固定连接;The sliding device includes an oblique sliding unit, a horizontal sliding unit and a vertical sliding unit, and the sliding device is fixedly connected with the main housing mechanism;
所述测量装置包括角度测量装置、干涉仪、干涉镜、反射镜、位移测量装置以及超声测量装置,所述角度测量装置固定于所述车床主轴一端,所述超声测量装置固定于所述主壳机构上且与所述车床主轴回转轴线保持水平,所述反射镜固定于所述主壳机构以及超声测量单元连接面上,所述位移传感器与所述超声测量装置两者的轴线角度始终保持恒定且位于同一竖直平面内;The measuring device includes an angle measuring device, an interferometer, an interferometer, a reflector, a displacement measuring device and an ultrasonic measuring device, the angle measuring device is fixed on one end of the main shaft of the lathe, and the ultrasonic measuring device is fixed on the main shell On the mechanism and keep horizontal with the axis of rotation of the main shaft of the lathe, the reflector is fixed on the connecting surface of the main shell mechanism and the ultrasonic measuring unit, and the axis angle between the displacement sensor and the ultrasonic measuring device is always kept constant and lie in the same vertical plane;
所述标定装置包括标定球以及标定基准板;所述干涉仪以及所述干涉镜与所述反射镜同轴线设置,所述标定球与所述位移测量装置固定连接,所述主壳机构上设置有所述标定基准板;The calibration device includes a calibration ball and a calibration reference plate; the interferometer and the interferometer are coaxially arranged with the mirror, the calibration ball is fixedly connected to the displacement measuring device, and the main housing mechanism is The calibration reference plate is provided;
角度测量装置与计算机通讯连接,位移测量装置、超声测量装置以及干涉仪经各自控制器与计算机通讯连接。The angle measuring device is connected to the computer in communication, and the displacement measuring device, the ultrasonic measuring device and the interferometer are connected to the computer through their respective controllers.
优选的,所述超声测量装置包括喷水机构、流水固定机构、探头夹头以及超声探头,所述流水固定机构与所述超声探头固定连接,所述流水固定机构外侧周向设置有若干个所述探头夹头,所述流水固定机构与所述喷水机构连通,所述喷水机构侧壁连通有水管。Preferably, the ultrasonic measuring device includes a water spray mechanism, a running water fixing mechanism, a probe chuck and an ultrasonic probe, the running water fixing mechanism is fixedly connected to the ultrasonic probe, and several sets of The probe chuck, the running water fixing mechanism is in communication with the water spray mechanism, and the side wall of the water spray mechanism is connected with a water pipe.
优选的,所述主壳机构上设有中斜向内腔、右斜向内腔、左斜向内腔、上水平内腔以及下水平内腔。Preferably, the main housing mechanism is provided with a middle oblique inner chamber, a right oblique inner chamber, a left oblique inner chamber, an upper horizontal inner chamber and a lower horizontal inner chamber.
优选的,斜向滑移单元包括:刻度手轮、斜向调动板、微型平面推力滚针轴承、丝杆螺母、丝杆、限位环以及两根斜向导杆,所述丝杆螺母固定在所述主壳机构上,两根所述斜向导杆分别与所述斜向调动板进行紧固;所述丝杆一端与所述刻度手轮连接,所述丝杆另一端连接所述限位环,所述丝杆周向设置两片所述微型平面推力滚针轴承,所述斜向导杆分别设置于所述右斜向内腔以及所述左斜向内腔内。Preferably, the oblique sliding unit includes: a scaled handwheel, an oblique adjustment plate, a miniature planar thrust needle roller bearing, a screw nut, a screw rod, a limit ring and two oblique guide rods, and the screw nut is fixed on On the main housing mechanism, the two oblique guide rods are respectively fastened to the oblique adjustment plate; one end of the screw rod is connected to the scale hand wheel, and the other end of the screw rod is connected to the limit Two pieces of the miniature planar thrust needle roller bearings are arranged in the circumferential direction of the screw rod, and the oblique guide rods are respectively arranged in the right oblique inner chamber and the left oblique inner chamber.
优选的,竖直滑移单元包括:竖直导杆、竖直挡板、滑轨、滑移调动板和夹紧镶条,所述滑移调动板与所述夹紧镶条固定连接,所述夹紧镶条与所述滑轨紧配合,所述竖直挡板与所述滑轨固定连接,所述竖直导杆设置于所述中斜向内腔内。Preferably, the vertical sliding unit includes: a vertical guide rod, a vertical baffle, a slide rail, a sliding adjusting plate and a clamping insert, the sliding adjusting plate is fixedly connected to the clamping insert, the The clamping strip is tightly matched with the slide rail, the vertical baffle is fixedly connected with the slide rail, and the vertical guide rod is arranged in the inner cavity in the middle oblique direction.
优选的,水平滑移单元包括:夹紧块以及两根水平导杆,所述水平滑移单元的两根所述水平导杆的圆柱面分别与所述夹紧块的上、下端凹槽相接触,所述水平导杆与所述滑移调动板固定连接,所述水平导杆设置于所述上水平内腔以及所述下水平内腔内。Preferably, the horizontal sliding unit includes: a clamping block and two horizontal guide rods, the cylindrical surfaces of the two horizontal guiding rods of the horizontal sliding unit are respectively in contact with the upper and lower end grooves of the clamping block. contact, the horizontal guide rod is fixedly connected with the sliding adjusting plate, and the horizontal guide rod is arranged in the upper horizontal inner chamber and the lower horizontal inner chamber.
优选的,所述位移测量装置包括电涡流位移传感器以及位移测量杆,所述电涡流位移传感器固定连接于所述位移测量杆一端,所述标定球固定连接于所述位移测量杆另一端,所述电涡流位移传感器的信号线缆经所述位移测量杆内腔由侧壁穿出并与控制器连接,所述位移测量杆与所述斜向调动板固定连接。Preferably, the displacement measuring device includes an eddy current displacement sensor and a displacement measuring rod, the eddy current displacement sensor is fixedly connected to one end of the displacement measuring rod, and the calibration ball is fixedly connected to the other end of the displacement measuring rod, so The signal cable of the eddy current displacement sensor passes through the inner cavity of the displacement measuring rod through the side wall and is connected to the controller, and the displacement measuring rod is fixedly connected to the inclined adjustment plate.
优选的,所述电涡流位移传感器与所述超声探头两者的轴线始终保持30°夹角恒定。Preferably, the axes of the eddy current displacement sensor and the ultrasonic probe always maintain a constant angle of 30°.
优选的,所述角度测量装置为旋转编码器。Preferably, the angle measuring device is a rotary encoder.
优选的,旋转编码器通过PMAC控制卡与计算机实现连接,所述PMAC控制卡通过I/O接口分别接入所述电涡流位移传感器以及所述超声探头的控制器。Preferably, the rotary encoder is connected to the computer through a PMAC control card, and the PMAC control card is respectively connected to the controller of the eddy current displacement sensor and the ultrasonic probe through an I/O interface.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明以数控车床和基础结构为基础,以多传感器集成模式为方法,通过位移测量装置以及超声测量装置实现了对工件外表面轮廓和内表面轮廓的重构,并将测量坐标系下的样点坐标值统一于绝对坐标系,角度测量装置外接于车床主轴一端,车床主轴做回转运动的过程中能够精准记录旋转角度,角度测量装置能够在测量截面进行等角度采样,这既可以使同一截面相邻样点间的角度相等化,从而提升测量精度;也可以保证各测量截面的样点数量相同,便于后续评定,结构简单、成本低廉、使用便捷,可以实现对长孔类零件的圆度和轴线直线度误差精确、高效的在线测量。Based on the numerical control lathe and the basic structure, the invention uses the multi-sensor integration mode as the method, realizes the reconstruction of the outer surface contour and the inner surface contour of the workpiece through the displacement measuring device and the ultrasonic measuring device, and measures the sample under the coordinate system The point coordinate values are unified in the absolute coordinate system, and the angle measuring device is externally connected to one end of the lathe spindle. The rotation angle can be accurately recorded during the turning motion of the lathe spindle. The angle measuring device can perform equal-angle sampling on the measurement section, which can make the same section The angles between adjacent sample points are equalized, thereby improving the measurement accuracy; it can also ensure that the number of sample points in each measurement section is the same, which is convenient for subsequent evaluation. The structure is simple, the cost is low, and the use is convenient. It can realize the roundness of long-hole parts Accurate and efficient online measurement of straightness error and axis line.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
图1为本发明的具体结构示意图;Fig. 1 is the concrete structural representation of the present invention;
图2为本发明的俯视图;Fig. 2 is the top view of the present invention;
图3为本发明的正视图;Fig. 3 is the front view of the present invention;
图4为本发明的局部剖视图;Fig. 4 is a partial sectional view of the present invention;
图5为本发明的斜向滑移单元剖视图;Fig. 5 is a sectional view of an oblique sliding unit of the present invention;
图6为本发明的车床结构示意图;Fig. 6 is the structural representation of lathe of the present invention;
图7为本发明的测量原理示意图;Fig. 7 is a schematic diagram of the measurement principle of the present invention;
图8为本发明测量装置的参数标定原理示意图;Fig. 8 is a schematic diagram of the parameter calibration principle of the measuring device of the present invention;
图9为本发明活络量块的模型结构示意图。Fig. 9 is a schematic diagram of the model structure of the active gauge block of the present invention.
其中,图中:1-电涡流位移传感器,2-位移测量杆,3-刻度手轮,4-斜向调动板,5-M5×8型螺钉,6-M5×20型螺钉,7-M6×30型螺钉,8-标定球,9-标定基准板,10-竖直导杆垫圈,11-竖直导杆,12-弹性挡圈,13-竖直挡板,14-滑轨,15-夹持柄,16-水平导杆一,17-滑移调动板,18-水平导杆二,19-夹紧块,20-M6×30型螺钉,21-主壳机构,22-反射镜,23-轴用挡片,24-斜向挡圈,25-斜向导杆一,26-斜向导杆二,27-M5×16型螺钉,28-超声探头固定块,29-丝杆螺母,30-丝杆,31-滚花螺钉,32-进水机构垫圈,33-进水口螺母,34-锁紧螺母,35-微型平面推力滚针轴承一,36-微型平面推力滚针轴承二,37-M5×16型螺钉,38-M5×16型螺钉,39-夹紧镶条,40-喷水机构,41-M6×8螺钉,42-流水固定机构,43-密封圈,44-探头夹头,45-超声探头,46-旋转编码器,47-车床主轴,48-三角卡盘,49-干涉镜,50-激光干涉仪,51-工件,52-外表面轮廓,53-固定电涡流传感器轨迹,54-内表面轮廓,55-内孔拟合圆,56-锁紧螺钉,57-旋动块,58-固定块,59-顶针。Among them, in the figure: 1-eddy current displacement sensor, 2-displacement measuring rod, 3-scale handwheel, 4-oblique adjustment plate, 5-M5×8 type screw, 6-M5×20 type screw, 7-M6 ×30 screw, 8-calibration ball, 9-calibration reference plate, 10-vertical guide rod washer, 11-vertical guide rod, 12-retaining ring, 13-vertical baffle, 14-slide rail, 15 -Clamping handle, 16-
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
参阅附图1-5,一种长孔类零件形状误差测量装置包括:电涡流位移传感器1、斜向滑移单元、标定球8、主壳结构21、水平滑移单元、竖直滑移单元、夹持柄15、反射镜22、标定基准板9、超声探头固定块28和超声测量单元,电涡流位移传感器1依靠自身螺纹与位移测量杆2首端相连接,传感器信号线缆经位移测量杆2内腔由侧壁穿出,连接到采集设备上,这种布置方式使得电涡流位移传感器1既可随斜向滑移单元做斜向滑动,用以保证初始测量截面上测量坐标系原点尽可能与工件轴线重合;也可沿电涡流位移传感器1的轴线方向做前后移动,从而使传感器测量值位于可靠的量程范围内,位移测量杆2尾端连接标定球8,并使用紧固螺钉实现标定球8位置的固定,位移测量杆2通过M6×30型螺钉7与斜向滑移单元中的斜向调动板4实现装夹,既可随斜向滑移单元做斜向滑动,用以保证初始测量截面上测量坐标系原点尽可能与工件轴线重合,也可沿电涡流位移传感器1的轴线方向做前后移动,从而使传感器测量值位于可靠的量程范围内。Referring to accompanying drawings 1-5, a device for measuring the shape error of long hole parts includes: an eddy
斜向滑移单元包括刻度手轮3、斜向调动板4、滚花螺钉31、斜向挡圈24、斜向导杆一25、斜向导杆二26、微型平面推力滚针轴承一35、微型平面推力滚针轴承二36、丝杆螺母29和丝杆30,丝杆30为阶梯轴式结构,有上、中、下3个阶梯面,根据轴径尺寸的不同,可分为上端轴、上中部轴、下中部轴和下端轴,上端轴与刻度手轮3连接,并利用上阶梯面和M5×8型螺钉5实现两者的固定,上中部轴周向分置微型平面推力滚针轴承一35和微型平面推力滚针轴承二36,前者位于斜向调动板4的凹槽平面上侧,后者位于中阶梯面与斜向调动板4之间,依靠锁紧螺母34、斜向调动板4和中阶梯面间的位置关系实现了两片轴承的轴向固定,下中部轴置于主壳机构21的中斜向内腔中,其周向的丝杆螺母29依靠M5×20型螺钉6固定在主壳机构21上,下端轴与限位环24连接,并利用下阶梯面和轴用挡圈23实现固定,斜向导杆一25和斜向导杆二26分别依靠螺钉与斜向调动板4进行紧固,并分别置于主壳机构21的右、左斜向内腔中,在斜向滑移单元工作前,打开滚花螺钉31,旋动刻度手轮3使整个单元做斜向移动,调整到合适位置后,旋紧滚花螺钉31,从而实现对当前位置的保持,当限位环24接触丝杆螺母29时,到达斜向滑移单元的上极限位置,而当微型平面推力滚针轴承二36接触丝杆螺母29时,出现下极限位置,在丝杆周向分置两片微型平面推力滚针轴承,并利用阶梯面和锁紧螺母实现两片轴承的轴向定位,既可以降低丝杆在旋转过程中所受的摩擦影响,也可以在微小轴向空间内提供极高的刚度,从而对丝杆进行一定程度的保护,提升其使用寿命。The oblique sliding unit includes
水平滑移单元包括水平导杆一16、水平导杆二18、夹紧块19和M6×30型螺钉20,水平导杆一16和水平导杆二18分别置于主壳机构21的上、下水平内腔中,其末端依靠螺钉与滑移调动板17进行固定,夹紧块19位于主壳机构21上,其上端凹槽和下端凹槽分别与水平导杆一16和水平导杆二18的圆柱面相接触,当夹紧块19内部的M6×30型螺钉20拧紧后,夹紧块19和主壳机构21会对水平导杆一16和水平导杆二18产生一定的紧固力,阻碍水平滑移单元的运动,从而保持当前的测量装置状态,当M6×30型螺钉20被旋松后,紧固力下降,使得主壳机构21可以沿水平导杆一16和水平导杆二18做直线运动。The horizontal sliding unit includes a
竖直滑移单元包括竖直导杆垫圈10、竖直导杆11、弹性挡圈12、竖直挡板13、滑轨14、滑移调动板17和夹紧镶条39,滑移调动板17以螺钉连接的形式和夹紧镶条39进行固定,并依靠夹紧镶条39与滑轨14实现紧配合,以保证自身的滑动状态,竖直挡板13通过M5×16型螺钉38与滑轨14进行固定,并利用竖直导杆11、弹性挡圈12和竖直导杆垫圈10实现对调整位置的保持,夹持柄15与滑轨14间使用螺钉固连,夹持柄15装夹于车床刀架上,使得测量装置随车床刀架作轴向或径向的直线运动,竖直滑移单元和标定单元统一集成在数控车床或基础结构上,依次联接,彼此配合,在圆度和轴线直线度误差测量上具有良好的效率和精度。The vertical sliding unit comprises a vertical
反射镜22粘贴固连在主壳机构与超声测量单元的连接面上,且位于超声测量单元后侧,用以接受来自激光干涉仪50透过干涉镜49的测量光路,激光干涉仪50和干涉镜49两者轴线需与反射镜22轴线始终位于同一直线上,且三者间不存在任何障碍物,以确保测量光路的准确性和稳定性,标定基准板9采用M5×16型螺钉37连接,超声探头固定块28采用M5×16型螺钉27连接,超声探头固定块28依靠M6×8螺钉41固定超声测量单元的位置,超声测量单元包括喷水机构40、流水固定机构42、密封圈43、探头夹头44和超声探头45,流水固定机构42右端依靠自身的夹持结构与超声探头45相连,其间放置密封圈43,保证水流不会外溢,并在外侧周向放置探头夹头44,以确保流水固定机构42与探头夹头44连接的稳定性,左端依靠螺纹结构与喷水机构40相连,可根据测量系统对水流的需求,对喷水机构40的出水口和管路长度做出调整与更换,侧壁经进水机构垫圈和进水口螺母33与输送层流状态水流的水管相连,进水口螺母33可根据管径大小做出更换,以适应不同管路。
参阅附图6-7,利用三角卡盘48将被测工件一端固定在数控车床上,若工件很大,则另需使用顶尖对其另一端进行装夹,在车床主轴47末端,以螺钉连接的方式外接旋转编码器46;车床主轴47带动工件做转速恒定的旋转运动,每隔一定角度由旋转编码器46触发电涡流位移传感器1和超声探头45进行同时采样,该角度需要满足:(n为正整数),此角度易于确定电涡流位移传感器1和超声探头15间的位置关系,使得两者的测量数据可以保持良好的一致对应性,在一次旋转过程中,可同时获得某位置对应的位移值和厚度值,将电涡流位移传感器1、超声探头45和激光干涉仪50的干涉镜49统一集成于位移测量装置上,且保证电涡流位移传感器1和超声探头45两者轴线位于同一竖直平面内,并间隔30°分开放置,位移测量装置依靠自身夹持柄结构与车床刀架紧固连接,车床刀架带动位移测量装置沿径向调整,可使各传感器的测量值位于可靠的量程范围内;车床刀架带动位移测量装置沿轴向进给,并利用激光干涉仪50、干涉镜49和反射镜22间的输出光光路、测量光光路、反射光光路以及汇合光光路记录位移测量装置的轴向位移,实现对多个测量截面的获取,旋转编码器46、电涡流位移传感器1、超声探头45和激光干涉仪50经数据采集和处理,以数字信号形式传输至上位机终端,旋转编码器46的方波脉冲信号接入PMAC控制卡,PMAC控制卡依靠计数器和比较器产生的触发脉冲经I/O接口分别接入电涡流位移传感器1和超声探头45两者的控制器,在这种采样控制模式下,旋转编码器46触发电涡流位移传感器1和超声探头45同时在测量截面进行等角度采样,这既可以使同一截面相邻样点间的角度相等化,从而提升测量精度;也可以保证各测量截面的样点数量相同,便于后续评定。Referring to accompanying drawings 6-7, use the
以电涡流位移传感器1和超声探头45两者轴线的交点为原点建立的测量坐标系为o'-x'y'z',主轴轴线方向为z′坐标轴,水平方向为x'坐标轴,竖直方向为y'坐标轴,在初始测量截面上,通过调整竖直滑移单元、斜向滑移单元,使电涡流位移传感器1和超声探头45两者轴线的交点尽可能落在工件轴线上,并以该截面的测量坐标系作为绝对坐标系o-xyz;通过调整水平滑移单元、位移测量杆2,使两传感器的测量值落在各自的可靠量程范围内,以满足传感器的使用条件,经测量与标定,得到测量坐标系原点到电涡流位移传感器1发射端的距离L,电涡流位移传感器1测量得到长孔类零件外表面上对应测量点到传感器发射端的位移值,以此描述工件外表面的实际轮廓;超声探头45经非接触式测量得到工件的壁厚值h,壁厚值h指在工件外表面与测量坐标系原点连线方向上外表面到对应内表面的距离值,根据几何关系,实现对工件内表面轮廓的描述,由于电涡流位移传感器1和超声探头45间隔30°布置,在数据处理时,需将电涡流位移传感器1对应的第n个测点与超声探头45对应的第一个测点相对应,使两传感器的测点保持一致,通过这种布置和处理方法,经一次旋转即可同时获得一个测量截面上所有测点的位移值e和壁厚值h,根据公式(1)计算可得测量坐标原点到孔类零件内表面上各测量位置的距离R。The measurement coordinate system established with the intersection of the axes of the eddy
R=L-e-h (1)R=L-e-h (1)
在每个测量截面上,根据求解的距离R、旋转编码器46记录的旋转角度和激光干涉仪50记录的测量截面沿轴向移动的距离l,按公式(2)计算得到各测量位置在绝对坐标下对应的坐标值,利用相关评定算法对截面圆度误差和截面圆心坐标值进行求解,获取多个测量截面圆心坐标后,使用直线度误差评定方法,对圆心坐标进行直线拟合,从而得到轴线直线度误差值。On each measurement section, according to the distance R of the solution, the rotation angle recorded by the
参阅附图8,由测量原理可知,需要对电涡流位移传感器1和超声探头45两者轴线的交点(即测量坐标系原点)到测量装置上电涡流位移传感器1发射端的距离值L进行标定,根据几何关系,参数值L可按式(3)计算得到:Referring to accompanying drawing 8, it can be seen from the measurement principle that it is necessary to calibrate the distance value L from the intersection of the axes of the eddy
L=3r1+2h1+2h2-l1 (3)L=3r 1 +2h 1 +2h 2 -l 1 (3)
其中,r1为标定球半径,l1为电涡流位移传感器1发射端到标定球8末端的距离值,h2为标定基准板9的基准平面到超声探头45轴线的距离值,这些参数值均可在装配完成后由三坐标测量机测量得到,且始终恒为定值;h1为标定基准板9的基准平面到标定球8下端的距离值,可使用本发明设计的活络量块进行测量,将活络量块置于标定基准板9的基准平面与标定球8下端之间,不断调整量块,使其上下测量面分别与标定球8下端、标定基准板9的基准平面相接触;利用千分尺测量此时量块的厚度值,即可获得距离值。Wherein, r1 is the radius of the calibration ball, l1 is the distance value from the transmitting end of the eddy
参阅附图9,活络量块包括:锁紧螺钉56、旋动块57、固定块58和顶针59,以旋动块57上表面作为活络量块的上测量面,以固定块58下表面作为活络量块的下测量面,打开锁紧螺钉56,顺时针或逆时针旋转旋动块57,其螺纹部分沿顶针59滑动,使量块的整体厚度发生变化;紧固锁紧螺钉56,可保持量块的当前厚度。Referring to accompanying drawing 9, flexible measuring block comprises: locking
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111463448.3A CN114087972B (en) | 2021-12-02 | 2021-12-02 | A shape error measuring device for long hole parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111463448.3A CN114087972B (en) | 2021-12-02 | 2021-12-02 | A shape error measuring device for long hole parts |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114087972A CN114087972A (en) | 2022-02-25 |
CN114087972B true CN114087972B (en) | 2022-11-29 |
Family
ID=80306411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111463448.3A Active CN114087972B (en) | 2021-12-02 | 2021-12-02 | A shape error measuring device for long hole parts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114087972B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116237818B (en) * | 2022-12-29 | 2024-07-02 | 广东中海万泰技术有限公司 | Offset measuring method for deep hole machining |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3307042A1 (en) * | 1982-12-23 | 1984-06-28 | Jenny Pressen AG, Frauenfeld | Measuring instrument and its use |
US5274566A (en) * | 1992-12-04 | 1993-12-28 | United Technologies Corporation | Aligning average axis of hollow workpiece cavity with rotary machine axis |
CN1468672A (en) * | 2002-06-04 | 2004-01-21 | Sms米尔股份有限公司 | Method and apparatus for measuring eccentricity of hollow pipe billet |
JP2007071852A (en) * | 2005-09-02 | 2007-03-22 | Akio Katsuki | Apparatus and method for measuring deep hole |
CN101036973A (en) * | 2007-03-29 | 2007-09-19 | 上海大学 | Method and device for the on-line measuring roundness level of high-precision roller grinder and roller shape error |
CN105651218A (en) * | 2016-02-29 | 2016-06-08 | 齐鲁工业大学 | Dimension and tolerance on-line measurement device and method for multi-step shaft |
CN106595532A (en) * | 2016-11-02 | 2017-04-26 | 中北大学 | Method for detecting linearity of deep hole |
CN107367222A (en) * | 2016-05-12 | 2017-11-21 | 哈尔滨工业大学 | The inductance sensor calibration method and device of current vortex sensor linearity compensation |
CN109211166A (en) * | 2018-09-30 | 2019-01-15 | 南京航空航天大学 | A kind of section structure part constrained based on wall thickness and external form is in machine fast calibrating device and its aligning method |
CN109373944A (en) * | 2018-12-04 | 2019-02-22 | 湖南大学 | An ultrasonic-based air foil bearing air film thickness measurement system and method |
CN110160462A (en) * | 2019-05-08 | 2019-08-23 | 北京理工大学 | A kind of detection method of large size deep-hole parts Boring Process circularity and straightness |
CN110455226A (en) * | 2019-08-29 | 2019-11-15 | 天津大学 | Calibration system and method for laser collimation, transceiver and straightness measurement |
CN210108282U (en) * | 2019-05-29 | 2020-02-21 | 吉林大学 | A non-contact intelligent detector for outer circumference size and shape and position error of cylindrical parts |
CN111006597A (en) * | 2019-11-13 | 2020-04-14 | 北京航星机器制造有限公司 | A thin-walled cylinder wall thickness measurement system and wall thickness uniformity determination method |
CN210773943U (en) * | 2019-11-13 | 2020-06-16 | 焦作大学 | Camshaft phase angle measuring device based on machine vision |
CN112504120A (en) * | 2020-12-04 | 2021-03-16 | 潍坊学院 | Screw rod measuring machine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101258380B (en) * | 2006-02-28 | 2011-05-04 | 佳能株式会社 | Method for measuring circular shape and cylindrical shape as well as cylindrical sensing equipment |
CN101439412B (en) * | 2008-12-23 | 2010-08-25 | 大连晨瑞自动化系统有限公司 | Method and apparatus for automatically measuring error and processing semi-unit-type crank shaft main journal basic regular circle |
CN101975656B (en) * | 2010-09-06 | 2011-12-07 | 西安交通大学 | Experimental device for testing dynamic performance of simulated rotor of miniature gas turbine |
CN103213033B (en) * | 2013-04-25 | 2016-08-10 | 杭州汽轮机股份有限公司 | The electricity separating spindle rotation error is beated on-position measure device and measuring method |
CN105423946B (en) * | 2015-11-27 | 2018-10-09 | 天津大学 | Axle journal axle center measuring device based on laser displacement sensor and measurement scaling method |
-
2021
- 2021-12-02 CN CN202111463448.3A patent/CN114087972B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3307042A1 (en) * | 1982-12-23 | 1984-06-28 | Jenny Pressen AG, Frauenfeld | Measuring instrument and its use |
US5274566A (en) * | 1992-12-04 | 1993-12-28 | United Technologies Corporation | Aligning average axis of hollow workpiece cavity with rotary machine axis |
CN1468672A (en) * | 2002-06-04 | 2004-01-21 | Sms米尔股份有限公司 | Method and apparatus for measuring eccentricity of hollow pipe billet |
JP2007071852A (en) * | 2005-09-02 | 2007-03-22 | Akio Katsuki | Apparatus and method for measuring deep hole |
CN101036973A (en) * | 2007-03-29 | 2007-09-19 | 上海大学 | Method and device for the on-line measuring roundness level of high-precision roller grinder and roller shape error |
CN105651218A (en) * | 2016-02-29 | 2016-06-08 | 齐鲁工业大学 | Dimension and tolerance on-line measurement device and method for multi-step shaft |
CN107367222A (en) * | 2016-05-12 | 2017-11-21 | 哈尔滨工业大学 | The inductance sensor calibration method and device of current vortex sensor linearity compensation |
CN106595532A (en) * | 2016-11-02 | 2017-04-26 | 中北大学 | Method for detecting linearity of deep hole |
CN109211166A (en) * | 2018-09-30 | 2019-01-15 | 南京航空航天大学 | A kind of section structure part constrained based on wall thickness and external form is in machine fast calibrating device and its aligning method |
CN109373944A (en) * | 2018-12-04 | 2019-02-22 | 湖南大学 | An ultrasonic-based air foil bearing air film thickness measurement system and method |
CN110160462A (en) * | 2019-05-08 | 2019-08-23 | 北京理工大学 | A kind of detection method of large size deep-hole parts Boring Process circularity and straightness |
CN210108282U (en) * | 2019-05-29 | 2020-02-21 | 吉林大学 | A non-contact intelligent detector for outer circumference size and shape and position error of cylindrical parts |
CN110455226A (en) * | 2019-08-29 | 2019-11-15 | 天津大学 | Calibration system and method for laser collimation, transceiver and straightness measurement |
CN111006597A (en) * | 2019-11-13 | 2020-04-14 | 北京航星机器制造有限公司 | A thin-walled cylinder wall thickness measurement system and wall thickness uniformity determination method |
CN210773943U (en) * | 2019-11-13 | 2020-06-16 | 焦作大学 | Camshaft phase angle measuring device based on machine vision |
CN112504120A (en) * | 2020-12-04 | 2021-03-16 | 潍坊学院 | Screw rod measuring machine |
Also Published As
Publication number | Publication date |
---|---|
CN114087972A (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102162717B (en) | Device and method for automatically detecting composite errors of spiral inner raceway of ball nut | |
CN102538700B (en) | Helical Rotor Profile Error Measuring Instrument | |
CN108317942A (en) | Longaxones parts straight line coaxiality error detection device | |
CN110470243B (en) | Non-contact sensor-based workpiece-biasable inner circle measurement method and device | |
CN104006754B (en) | Wall thickness of cylinder self-operated measuring unit based on laser sensor | |
CN107238352B (en) | A laser on-machine measuring device and method for contour of rotary structural feature parts based on CNC lathe | |
CN107063158A (en) | Elongated bore diameter and cylindricity measuring method based on dual sensor error separate | |
JP2000501505A (en) | Surface shape measurement | |
CN106705869A (en) | Noncontact bearing ring outside diameter measurement device | |
CN102059650A (en) | Precise on-site measuring device and measuring method for sphericity of spherical surface | |
CN106767470A (en) | A kind of non-contact type bearing lasso inner diameter measuring device | |
CN107063091A (en) | For big L/D ratio pipe fitting endoporus measuring multiple parameters device and method | |
CN108296500B (en) | A rapid detection device and detection method for the machining accuracy of a modular CNC lathe | |
CN206593572U (en) | A kind of instrument for accurately measuring optical mirror slip center thickness | |
CN111561882B (en) | Dynamic measuring device and measuring method for six degrees of freedom of rotary shaft | |
CN110375698A (en) | Inner hole circularity on-position measure method based on parameter identification | |
CN110360959A (en) | Visual detection system for large precision shaft parts | |
CN117260389A (en) | Multi-sensor fusion-driven large-scale deep hole part shape error in-situ measurement system | |
CN114087972B (en) | A shape error measuring device for long hole parts | |
CN105222720B (en) | A kind of propeller processing deformation measuring device and method | |
CN112985299B (en) | Optical probe online detection method based on path planning | |
CN204800470U (en) | Circularity and straightness accuracy detection device of grinding of outer face of cylinder | |
CN113927369A (en) | Comprehensive on-machine measuring device and method for rotary error motion of machine tool spindle | |
US4489497A (en) | Groove measuring gauge | |
CN110146014B (en) | Measuring head structure and measuring method for measuring data of inner circular hole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |