CN114085360A - 一种窄带隙共轭聚合物及其制备的有机光电突触器件 - Google Patents
一种窄带隙共轭聚合物及其制备的有机光电突触器件 Download PDFInfo
- Publication number
- CN114085360A CN114085360A CN202111184857.XA CN202111184857A CN114085360A CN 114085360 A CN114085360 A CN 114085360A CN 202111184857 A CN202111184857 A CN 202111184857A CN 114085360 A CN114085360 A CN 114085360A
- Authority
- CN
- China
- Prior art keywords
- narrow
- conjugated polymer
- pcbm
- polymer
- bandgap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/124—Copolymers alternating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/18—Definition of the polymer structure conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3241—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3243—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3246—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/414—Stille reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明涉及一种窄带隙共轭聚合物及其制备的有机光电突触器件,⑴称取式I所述的窄带隙共轭聚合物和PCBM,溶解在超干溶剂中,密闭加热搅拌过夜,获得活性层;⑵在带有ITO的玻璃基底上旋涂ZnO,然后密闭中旋涂活性层;⑶放入到蒸镀仓中,使用热蒸发的方式蒸镀MoO3和Ag。本发明的窄带隙聚合物溶解性良好,光谱吸收范围覆盖可见光区域,近红外波段和部分短波红外波段。本发明中的聚合物材料和PCBM按一定的比例混合作为光响应层。
Description
技术领域
本发明涉及有机光电突触器件领域,具体涉及一种短波红外特异性响应的有机光电突触器件。
背景技术
人体神经网络中的大量神经元和突触使人能够感知周围环境中的各种信号刺激(声、光、力、化学物质),同时也让人拥有学习和记忆的能力。借助各种传感器和人工突触结合,可以模拟人类的各种感官,如听觉、视觉、触觉、嗅觉和味觉。人工突触是模拟人类感官和大脑功能最基本也是最重要的基本元件,可以用在仿生机器人、生物相容移植物,甚至是类脑计算等领域。光电突触具有光响应和突触性质的双重功能。与电突触相比,光信号作为一个额外的输入信号,增加了突触可塑性调节的自由度。同时,也拓宽了带宽,减弱了突触之间的串扰。
人类通过视觉接收到80%的外界信息。视网膜上的视锥细胞可以使人类辨识各种颜色(仅在可见光波段:390-780nm)。人工光电突触可以用来模拟人类视觉系统的功能,但是模拟人类视觉对光的特异性响应,同时具有突触的性质依旧是一个挑战。
短波红外光(波长在1-3um)探测在光通信、工业生产、军工等领域都有很重要的应用。人类视觉系统不能探测红外光。因此,对短波红外光特异性响应的人工光电突触可以拓宽人类的视觉范围。此外,光通信波段主要在红外区,可以使光通讯和类脑计算很好地结合,同时SWIR选择性响应的光电突触,可以避免一些噪声信号的干扰。考虑到生物相容性以及柔性器件的应用,有机材料具有先天的优势。但目前有机光电突触的光响应范围主要在可见光区域,对短波红外区响应的有机光电突触填补了这一区域的空白。
发明内容
本发明针对上述存在的技术困境和应用前景,提供了一种基于苯并双噻吩二唑的窄带隙共轭聚合物在短波红外特异性有机光电突触器件中的应用。
为实现上述目的,在第一方面,本发明提供了一种基于苯并双噻吩二唑的窄带隙共轭聚合物,其结构式如式Ⅰ所示:
除此之外,另一方面,本发明还提供了一种具有式I骨架结构的基于苯并双噻吩二唑的窄带隙共轭聚合物的通用制备方法,其反应过程如下:
式Ⅰ聚合物的通用合成方法
其中,R1和R2代表不同的C1-C30烷基链,X表示卤素(如Cl、Br、I)或者三氟甲磺酸酯;Y表示-B(OH)2、-B(OR3)2、或者-Sn(R4)3,其中R3和R4各自独立地表示C1-C6烷基链。
在上述反应过程中,其中所述的催化剂选自Pd/C、Pd(PPh3)4、Pd(OAc)2;PdCl2、Pd(PPh3)2Cl2或者Pd2(dba)3/三(邻甲基苯基)磷,优选为Pd2(dba)3/三(邻甲基苯基)磷;
在上述反应过程中,其中所述的有机溶剂选自DMF、氯苯、二甲苯、甲苯、乙腈、乙醇、THF、氯仿,优选为氯苯;
在上述反应过程中,其中反应是在惰性气体保护下进行的,所述的惰性气体优选为氮气或者氩气;
在上述反应过程中,还包括产物的后处理过程:将得到的混溶液物滴入甲醇中,析出固体,采用索氏提取器对析出固体进行索氏提取,将经索氏提取得到的聚合物溶液浓缩,然后将浓缩得到的溶液滴入甲醇中,析出的固体为该窄带隙共轭聚合物;
在上述反应过程中,其中所述反应物M1和反应物M2的摩尔比为1:0.99-1.05,优选地为1:1;
在上述反应过程中,其中催化剂的用量是反应物M1摩尔用量的2-4%;
在上述反应过程中,其中催化剂的Pd2(dba)3用量是反应物M1摩尔用量的2-4%,三(邻甲基苯基)磷的用量为是反应物M1摩尔用量的8%-12%。
在上述反应过程中,其中反应温度为135-150℃,反应时间为60-72小时。
第二方面,本发明提供了一种式I所述的窄带隙共轭聚合物的应用,所述聚合物作为光电传感材料用于制备人工突触器件。
在第三方面,本发明还提供了一种短波红外特异性响应的有机光电突触器件。
本发明的突出特点和有益效果如下:
本发明实施例提供的基于苯并双噻吩二唑的窄带隙共轭聚合物,具有良好的溶解性,吸收范围从可见光区到短波红外区(超过2000nm)。作为一种窄带隙的光响应材料应用于光电突触中,并且取得了较好的结果。并且在混合吸光层中,由于在不同波长光照条件下,光生载流子的传输过程不同产生了对短波红外特异性响应的突触特性,从而获得了一种对短波红外特异性响应的有机光电突触,并对突触的多种行为进行了模拟。
本发明的窄带隙聚合物溶解性良好,光谱吸收范围覆盖可见光区域,近红外波段和部分短波红外波段。本发明中的聚合物材料和PCBM按一定的比例混合作为光响应层。在可见光及近红外光区,由于聚合物和PCBM之间存在电荷转移,从而仅表现出来光电探测器的信号。而在短波红区,仅有本发明中的窄带隙聚合物吸光并产生光生载流子,但由于PCBM和聚合物之间存在能级势垒,进而导致光生电子的捕获和释放过程,表现出光电突触的信号。因此,借助此机理该聚合物可以用来制备多波红外特异性响应的有机光电突触器件,并且具有通用性。
本发明的窄带隙聚合物溶解性良好,光谱吸收范围覆盖可见光区域,近红外波段和部分短波红外波段。本发明中的聚合物材料和PCBM按一定的比例混合作为光响应层。在可见光及近红外光区,由于聚合物和PCBM之间存在电荷转移,从而仅表现出来光电探测器的信号。而在短波红区,仅有本发明中的窄带隙聚合物吸光并产生光生载流子,但由于PCBM和聚合物之间存在能级势垒,进而导致光生电子的捕获和释放过程,表现出光电突触的信号,从而表现出对短波红外特异性响应的突出行为。因此,借助此机理该聚合物可以用来制备多波红外特异性响应的有机光电突触器件,并且具有通用性。并且,利用该短波红外特异性响应器件实现了刺激后电流,双脉冲易化,短程可塑性向长程可塑性转变等多种神经突触行为。
本发明提供的材料应用于室温短波红外特异性响应的有机光电突触器件,在较低的偏压下(-10mV)即可工作运行,实现了刺激后电流,双脉冲易化,短程可塑性向长程可塑性转变等神经突触行为。
附图说明:
图1为本发明实施例1提供的共轭聚合物,PCBM及混合膜的紫外-可见吸收光谱;
图2为本发明实施例1提供的共轭聚合物用于有机光电突触器件的结构示意图;
图3为本发明实施例1提供的共轭聚合物用于光电突触在偏压为-10mV时不同波长下的电流-时间曲线;
图4-1至图4-3为本发明实施例一提供的共轭聚合物、PCBM及混合膜的瞬态吸收光谱;
图5为本发明实施例一提供的共轭聚合物和不同的共轭聚合物形成的混合膜制成的有机光电突触的PPF指标;
图6为本发明实施例2提供的光电突触在偏压为-10mV时连续两次的1342nm波长激光刺激下的电流-时间曲线;
图7为本发明实施例3提供的光电突触为在偏压为-10mV时,在高频和低频1550nm波长刺激下的时间-电流曲线;
图8为本发明实施例2提供的光电突触在一次信号刺激所消耗的能量;
图9为本发明实施例2提供的光电突触为在偏压为-10mV时,在不同1550nm光信号刺激数目下的时间-电流曲线。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。需要说明的是,下述实施例不是对本发明保护范围的限制,任何发明在本发明基础上做出的改进和变化都在本发明的保护范围之内。
实施例1
本实施例提供了一种基于苯并双噻吩二唑的窄带隙共轭聚合物,其结构式如式Ⅰ所示;
所述式I结构通式中,n为大于等于4小于20整数。且式I中的聚合物记为P1。
本实施例提供了制备上述式(Ⅰ)所示聚合物P1的方法。
(1)采用惰性气体保护,在三(二亚苄基丙酮)二钯和三(邻甲基苯基)磷的催化作用下,M1与M2加入到有机溶剂中得到混合溶液。
该方法中,M1与M2的摩尔比为1:0.99-1.05,优选为1:1。三(二亚苄基丙酮)二钯的用量是M1摩尔用量的2-4%,三(邻甲基苯基)磷的用量为M1摩尔用量的8%-12%。有机溶剂为氯苯。
在本实施例中,M1按照下属文献提供的方法进行合成:Jonathan D.Yuen,RajeevKumar,Dante Zakhidov,Jason Seifter,Bogyu Lim,Alan J.Heeger,and FredWudl*Adv.Mater.2011,23,3780–3785。
M2按照下列文献提供的方法合成:Dr.Shengjian Liu,Dr.Yuliar Firdaus,Dr.Simil Thomas,Dr.Zhipeng Kan,Federico Cruciani,Dr.Sergei Lopatin,Prof.Jean-Luc Bredas,Prof.Pierre M.Beaujuge*Angew.Chem.Int.Ed.2018,57,531–535。
(2)将得到的混溶液物滴入甲醇中,析出固体,采用索氏提取器对析出固体进行索氏提取,将经索氏提取得到的聚合物溶液浓缩,然后将浓缩得到的溶液滴入甲醇中,析出的固体为该窄带隙共轭聚合物。
具体实施步骤如下:
在氮气保护下,向10ml的Schlenk管中,加入164.4mg(0.124mmol)的化合物M1,123.8mg(0.124mmol)的化合物M2,4.7mg(4mol%)的Pd2(dba)3,3.8mg(10mol%)的P-(o-Tol),6.5mL的氯苯,在140℃条件下搅拌反应3天。
之后依次用用2-三丁基甲锡烷基噻吩和2-溴噻吩封端并停止反应。
然后将反应混合溶液逐滴加入到200毫升甲醇中,析出固体,干燥得200mg产品,粗产率为86.9%。最后对粗品进行索氏提取,按照丙酮,正己烷,四氢呋喃和氯仿的顺序进行索提,并将氯仿组分浓缩加入甲醇当中得到150mg聚合物,产率为65.1%。
在图1中分别示出了该聚合物P1、PCBM及混合膜的紫外-可见-红外吸收光谱,从光谱吸收可以看出聚合物及混合膜在可见和大部分短波红外区域有很宽的吸收,因此可用于制备有机短波红外光电突触。
图2是本发明中的器件结构示意图。
图3中展示了该器件在不同的波长(450nm,520nm,635nm,808nm,915nm,1120nm,1342nm,1550nm,1850nm),同等光照强度(100mW/cm2)刺激下的光信号,并且表现出明显的短波红外特异性。
图4展示了使用650nm泵浦光激发后得到的该聚合物、PCBM及混合膜的瞬态吸收光谱,证实了在可见光照射下该聚合物和PCBM之间发生了电荷转移。图5展示了用其他几种材料替换PCBM之后的PPF指标,证实了界面能级势垒对光生电荷的捕获和释放,同时也验证了本发明中获得特异性响应突触器件的通用性。
实施例2
一种有机光电突触器件的制备方法,步骤如下:
称取2.24mg该聚合物P1(n=7)和4.58mg PCBM,溶解在0.341mL超干氯苯溶剂中,在手套箱中70℃加热搅拌过夜。首先在带有ITO的玻璃基底上旋涂ZnO,然后传递到手套箱中旋涂活性层,之后放入到蒸镀仓中,使用热蒸发的方式蒸镀MoO3和Ag;在一个具体的实施例当中,ZnO厚度为40nm,活性层厚度100nm,MoO3厚度为10nm,Ag的厚度为120nm。
图6为在施加-10mV偏压下,连续两次1550nm波长刺激下的电流-时间曲线,可以看出在连续的第二次激发后,电流比第一次激发达到的数值更大,这是神经突触的双脉冲易化行为,是短程可塑性的表现。
图7为在施加-10mV偏压下,在高频和低频1550nm波长刺激下的时间-电流曲线,可以看出通过不断的重复训练,可以实现从短时可塑性到长时可塑性的转变。
图8为本发明中光电突触在一次信号刺激所消耗的能量,仅为2.85fJ,和我们大脑中一次突触刺激所消耗的能量相当(1-10fJ)。
图9为本发明中短波红外特异性响应的有机光电光电突触在-10mV,1550nm激光,不同光信号刺激数目下的电流-时间曲线。可以看出在随着光信号刺激数目的增加,电流达到的值也在不断增大,这表现出来的是光电突触的信号刺激数目依赖性,同时通过光信号刺激数目的调整可以实现短时可塑性到长时可塑性的转变。
Claims (9)
2.一种如权利要求1所述的基于苯并双噻吩二唑的窄带隙共轭聚合物,其特征在于:配合引入另一组份材料,要求其吸收光谱仅在可见光区范围,且能够与权利要求1所述聚合物材料形成能级势垒,实现在短波红外区光照条件下的光生电子的捕获和释放过程。
3.根据权利要求2所述的基于苯并双噻吩二唑的窄带隙共轭聚合物,其特征在于:所述配合引入另一组份材料为PCBM,ITIC,或FOIC之一。
4.一种用于室温短波红外特异性响应的有机光电突触器件,其特征在于:包含权利要求1所述的基于苯并双噻吩二唑的窄带隙共轭聚合物。
5.根据权利要求4所述的用于室温短波红外特异性响应的有机光电突触器件,其特征在于:工作运行的偏压为-10mV。
6.一种有机光电突触器件的制备方法,其特征在于:步骤如下:
⑴称取权利要求1所述的窄带隙共轭聚合物和PCBM,溶解在超干溶剂中,密闭加热搅拌过夜,获得活性层;
⑵在带有ITO的玻璃基底上旋涂ZnO,然后密闭中旋涂活性层;
⑶放入到蒸镀仓中,使用热蒸发的方式蒸镀MoO3和Ag。
7.根据权利要求6所述的有机光电突触器件的制备方法,其特征在于:所述所述窄带隙共轭聚合物:PCBM的重量比1:2,配置溶液的总浓度10~20mg/mL。
8.根据权利要求6所述的有机光电突触器件的制备方法,其特征在于:所述ZnO厚度:活性层厚度:MoO3厚度:Ag的厚度为20~40nm:80~200nm:5~10nm:100~120nm。
9.根据权利要求6所述的有机光电突触器件的制备方法,其特征在于:所述超干溶剂为超干氯苯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111184857.XA CN114085360B (zh) | 2021-10-12 | 2021-10-12 | 一种窄带隙共轭聚合物及其制备的有机光电突触器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111184857.XA CN114085360B (zh) | 2021-10-12 | 2021-10-12 | 一种窄带隙共轭聚合物及其制备的有机光电突触器件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114085360A true CN114085360A (zh) | 2022-02-25 |
CN114085360B CN114085360B (zh) | 2023-08-01 |
Family
ID=80296770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111184857.XA Active CN114085360B (zh) | 2021-10-12 | 2021-10-12 | 一种窄带隙共轭聚合物及其制备的有机光电突触器件 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114085360B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101875716A (zh) * | 2009-04-30 | 2010-11-03 | 中国科学院化学研究所 | 一种嵌段共轭聚合物及其制备方法与应用 |
CN101928382A (zh) * | 2009-06-25 | 2010-12-29 | 中国科学院化学研究所 | 一种嵌段共轭聚合物及其制备方法和用途 |
WO2013135339A2 (en) * | 2012-03-16 | 2013-09-19 | Merck Patent Gmbh | Conjugated polymers |
CN104045819A (zh) * | 2014-05-21 | 2014-09-17 | 合肥工业大学 | 一种超低能带隙给体-受体共轭聚合物及其制备方法 |
EP2835407A1 (en) * | 2013-08-08 | 2015-02-11 | LANXESS Deutschland GmbH | Conjugated polymer compounds |
CN110655640A (zh) * | 2019-08-02 | 2020-01-07 | 中国科学院大学 | 一种室温柔性日盲型短波红外聚合物光电探测器及其制备方法 |
-
2021
- 2021-10-12 CN CN202111184857.XA patent/CN114085360B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101875716A (zh) * | 2009-04-30 | 2010-11-03 | 中国科学院化学研究所 | 一种嵌段共轭聚合物及其制备方法与应用 |
CN101928382A (zh) * | 2009-06-25 | 2010-12-29 | 中国科学院化学研究所 | 一种嵌段共轭聚合物及其制备方法和用途 |
WO2013135339A2 (en) * | 2012-03-16 | 2013-09-19 | Merck Patent Gmbh | Conjugated polymers |
EP2835407A1 (en) * | 2013-08-08 | 2015-02-11 | LANXESS Deutschland GmbH | Conjugated polymer compounds |
CN104045819A (zh) * | 2014-05-21 | 2014-09-17 | 合肥工业大学 | 一种超低能带隙给体-受体共轭聚合物及其制备方法 |
CN110655640A (zh) * | 2019-08-02 | 2020-01-07 | 中国科学院大学 | 一种室温柔性日盲型短波红外聚合物光电探测器及其制备方法 |
Non-Patent Citations (1)
Title |
---|
罗敏;周小康;张洁;马东阁;宛新华;: "以蒽醌酰亚胺为电子受体的共轭聚合物的设计与合成及其在光探测器上的应用", 高分子学报, no. 01 * |
Also Published As
Publication number | Publication date |
---|---|
CN114085360B (zh) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pankow et al. | The development of conjugated polymers as the cornerstone of organic electronics | |
Subramaniyan et al. | Effects of Side Chains on Thiazolothiazole‐Based Copolymer Semiconductors for High Performance Solar Cells | |
Liu et al. | Effect of oligothienyl chain length on tuning the solar cell performance in fluorene‐based polyplatinynes | |
Wong | Luminescent organometallic poly (aryleneethynylene) s: functional properties towards implications in molecular optoelectronics | |
Zoromba et al. | Polymer solar cell based on doped o-anthranilic acid and o-aminophenol copolymer | |
US7781673B2 (en) | Polymers with low band gaps and high charge mobility | |
US8383762B2 (en) | Black soluble conjugated polymers with high charge carrier mobilities | |
Kozma et al. | Synthesis of donor–acceptor poly (perylene diimide-altoligothiophene) copolymers as n-type materials for polymeric solar cells | |
DE112010004172T5 (de) | Makromolekulare Verbindung | |
De Rossi et al. | Modified P3HT materials as hole transport layers for flexible perovskite solar cells | |
TW201326249A (zh) | 高分子化合物及電子元件 | |
DE112010004202T5 (de) | Makromolekulare Verbindung | |
KR101369244B1 (ko) | 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지 | |
Wong et al. | Harvesting solar energy using conjugated metallopolyyne donors containing electron-rich phenothiazine–oligothiophene moieties | |
Li et al. | Synthesis, characterization and photovoltaic behavior of platinum acetylide polymers with electron-deficient 9, 10-anthraquinone moiety | |
Akkuratov et al. | Design of (X-DADAD) n type copolymers for efficient bulk heterojunction organic solar cells | |
Grieco et al. | Molecular rectification in conjugated block copolymer photovoltaics | |
Bhat et al. | Energy-level manipulation in novel indacenodithiophene-based donor–acceptor polymers for near-infrared organic photodetectors | |
Galand et al. | Optimization of narrow band-gap propylenedioxythiophene: cyanovinylene copolymers for optoelectronic applications | |
Carlé et al. | Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stability | |
Kim et al. | Synthetic Approach To Achieve a Thin-Film Red-Selective Polymer Photodiode: Difluorobenzothiadiazole-Based Donor–Acceptor Polymer with Enhanced Space Charge Carriers | |
Lee et al. | Synthesis of random copolymers based on 3-hexylthiophene and quinoxaline derivative: Influence between the intramolecular charge transfer (ICT) effect and π-conjugation length for their photovoltaic properties | |
Yun et al. | Synthesis of a low-bandgap fluorinated donor–acceptor copolymer and its optoelectronic application | |
CN114085360A (zh) | 一种窄带隙共轭聚合物及其制备的有机光电突触器件 | |
Wang et al. | Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |