CN114080459A - 用于粉末的镍基合金和用于制备粉末的方法 - Google Patents

用于粉末的镍基合金和用于制备粉末的方法 Download PDF

Info

Publication number
CN114080459A
CN114080459A CN202080033230.1A CN202080033230A CN114080459A CN 114080459 A CN114080459 A CN 114080459A CN 202080033230 A CN202080033230 A CN 202080033230A CN 114080459 A CN114080459 A CN 114080459A
Authority
CN
China
Prior art keywords
percent
alloy
powder
maximum
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080033230.1A
Other languages
English (en)
Inventor
C·施密特
A·赫克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
VDM Metals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals GmbH filed Critical VDM Metals GmbH
Publication of CN114080459A publication Critical patent/CN114080459A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Nanotechnology (AREA)

Abstract

用于粉末的镍基合金,其中如下定义含量(以重量%计):C最大0.5%,S最大0.15%,尤其是最大0.03%,N最大0.25%,Cr 14–35%,尤其是17–28%,Ni余量(>38%),Mn最大4%,Si最大1.5%,Mo>0–22%,Ti<4%,尤其是<3.25%,Nb至多6.0%,Cu至多3%,尤其是至多0.5%,Fe<50%,P最大0.05%,尤其是最大0.04%,Al至多3.15%,尤其是至多2.5%,Mg最大0.015%,V最大0.6%,Zr最大0.12%,尤其是最大0.1%,W至多4.5%,尤其是至多最大3%,Co至多28%,B<0.125%,O>0.00001‑0.1%,和与制备相关的杂质,其中适用:Ni+Fe+Co 56–80%Nb+Ta<6.0%。

Description

用于粉末的镍基合金和用于制备粉末的方法
技术领域
本发明涉及用于粉末的镍基合金。
背景技术
WO 2015/110668 A2公开了用于制备基于铁的粉末的方法,其借助于离心而雾化,具有以下方法步骤:
-提供具有高于1040℃的熔点的合金,
-熔化组合物,
-借助于离心或旋转雾化装置雾化熔融的组合物。
DE 10 2015 016 729 A公开了用于由具有大于50%镍的合金制备金属半成品的方法,包括以下方法步骤:
-通过VIM产生电极,
-为了降低应力和过老化,使电极在炉中在介于400与1,250℃之间的温度范围内经受10至336小时时间的热处理,
-根据尺寸,尤其是根据直径,将电极在空气中或在炉中冷却至介于室温与低于1,250℃,尤其是低于900℃之间的温度,
-随后将经冷却的电极通过VAR以3.0至10kg/分钟的再熔化速率再熔化成VAR铸锭,
-将VAR铸锭在炉中在介于400与1,250℃之间的温度范围内热处理10至336小时的时间,
-根据尺寸,尤其是根据直径,将VAR铸锭在空气中或在炉中冷却至介于室温与低于1,250℃,尤其是低于900℃之间的温度,
-将VAR铸锭重新以3.0至10kg/分钟的再熔化速率再熔化,
-使再熔化的VAR铸锭在介于400与1250℃之间的温度范围内经受10至336小时时间的热处理,
-然后将VAR铸锭通过热成型和/或冷成型成期望的产品形状和尺寸。
通常已知的是,使用Ni合金和Ni-Co合金,以制造具有在耐腐蚀性方面特别好的性质和良好机械性质,如强度、高温强度和断裂韧性的构件。
发明内容
本发明的任务在于提供具有Ni合金和Ni-Co合金的有利性质和成本有利地制备的用于增材制造零件的粉末。此外,可以将上述粉末按需要借助于热等静压(HIP)或常规烧结方法和挤压方法用于制造构件。此外,增材制造和随后的HIP处理的方法组合也是可以的。在这种情况下可以应用在下文描述的为了生成制造的用于HIP构件的后加工步骤。在这种情况下重要的是,满足粉末的粒度分布、颗粒形状和可自由流动性的特殊要求。
另外应当提出制备这种类型的粉末的方法。
该任务通过用于粉末的镍基合金得以解决,其中含量(以重量%计)如下文所限定:
C 最大0.5%
S 最大0.15%,尤其是最大0.03%
N 最大0.25%
Cr 14–35%,尤其是17–28%
Ni 余量(>38%)
Mn 最大4%
Si 最大1.5%
Mo >0–22%
Ti ≤4%,尤其是≤3.25%
Nb 至多6.0%
Cu 至多3%,尤其是至多0.5%
Fe ≤50%
P 最大0.05%,尤其是最大0.04%
Al 至多3.15%,尤其是至多2.5%
Mg 最大0.015%
V 最大0.6%
Zr 最大0.12%,尤其是最大0.1%
W 至多4.5%,尤其是至多最大3%
Co 至多28%
B ≤0.125%
O >0.00001–0.1%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 56–80%
Nb+Ta ≤6.0%。
根据本发明的粉末合金的有利的变型从相关从属权利要求得出。
有利地,根据本发明的粉末合金应当具有以下组成(以重量%计):
C 最大0.25%
S 最大0.03%
N >0-0.15%
Cr 17–28%,尤其是17–24%
Ni 余量(38–72%)
Mn 最大2%,尤其是最大1%
Si 最大1.2%,尤其是≤0.5%
Mo >0–21,尤其是2.5–21%
Ti >0-<3.25%
Nb >0–5.5%
Cu 最大3%,尤其是至多0.5%
Fe >0–38%
P 最大0.04%
Al >0–0.8%
Mg 最大0.015%
V 最大0.4%
Zr 最大0.1%
W 至多0.5%
Co ≤10%
B ≤0.01%
Pb 最大0.001%,尤其是最大0.0005%
Se 最大0.0005%,尤其是最大0.0003%
Bi 最大0.00005%,尤其是最大0.00003%
O >0.00001–0.1%
Nb+Ta>0–5.5%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 57–77%。
另外,粉末合金对于具体应用情形存在以下组成的可能:
C >0–0.1%,尤其是>0-0.08%
S 最大0.015%
N >0-0.03%
Cr 17–24%
Ni 余量(>50–63%)
Mn 最大1.0%,尤其是最大0.5%
Si 最大0.5%
Mo 2.8–16.5%
Ti >0–1.15%
Nb >0–≤5.5%
Cu 最大0.5%
Fe >0–25%
P 最大0.015%
Al 0.1–0.6%
Mg 最大0.015%
V 最大0.2%
Zr 最大0.1%
W 至多0.2%,尤其是>0–0.2%
Co ≤2.5%,尤其是≤1.0%
B ≤0.01%
Pb 最大0.001%,尤其是最大0.0005%
Se 最大0.0005%,尤其是最大0.003%
Bi 最大0.0005%,尤其是最大0.0003%
O >0.00001–0.1%
Nb+Ta>0–5.5%
Al+Ti<1.2%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 59–72%。
所述任务还通过由根据本发明的镍基合金通过以下制备粉末的方法得以解决:
-将合金在VIM炉中熔化,
-使液态熔体保持5分钟至2小时以均质化,
-将具有供应气体的封闭雾化设备调节至-10℃至120℃的露点,
-使熔体通过喷嘴在气流中以2qm3/min至150qm3的气体流速吹送,
-将凝固的粉末颗粒收集在气密性封闭容器中,其中
-颗粒具有5μm至250μm的粒度,
-粉末的颗粒是球状的,
-粉末具有相对于所评价的物体的总面积的0.0至4%孔面积(孔>1μm)的夹杂气体,
-粉末具有2直至约8g/cm3的合金密度的堆积密度,
-在具有氩气的保护气体气氛下气密性包装粉末。
根据本发明的方法的有利的变型从根据方法的相关从属权利要求得出。
可考虑以下起始制造步骤:
-通过在VIM炉、VIM/ESU、VIM/ESU/VAR、VIM/VAR、VOD或VLF中熔化,取决于材料的纯度要求按需要在ESU和/或VAR中再熔化,产生具有限定的化学分析的母合金铸锭,
-使母合金铸锭通过锯切割成小片段,
-将母合金的片段在VIM炉中熔化,
-使限定重量的合金元素对应于化学分析在VIM炉中熔化,
-以0至100%比例组合母合金材料,方法相关的废料(包括来自客户的废料,如回收的粉末以及支撑结构或不合格构件)以及新的合金元素。在每种情况下考量质量、经济和生态方面来考虑精确比例。可能有利的是,使母合金铸锭在分割之前经受表面加工(例如通过刷、研磨、酸洗、切割、刨削等)。在此可以去除通过另外的再熔化未能消除并且可能损害之后的应用的缺陷。此外,使用可能的母合金导致保持只有通过先前的再熔化方法才能保证的对粉末化学纯度的最高质量要求,
-使液态熔体保持5分钟至2小时以均质化。
在替代性起始制造步骤之后,可以进行以下另外的加工步骤:
-将封闭的雾化设备用氩气调节至-10℃至-120℃的露点,优选在-30℃至-100℃范围内,
-使熔体通过喷嘴在氩气气流中以2qm3/min至150qm3/min的气体流速吹送,
-将凝固的粉末颗粒收集在气密性封闭容器中,
-颗粒具有5μm至250μm的粒度,其中优选的范围为介于5与150μm之间或者10与150μm之间,
-粉末的颗粒是球形的,
-粉末具有相对于所评价的物体的总面积的0.0至4%孔面积(孔>1μm)的夹杂气体,其中优选的范围在0.0至2%。粉末的夹杂气体的量允许所制造的零件的低残余孔隙率。
-粉末具有2直至约8g/cm3的合金密度的堆积密度,其中优选的范围为4至5g/cm3的值,
-在具有氩气的保护气体气氛下气密性包装粉末。
优选在真空惰性气体雾化设备(VIGA)中生产根据本发明的粉末。在该设备中,使合金在真空感应熔炼炉(VIM)中熔化,导入同向气体喷嘴的浇口中,在所述浇口中使熔化的金属在5至100巴的高压下用惰性气体雾化成金属颗粒。将熔体在熔化坩埚中在超过熔点5至400℃加热。在雾化时的金属流速为0.5至80kg/min和气体流速为2至150m3/min。通过快速冷却使金属颗粒固化成球体形状(球形颗粒)。在雾化时使用的惰性气体可以按需要含有0.01至100%的氮气。然后在旋风分离器中将气相与粉末分离,和随后包装粉末。
或者,替代通过VIGA,通过所谓的EIGA方法制备根据本发明的粉末。在这种情况下,将旋转电极形式的预先制成的合金铸锭由感应线圈无接触地熔化。熔体从电极直接滴入气体喷嘴的气流中。
EIGA的合金铸锭转而可以通过熔化方法VIM、ESU、VAR、VOD或VLF及其组合来制备并且任选地经历热成型过程,如锻造和轧制。有利的是,在用于EIGA方法之前,通过处理如研磨或/和刨削而清洁铸锭的表面。
在粉末制备时的惰性气体可以可选地为氩气或者氩气与0.01至100%氮气的混合物。氮气含量的可能的极限可以为:
0.01至80%
0.01至50%
0.01至30%
0.01至20%
0.01至10%
0.01至10%
0.1至5%
0.5至10%
1至5%
2至3%。
或者,惰性气体可以可选地为氦气。
惰性气体可以优选具有至少99.996体积%的纯度。尤其是,氮气含量应当为0.0至10ppmv,氧气含量应当为0.0至4ppmv和具有≤5ppmv的H2O含量。
尤其是,惰性气体可以优选具有至少99.999体积%的纯度。尤其是,氮气含量应当为0.0至5ppmv,氧气含量应当为0.0至2ppmv和具有≤3ppmv的H2O含量。设备中的露点在-10至-120℃范围内。其优选在-30至-100℃范围内。
在粉末雾化时的压力可以优选为10至80巴。
借助增材制造制备的构件和零件或者构件和零件上的层可以可选地由5至500μm的层厚度构造并且在制造之后立即具有织构的组织,其中晶粒在构造方向拉长,平均晶粒尺寸为2μm至1000μm。优选的范围为介于5μm与500μm之间。
借助增材制造制备的构件和零件或者构件和零件上的层可以可选地在700℃至1250℃的温度范围内,任选地在保护气体,例如氩气或氢气下经受0.1分钟至70小时的固溶退火,接下来在空气中、在运动的冷却气氛中或在水浴中冷却。然后可以可选地通过酸洗、喷砂、研磨、转动、刨削、铣切来清洁或加工表面。这样的加工可以可选地即使在退火之前就已部分地或完全地发生。
借助增材制造制备的构件和零件或者构件和零件上的层可以可选地经受均质化、应力消除、固溶硬化退火和/或沉淀硬化退火。热处理可以任选地在保护气体,例如氩气或氢气下进行,随后在炉中,任选地在保护气体下,在空气中,在运动的退火气氛中或在水浴中经受冷却。
借助增材制造制备的构件和零件或者构件和零件上的层在退火之后具有2μm至2000μm的平均晶粒尺寸。优选的范围介于20μm与500μm之间。
借助增材制造由根据本发明生产的粉末制备的构件和零件或者构件和零件上的层应当优选用于其中也将材料用作具有相关分析的锻造合金或铸造合金的领域中。
在增材制造之下,还理解生成制造、快速技术、快速模具制造、快速成型等术语。
通常在此区分:
采用粉末的3D打印,
选择性激光烧结,和
选择性激光熔化
激光沉积焊接
选择性电子束焊接。
如下定义在此使用的缩写词:
VIM 真空感应熔炼
VIGA 真空惰性气体雾化设备
VAR 真空电弧熔化
VOD 真空吹氧脱碳
VLF 真空钢包炉
EIGA 电极感应熔炼气体雾化
根据本发明的有利的变型可以从从属权利要求中得出。
粉末的粒度的散布范围(Spreizungsbereich)为介于5与250μm之间,其中优选的范围为介于5与150μm之间或者10与150μm之间。
粉末具有相对于所评价的物体的总面积的0.0至4%孔面积(孔>1μm)的夹杂气体,其中优选的范围为
0.0至2%
0.0至0.5%
0.0至0.2%
0.0至0.1%
0.0至0.05%。
粉末具有2直至约8g/cm3的合金密度的堆积密度,其中优选的范围可以为以下值:
4-5g/cm3
2-8g/cm3
2-7g/cm3
3-6g/cm3
粉末的夹杂气体的量允许所制备的零件的低残余孔隙率。
与现有技术相比,省略了离心方法,由此优化了装置的运行时间。随后的精炼过程优化了用于增材制造的粉末的品质。
可能有利的是,使铸锭在分割之前经受表面加工(例如通过刷、研磨、酸洗、切割、刨削等)。在此可以去除通过另外的再熔化未能消除并且可能损害之后的应用的缺陷。
根据本发明的方法能够应用于任意Ni基合金或Ni-Co基合金。
如下提出可以借助根据本发明的方法参数以粉末形式生产的合金组合物。所有值以重量%计:
C 最大0.5%
S 最大0.150%,尤其是最大0.03%
Cr 17-32%,尤其是17–26%
Ni 45-72%,尤其是45–71%
Mn 最大1%
Si 最大1%
Mo >0-10%
Ti 最大3.25%,尤其是最大2.7%
Nb 最大5.5%
Cu 最大5%,尤其是最大0.5%
Fe 最大25%
Al 最大3.15%,尤其是最大2.5%
V 最大0.6%
Zr 最大0.12%,尤其是最大0.1%
Co 最大28%
O 0.00001-0.1%
和与制备相关的杂质。
此外,可以给出以下元素(以重量%计的值):
Nb+Ta 最大6%
B 最大0.02%,尤其是最大0.006%
Se 最大0.0005%
Bi 最大0.00005%
Pb 最大0.002%
P 最大0.03%,尤其是最大0.02%。
有利地,可以如下调节下述元素(以重量%计的值):
C 0.015–0.5%;尤其是0.015–0.2%
S 最大0.1%,尤其是最大0.02%
Cr 17-25%
Ni 45-58%
Mn 最大0.6%
Si 最大0.4%
Mo 0-6.1%
Ti 0.1-2.7%
Al 最大1.7%
Co 最大13%
为了改进机械性质,还可以如下调节元素硼和碳:
C 0.015–0.5%
B 0.006–0.125%。
在这种情况下此外有利的是,C+B之和为介于0.1875与0.530%之间,介于0.156与0.625%之间,尤其是在0.16与0.6%范围内,尤其是在0.1875与0.530%范围内,并且C/B的比例为介于12与18之间。
以下提出来自基于合金718的Ni合金的粉末的实例(以重量%计的值):
C 最大0.08%
S 最大0.015%
Cr 17-21%
Ni 50-55%
Mn 最大0.35%
Si 最大0.35%
Mo 2.8-3.3%
Ti 0.65-1.15%
Nb 4.75-5.5%
Cu 最大0.3%
Fe 6-25%
P 最大0.015%
Al 0.2-0.8%
Co 最大1%
B 最大0.006%
Ta 最大0.05%
O 0.00001-0.1%
Pb 最大0.001%,尤其是最大0.0005%
Se 最大0.0005%,尤其是最大0.0003%
Bi 最大0.00005%,尤其是最大0.00003%。
或者,该合金也可以具有更高的Ni含量(以重量%计的值)。
C 最大0.1%
S 最大0.03%,尤其是最大0.02%
Cr 17-32%,尤其是17-30%
Ni 58-79,尤其是58–72%
Nb 最大4.1%,尤其是最大0.6%
Fe 最大18%
C 最大0.1%
S 最大0.02%
Mn 最大1%
Si 最大1%
Mo >0-10%
Ti 最大3.25%,尤其是最大2.7%
Cu 最大0.5%
Al 最大3.15%
V 最大0.6%
Zr 最大0.1%
Co 最大15%,尤其是最大7%
O 0.00001-0.1%
以及任选的(以重量%计的值):
B 最大0.008%,尤其是最大0.006%
Se 最大0.0005%
Bi 最大0.00005%
Pb 最大0.002%
P 最大0.03%,尤其是最大0.02%。
可如下考虑另外的限制(以重量%计的值):
C 0.01-0.04%
Mn 最大0.5%
Si 最大0.5%
Cu 最大0.2%
以及任选的(以重量%计的值):
Mo 8-10%。
任选地,所产生的合金的氧含量可以为0.00001-0.1%、0.0001-0.1%、0.001-0.1%、0.001-0.002%或0.0015-0.002%。
任选地,也可以如下调节氧含量:
-0.00001–0.1
-0.00002–0.1
-0.00005–0.1
-0.00008–0.1
-0.0001–0.1
-0.0002–0.1
-0.0005–0.1
-0.0008–0.1
-0.001–0.1
-0.002–0.1
-0.005–0.1
-0.008–0.1
-0.010–0.1
-0.00001–0.10
-0.00001–0.08
-0.00001–0.05
-0.00001–0.03
-0.00001–0.02。
氮必须小于等于0.100%,以保证合金的可制备性和可用性。过高的氮含量导致形成氮化物,其负面地影响合金的性质。过低的氮含量提高了成本。氮含量因此为≥0.00001%。可考虑氮含量的以下限制:
-0.00001–0.1
-0.00002–0.1
-0.00005–0.1
-0.00008–0.1
-0.0001–0.1
-0.0002–0.1
-0.0005–0.1
-0.0008–0.1
-0.001–0.1
-0.002–0.1
-0.005–0.1
-0.008–0.1
-0.010–0.1
-0.00001–0.10
-0.00001–0.08
-0.00001–0.05
-0.00001–0.03
-0.00001–0.02
在粉末中以及在制成的零件(3D打印的样品)中,氮化物以及碳化物和/或碳氮化物的粒度非常低(大约<8μm)。在一些情况下,上述颗粒可能不存在或可能仅在热处理后可见。小粒度的含N析出物对高温性质和耐交变载荷性(低循环疲劳–LCF)起积极作用,因为含N析出物在常规制备的合金中起裂纹起始点的作用。
氩含量必须小于等于0.08%,以保证合金的可制备性和可用性。氩不能溶于y-基体中,因此其可能负面地影响构件的机械性质,因为氩夹杂物可能起裂纹起始点的作用。过低的氩含量提高了成本。氩含量因此为≥0.0000001%(≥1ppb)。可考虑氩含量的以下限制,其中包括来自粉末制备以及来自构件制备的氩含量:
-0.0000001–0.05
-0.0000002–0.05
-0.0000001–0.005
-0.0000001–0.002
-0.0000001–0.001。
根据本发明的方法应当优选可用于以下合金:
合金601
合金602CA及其变体MCA
合金617及其变体617B和617OCC
合金625
合金690
合金699XA
合金718及其变体合金780
合金788
合金80A
合金81
合金X-750
合金C-263
合金K-500
Waspaloy
FM 625
FM 617以及
FM 602
合金31
合金31Plus
合金25
合金28
合金33
合金59
合金188
合金310L
合金330
合金333
合金400
合金600+600L
合金800+800H、HP、L
合金825+825CTP
合金925
合金926
合金2120MoN
合金B2
合金C 276
Crofer 22APU
Crofer 22H
表1示出了前述合金的示例性分析范围。
Figure BDA0003334904750000181
Figure BDA0003334904750000191
Figure BDA0003334904750000201
Figure BDA0003334904750000211
Figure BDA0003334904750000221
Figure BDA0003334904750000231
Figure BDA0003334904750000241
Figure BDA0003334904750000251
获得具有5μm至250μm粒度的粉末。
低于5μm的过小的粒度使流动行为劣化并且因此要避免,高于250μm的过高的粒度使增材制造时的行为劣化。
2g/cm2的过低的堆积密度使增材制造时的行为劣化。约8g/cm3的最大可能堆积密度由合金的密度赋予。
氧含量必须小于等于0.100%,以保证合金的可制备性和可用性。过低的氧含量提高了成本。氧含量因此为≥0.0001%。按照该方法制成的粉末可以在增材制造中用于构造零件,所述零件具有相关合金的性质。
此外,也可以借助热等静压(HIP)或常规烧结方法和挤压方法将上述粉末用于制备构件。此外,增材制造和随后的HIP处理的方法组合也是可以的。在这种情况下可应用下文描述的用于增材制造的HIP构件的后处理步骤。
按照该方法制成的粉末以及由该粉末制成的零件(3D打印样品)不含氮化物以及碳化物和/或碳氮化物。如果仍然存在氮化物以及碳化物,则它们具有直径为<100nm,尤其是<50nm的粒度。
在热处理由该粉末制成的零件(3D打印样品)以均质化,高于900℃,特别是高于1000℃,理想地高于1100℃扩散退火大于1小时之后,制成的零件(3D打印样品)中可能出现氮化物以及碳化物和/或碳氮化物。这些具有直径为<8μm,或者<5μm,理想地<1μm,尤其是<500nm的粒度。示例性地如下阐述根据本发明的方法:
采用根据本发明的方法生产以下熔体并制成粉末形式(以重量%计的值):
表2
Figure BDA0003334904750000271
Figure BDA0003334904750000281
在表2中给出了采用根据本发明的方法制备的粉末的化学组成:
粉末以及制成的零件(3D打印件)不含氮化物以及碳化物。
在1100℃的温度退火1小时之后,接着在水中淬火,在制成的零件(3D打印件)中存在颗粒如氮化物以及碳化物和/或碳氮化物。它们具有直径<1μm以下的粒度。

Claims (16)

1.用于粉末的镍基合金,其中如下定义含量(以重量%计):
C最大0.5%
S最大0.15%,尤其是最大0.03%
N最大0.25%
Cr 14–35%,尤其是17–28%
Ni余量(>38%)
Mn最大4%
Si最大1.5%
Mo>0–22%
Ti≤4%,尤其是≤3.25%
Nb至多6.0%
Cu至多3%,尤其是至多0.5%
Fe≤50%
P最大0.05%,尤其是最大0.04%
Al至多3.15%,尤其是至多2.5%
Mg最大0.015%
V最大0.6%
Zr最大0.12%,尤其是最大0.1%
W至多4.5%,尤其是至多最大3%
Co至多28%
B≤0.125%
O>0.00001–0.1%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 56–80%
Nb+Ta ≤6.0%。
2.根据权利要求1所述的合金,其具有以下组成(以重量%计):
C最大0.25%
S最大0.03%
N>0-0.15%
Cr 17–28%,尤其是17–24%
Ni余量(38–72%)
Mn最大2%,尤其是最大1%
Si最大1.2%,尤其是≤0.5%
Mo>0–21,尤其是2.5–21%
Ti>0-<3.25%
Nb>0–5.5%
Cu最大3%,尤其是至多0.5%
Fe>0–38%
P最大0.04%
Al>0–0.8%
Mg最大0.015%
V最大0.4%
Zr最大0.1%
W至多0.5%
Co≤10%
B≤0.01%
Pb最大0.001%,尤其是最大0.0005%
Se最大0.0005%,尤其是最大0.0003%
Bi最大0.00005%,尤其是最大0.00003%
O>0.00001–0.1%
Nb+Ta>0–5.5%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 57–77%。
3.根据权利要求1或2所述的合金,其具有以下组成(以重量%计):
C>0–0.1%,尤其是>0-0.08%
S最大0.015%
N>0-0.03%
Cr 17–24%
Ni余量(>50–63%)
Mn最大1.0%,尤其是最大0.5%
Si最大0.5%
Mo 2.8–16.5%
Ti>0–1.15%
Nb>0–≤5.5%
Cu最大0.5%
Fe>0–25%
P最大0.015%
Al 0.1–0.6%
Mg最大0.015%
V最大0.2%
Zr最大0.1%
W至多0.2%,尤其是>0–0.2%
Co≤2.5%,尤其是≤1.0%
B≤0.01%
Pb最大0.001%,尤其是最大0.0005%
Se最大0.0005%,尤其是最大0.003%
Bi最大0.0005%,尤其是最大0.0003%
O>0.00001–0.1%
Nb+Ta>0–5.5%
Al+Ti<1.2%
和与制备相关的杂质,
其中适用:
Ni+Fe+Co 59–72%。
4.由根据权利要求1至3任一项所述的镍基合金制备粉末的方法,其中
-将合金在VIM炉中熔化,
-使液态熔体保持5分钟至2小时以均质化,
-将具有供应气体的封闭雾化设备调节至-10℃至120℃的露点,
-使熔体通过喷嘴在气流中以2qm3/min至150qm3的气体流速吹送,
-将凝固的粉末颗粒收集在气密性封闭容器中,其中
-颗粒具有5μm至250μm的粒度,
-粉末的颗粒是球状的,
-粉末具有相对于所评价的物体的总面积的0.0至4%孔面积(孔>1μm)的夹杂气体,
-粉末具有2直至约8g/cm3的合金密度的堆积密度,
-在具有氩气的保护气体气氛下气密性包装粉末。
5.根据权利要求4所述的方法,其中首先通过在VIM炉、VIM/ESU、VIM/ESU/VAR、VIM/VAR、VOD或VLF中熔化,按需要然后在ESU和/或VAR中再熔化,以具有限定的化学分析的母合金形式产生合金,
-使母合金铸锭通过锯切割成小片段,
-将母合金的片段在VIM炉中熔化。
6.根据权利要求4或5所述的方法,其特征在于,将惰性气体用作供应气体。
7.根据权利要求4至6任一项所述的方法,其特征在于,将氩气用作供应气体。
8.根据权利要求4至7任一项所述的方法,其特征在于,在其中进行雾化的气流由氩气组成。
9.根据权利要求4至8任一项所述的方法,其特征在于,在其中进行雾化的气流由氮气组成。
10.根据权利要求4至9任一项所述的方法,其特征在于,在其中进行雾化的气流由氮气和氩气的混合物组成。
11.根据权利要求4至10任一项所述的方法,其特征在于,熔体的雾化以0.5至80kg/min进行。
12.按照根据权利要求4至11任一项的方法制备的粉末的用途,用于零件或构件的增材制造。
13.按照根据权利要求4至11任一项的方法制备的粉末的用途,用于零件或构件上的层的增材制造。
14.按照根据权利要求4至11任一项的方法制备的粉末的用途,用于制造涡轮机的零件。
15.按照根据权利要求4至11任一项的方法制备的粉末的用途,用于制造石油和天然气以及化学加工业的零件。
16.按照根据权利要求4至11任一项的方法制备的粉末的用途,用于制造阀或法兰。
CN202080033230.1A 2019-07-05 2020-07-01 用于粉末的镍基合金和用于制备粉末的方法 Pending CN114080459A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102019118219.0 2019-07-05
DE102019118219 2019-07-05
DE102020116858.6 2020-06-26
DE102020116858.6A DE102020116858A1 (de) 2019-07-05 2020-06-26 Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers
PCT/DE2020/100574 WO2021004579A1 (de) 2019-07-05 2020-07-01 Nickel-basislegierung für pulver und verfahren zur herstellung eines pulvers

Publications (1)

Publication Number Publication Date
CN114080459A true CN114080459A (zh) 2022-02-22

Family

ID=74093081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080033230.1A Pending CN114080459A (zh) 2019-07-05 2020-07-01 用于粉末的镍基合金和用于制备粉末的方法

Country Status (8)

Country Link
US (1) US20220205066A1 (zh)
EP (1) EP3994287A1 (zh)
JP (1) JP7311633B2 (zh)
KR (1) KR20220006119A (zh)
CN (1) CN114080459A (zh)
BR (1) BR112021021432A2 (zh)
DE (1) DE102020116858A1 (zh)
WO (1) WO2021004579A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109980A (zh) * 2022-06-25 2022-09-27 苏州大学 一种超低氮含量的含钛钢及其制备方法
CN115821183A (zh) * 2023-02-14 2023-03-21 沧州泰昌管道装备有限公司 一种耐高温镍基合金法兰的制造工艺
CN115821115A (zh) * 2022-11-18 2023-03-21 江阴市诚信合金材料有限公司 一种高稳定性镍铬电阻合金丝及其生产工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008293A (zh) * 2019-05-28 2020-12-01 株式会社东芝 镍基合金焊接材料、核反应堆用焊接材料、核能用设备及结构物以及它们的修补方法
CN112981186B (zh) 2021-04-22 2021-08-24 北京钢研高纳科技股份有限公司 低层错能的高温合金、结构件及其应用
CN115478194B (zh) * 2021-06-15 2023-11-10 中国科学院金属研究所 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法
CN114561582B (zh) * 2022-02-22 2022-09-30 中国长江三峡集团有限公司 合金粉末材料、其制备方法及在螺栓耐蚀防锈中的应用
US11814574B1 (en) 2022-04-27 2023-11-14 Saudi Arabian Oil Company Organic sludge targeted removal using nitro-activated carbon composite and acidified solution of ammonium chloride
DE102022110383A1 (de) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in aufkohlenden und sulfidierenden und chlorierenden Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit
DE102022110384A1 (de) * 2022-04-28 2023-11-02 Vdm Metals International Gmbh Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in hoch korrosiven Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit
CN116121596B (zh) * 2022-11-01 2023-08-04 大圆节能材料股份有限公司 一种用于制造玻璃棉离心器的耐高温镍基合金

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008562A (zh) * 2013-03-14 2015-10-28 Vdm金属有限公司 具有硅、铝和铬的镍基合金
CN105143482A (zh) * 2013-02-14 2015-12-09 Vdm金属有限公司 镍-钴合金
US20160265694A1 (en) * 2013-11-12 2016-09-15 Nippon Steel & Sumitomo Metal Corportion Ni-Cr ALLOY MATERIAL AND SEAMLESS OIL COUNTRY TUBULAR GOODS USING THE SAME
DE102015016729A1 (de) * 2015-12-22 2017-06-22 Vdm Metals International Gmbh Verfahren zur Herstellung einer Nickel-Basislegierung
CN108115136A (zh) * 2018-02-01 2018-06-05 东北大学 一种k417g高温合金粉末及其制备方法和使用方法
CN108543950A (zh) * 2018-04-23 2018-09-18 安徽哈特三维科技有限公司 一种Ni-Co-Fe镍基合金粉末的制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416564B1 (en) * 2001-03-08 2002-07-09 Ati Properties, Inc. Method for producing large diameter ingots of nickel base alloys
EP3099440A2 (en) 2014-01-27 2016-12-07 Rovalma, S.A. Centrifugal atomization of iron-based alloys
JP6499546B2 (ja) 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
JP6519961B2 (ja) 2017-09-07 2019-05-29 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
CN108941588B (zh) 2018-07-27 2020-04-10 中南大学 一种激光成形用镍基高温合金粉末的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143482A (zh) * 2013-02-14 2015-12-09 Vdm金属有限公司 镍-钴合金
US20150354031A1 (en) * 2013-02-14 2015-12-10 VDM Metals GmbH Nickel-cobalt alloy
CN105008562A (zh) * 2013-03-14 2015-10-28 Vdm金属有限公司 具有硅、铝和铬的镍基合金
US20160265694A1 (en) * 2013-11-12 2016-09-15 Nippon Steel & Sumitomo Metal Corportion Ni-Cr ALLOY MATERIAL AND SEAMLESS OIL COUNTRY TUBULAR GOODS USING THE SAME
DE102015016729A1 (de) * 2015-12-22 2017-06-22 Vdm Metals International Gmbh Verfahren zur Herstellung einer Nickel-Basislegierung
CN108115136A (zh) * 2018-02-01 2018-06-05 东北大学 一种k417g高温合金粉末及其制备方法和使用方法
CN108543950A (zh) * 2018-04-23 2018-09-18 安徽哈特三维科技有限公司 一种Ni-Co-Fe镍基合金粉末的制备方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109980A (zh) * 2022-06-25 2022-09-27 苏州大学 一种超低氮含量的含钛钢及其制备方法
CN115821115A (zh) * 2022-11-18 2023-03-21 江阴市诚信合金材料有限公司 一种高稳定性镍铬电阻合金丝及其生产工艺
CN115821115B (zh) * 2022-11-18 2024-01-09 江阴市诚信合金材料有限公司 一种高稳定性镍铬电阻合金丝及其生产工艺
CN115821183A (zh) * 2023-02-14 2023-03-21 沧州泰昌管道装备有限公司 一种耐高温镍基合金法兰的制造工艺

Also Published As

Publication number Publication date
DE102020116858A1 (de) 2021-01-07
JP2022532738A (ja) 2022-07-19
KR20220006119A (ko) 2022-01-14
BR112021021432A2 (pt) 2022-04-26
EP3994287A1 (de) 2022-05-11
US20220205066A1 (en) 2022-06-30
WO2021004579A1 (de) 2021-01-14
JP7311633B2 (ja) 2023-07-19

Similar Documents

Publication Publication Date Title
CN114080459A (zh) 用于粉末的镍基合金和用于制备粉末的方法
EP1951923B1 (en) Steel compositions, methods of forming the same, and articles formed therefrom
EP2456900B1 (en) Bearing steels
US10029309B2 (en) Production process for TiAl components
US10094007B2 (en) Method of manufacturing a ferrous alloy article using powder metallurgy processing
US20230106938A1 (en) Powder made of a cobalt-chromium alloy
US11767579B2 (en) Nickel based alloy for powder and method for producing a powder
EP3371337B1 (en) Method of layer-by-layer construction of a metallic part
US20030156965A1 (en) Nitrogen alloyed steel, spray compacted steels, method for the production thereof and composite material produced from said steel
Schruff et al. Advanced tool steels produced via spray forming
AU2011236054B2 (en) Composite plate and method of forming the same
EP4327964A1 (en) Titanium alloy and methods of manufacture
CN114318130A (zh) 沉淀硬化合金
EP3757241A1 (en) Cr-fe-ni type alloy product
JP2023064068A (ja) 積層造形用Ni系合金粉末および積層造形体
CN115874110A (zh) 熔融固化成形用Fe基合金及金属粉末
JPH01104747A (ja) 高硬度部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination