CN114075048A - 一种端部具有微纤化结构的混凝土用增强聚合物纤维 - Google Patents

一种端部具有微纤化结构的混凝土用增强聚合物纤维 Download PDF

Info

Publication number
CN114075048A
CN114075048A CN202010831498.1A CN202010831498A CN114075048A CN 114075048 A CN114075048 A CN 114075048A CN 202010831498 A CN202010831498 A CN 202010831498A CN 114075048 A CN114075048 A CN 114075048A
Authority
CN
China
Prior art keywords
fiber
microfibrillated
polymer
microfibrillation
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010831498.1A
Other languages
English (en)
Other versions
CN114075048B (zh
Inventor
阳知乾
沙建芳
刘建忠
刘加平
韩方玉
林玮
郭飞
徐海源
黄文聪
吕进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Subote New Material Co ltd
Sobute New Materials Co Ltd
Bote Building Materials Tianjin Co Ltd
Original Assignee
Sichuan Subote New Material Co ltd
Sobute New Materials Co Ltd
Bote Building Materials Tianjin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Subote New Material Co ltd, Sobute New Materials Co Ltd, Bote Building Materials Tianjin Co Ltd filed Critical Sichuan Subote New Material Co ltd
Priority to CN202010831498.1A priority Critical patent/CN114075048B/zh
Publication of CN114075048A publication Critical patent/CN114075048A/zh
Application granted granted Critical
Publication of CN114075048B publication Critical patent/CN114075048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种端部具有微纤化结构的混凝土用增强聚合物纤维。本发明所述聚合物纤维本体为经熔融纺丝得到的聚合物粗纤维,且纤维的一端或二端具有多级微纤化结构,微纤化级数为1‑4级;当纤维仅有一端具有微纤化结构时,微纤化结构长度为纤维整体长度的5%‑45%;当纤维二端具有微纤化结构时,微纤化结构总长度为纤维整体长度的10%~50%;微纤化方式为化学溶剂法与物理法单独使用或组合使用。本发明微纤化方法为物理开绒或化学微纤化,方式多样,可单用或组合应用,效果良好;微纤化的粗纤维并不影响纤维分散性,比常规掺量更低的基础上,通过纤维端部与基体的界面粘结强化,充分发挥纤维的本体抗拉强度,从而达到较好的增韧效果。

Description

一种端部具有微纤化结构的混凝土用增强聚合物纤维
技术领域
本发明涉及纤维技术领域,尤其涉及一种端部具有微纤化结构的混凝土用增强聚合物纤维。
背景技术
混凝土是应用广泛、非常重要的建筑材料,但混凝土固有的脆性大、韧性差、抵抗形变能力差等缺点制约了其发展与应用,合成纤维可用来增强混凝土,可达到改善其脆性、提高韧性与抗裂防渗性能等目的。粗合成纤维是一种新型的混凝土增强增韧材料,耐腐蚀、易分散且掺量低于钢纤维,能提高混凝土的抗干缩开裂与韧性,可广泛用于喷射混凝土、混凝土路面、桥面及工业地坪、机场跑道、装卸码头和停车场等。
纤维与混凝土的界面粘结强度是影响纤维在混凝土中使用效果的主要因素之一,如果界面粘结强度低,纤维容易产生滑移拔出而弱化增强增韧作用。针对以上情况,改善纤维-混凝土基材之间的弱界面状态,成为本技术领域研究开发的重点与热点之一。
针对改善纤维-基材界面的改性方法已有一些报道。中国专利ZL200410033670.X公开了一种混凝土用增强型改性聚丙烯粗纤维及其制备方法,通过用含有亲水基团的高分子化合物与聚丙烯共混,固化前再经过物理和化学的方法对粗纤维表面进行凹凸螺纹处理,从而使粗纤维与混凝土之间有良好的握裹力,改善或提高混凝土的韧性、抗冲击、抗裂、抗冻、防渗、弯拉以及耐久性等综合性能。中国专利ZL 200620024146.5公布了一种工程用碳塑加强筋,其特点是在直径为0.5-0.8毫米的柱面上轴向分布有若干个相互平行的“V”或“U”形凹槽。中国专利ZL200510002624.8公开了一种异型塑钢纤维的生产方法,其直径为0.5-1.5mm,长度为20-60mm,通过先进的生产工艺和纤维结构的特殊处理,以获得表面粗糙、断面为五叶、六叶及多棱形状,横截面为凹凸形、波浪形、锯齿形状的纤维。中国专利ZL200810021644.3采用了向纤维中添加具有水化活性的界面改性剂、异形截面、表面压痕等组合技术来改善纤维与基体的界面性能。ZL 201210150185.5发明一种混凝土用粗纤维,为多角棱柱沿轴向螺旋式扭转后的形状,长度为20mm-60mm,截面的直径或等效直径为0.10-1.20mm,相邻的棱之间的表面是内凹的。ZL201210150184.0发明一种聚合物粗纤维及制备方法,其形状为圆柱形,所述粗纤维的表面上设有一个以上沿轴向分布的锚固片。CN201810862379.5发明了一种混凝土防裂增强纤维单丝,由内到外包括外层、中间层和内层,外层由六个截面呈半圆形的耐磨条组成,耐磨条周向均匀分布,所述外层的材料为耐磨陶瓷颗粒与聚乙烯混合,中间层呈圆环状,材料为陶瓷粉末混与聚乙烯混合,内层为聚丙烯圆丝。CN 201811303871.5公开了一种复合粗纤维,由基料和纤维束组成,所述基料的质量占比为20-50%。本发明的复合粗纤维与混凝土之间有较好的粘结锚固作用,可以有效吸收裂缝处的应力,抑制裂缝的形成和开展。
US 6863969B2也公开了一种混凝土用的粗纤维,纤维的截面形状为椭圆形或其他多边形,截面的平均宽度为1.0-5.0毫米,截面的平均厚度为0.1-0.3毫米,以此来减少纤维的成团并使纤维-基体的粘结力提高。US 20030082376A1也公开了类似的粗纤维产品。
从以上对粗纤维的改性方法可以看出,现有技术的研究均集中在通过形成轴向粗糙表面与异型截面的粗纤维来提高其在混凝土中粘结力,从而发挥出粗纤维的增强效果。但这些方法还是存在一定的局限性。本发明纤维中间或一端的主体仍然保持原有的力学特性,从优化纤维端部与基体粘结特性出发,强化纤维的端部锚固能力,从而实现水泥基复合材料的韧性等力学性能的提升。
发明内容
针对现有技术中通过形成轴向粗糙表面与异型截面的粗纤维来提高其在混凝土中粘结力,从而发挥出粗纤维的增强效果存在一定的局限性的问题,本发明提供一种端部具有微纤化结构的混凝土用增强聚合物纤维,主要通过在聚合物粗纤维表面形成微纤化,以达到改善纤维与基体的界面粘结特性的目的。
本发明提供了一种端部具有微纤化结构的混凝土用增强聚合物纤维,其纤维本体为经熔融纺丝得到的聚合物粗纤维,纤维的一端或二端具有一定长度比例的多级微纤化结构,微纤化级数为1-4级;
所述聚合物粗纤维的直径为不小于0.1mm,其中1级微纤的直径为聚合物粗纤维本体直径或等效直径的2%-10%;2-4级微纤直径以可生产出的微纤数量为上限;次级微纤在主体上或上一级微纤上的位置为随机分布,微纤为自由乱向分布;
当纤维仅有一端具有微纤化结构时,微纤化结构长度为聚合物粗纤维整体长度的5%-45%;当纤维二端同时具有微纤化结构时,微纤化结构总长度为聚合物粗纤维整体长度的10%~50%,且二端各自的长度可以一样或不一样;
当纤维二端同时具有微纤化结构时,二端的微纤化级数可以不一致,每一端一级微纤化长度均为聚合物粗纤维整体长度的5%-45%;
微纤化的方式分为化学溶剂法或物理微纤化法,化学溶剂法与物理微纤化法可单独使用或组合使用。
所述聚合物粗纤维中的聚合物为聚丙烯、聚乙烯醇、聚乙烯、聚甲醛、聚酰胺及其它们的均聚物、共聚物和填充改性聚合物中的一种或多种复合型聚合物。
微纤化的化学溶剂法:(1)首先将非微纤化区采用覆盖保护方式;(2)当聚合物粗纤维为单一种类纤维时,选择该聚合物的良溶剂,控制溶剂量和溶解时间,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,单次或多次的操作来实现多级微纤化;(3)当聚合物粗纤维为复合纤维时,选择聚合物复合纤维中某一组分的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,单次或多次的操作来实现多级微纤化。
微纤化的物理法:将非微纤化区采用覆盖保护方式,采用开绒机对纤维进行微纤化,单次或多次的操作来实现多级微纤化。
所述聚丙烯与聚乙烯的良溶剂均独立选自二甲苯、十氢萘或二氯乙烯;所述聚甲醛的良溶剂为六氟异丙醇;所述聚酰胺的良溶剂为二甲基甲酰胺;所述聚乙烯醇的良溶剂为水、甲酰胺或二甲亚砜。
本发明具有以下优点:
(1)纤维微纤化的实施方法可以是物理开绒或化学微纤化,方式多样,可单用或灵活组合应用,效果良好;
(2)微纤化的粗纤维并不影响纤维分散性,可以在比常规掺量更低的基础上,通过纤维端部与基体的界面粘结强化,充分发挥纤维的本体抗拉强度,从而达到较好的增韧效果。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
对比例1
直径为800微米、长度为40厘米的表面光滑的平直型聚丙烯(PP)纤维作为对比样1。
对比例2
直径为300微米、长度为12厘米的表面光滑的平直型聚甲醛(POM)纤维作为对比样2。
实施例1
选用直径为800微米、长度为40厘米的表面光滑的平直型聚丙烯(PP)纤维,将非微纤化区采用覆盖保护方式,其一端一级微纤化长度为纤维本体长度的20%;选择对二甲苯作为聚丙烯的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复二次的前述操作来实现第二、三级微纤化;即实现纤维实施例1成品的制备。
实施例2
将实施例1中获得的纤维样品,另一端采用开绒机对纤维进行微纤化,开绒操作次数为二次,最终形成的另一端微纤化结构长度为纤维本体总长度的30%;即实现纤维实施例2成品的制备。
实施例3
选用直径为300微米、长度为12厘米的表面光滑的平直型聚甲醛(POM)纤维,将非微纤化区采用覆盖保护方式,其一端一级微纤化长度为纤维本体长度的5%;选择六氟异丙醇作为聚甲醛的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复一次的前述操作来实现二级微纤化;即实现纤维实施例3成品的制备。
实施例4
选用直径为500微米、长度为30厘米的表面光滑的平直型聚丙烯(PP)纤维,将非微纤化区采用覆盖保护方式,其二端一级微纤化长度为纤维本体长度的30%;选择十氢萘作为聚丙烯的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复三次的前述操作来实现四级微纤化,二、三、四级微纤化的长度均为上一级微纤维长度的80%;即实现纤维实施例4成品的制备。
实施例5
选用直径为600微米、长度为40厘米的表面光滑的平直型聚酰胺(PA)纤维,将非微纤化区采用覆盖保护方式,其二端一级微纤化长度为纤维本体长度的10%;选择二甲基甲酰胺作为聚酰胺的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复三次的前述操作来实现四级微纤化,二、三、四级微纤化的长度均为上一级微纤维长度的90%;即实现纤维实施例5成品的制备。
实施例6
选用直径为600微米、长度为12厘米的表面光滑的平直型聚乙烯醇(PVA)纤维,将非微纤化区采用覆盖保护方式,其一端一级微纤化长度为纤维本体长度的45%;选择水作为聚乙烯醇的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复二次的前述操作来实现三级微纤化;即实现纤维实施例6成品的制备。
实施例7
选用直径为500微米、长度为30厘米的表面光滑的平直型聚甲醛与聚丙烯的复合纤维,将非微纤化区采用覆盖保护方式,其二端一级微纤化长度为纤维本体长度的20%;选择二氯乙烯作为聚丙烯的良溶剂,保留聚甲醛组份不被溶胀溶解,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,重复一次的前述操作来实现二级微纤化,二级微纤化的长度为上一级微纤维长度的75%;即实现纤维实施例7成品的制备。
实施例8
选用直径为800微米、长度为40厘米的表面光滑的平直型聚丙烯(PP)纤维,将非微纤化区采用覆盖保护方式,采用机械开绒的方式将其一端一级微纤化长度为纤维本体长度的20%,即实现纤维实施例8成品的制备。
应用实施例
选用表1中的混凝土配合比,按GB/T 50081-2019混凝土物理力学性能试验方法标准进行抗折实验,表2为各组纤维混凝在不同龄期的抗折强度,其中实施例9是将实施例5的样品以3.0kg/m3的较低掺量加入混凝土中应用。
表1 配合比(kg/m3)
水泥 纤维 外加剂
186 465 630 1120 5.0 4.65
表2 各组纤维混凝土不同龄期的抗折强度(MPa)
组别 7d 28d
空白(未加纤维) 2.3 3.2
对比例1 2.7 3.6
对比例2 2.9 3.7
实施例1 3.4 4.4
实施例2 3.6 4.5
实施例3 4.0 4.9
实施例4 3.9 5.0
实施例5 4.1 4.9
实施例6 3.8 4.9
实施例7 3.7 4.8
实施例8 3.3 4.3
实施例9 3.4 4.4
由表2中的实验结果表明,从不同龄期的抗折强度来看,不加纤维的混凝土抗折强度最低,添加了不具有端部微纤化结构的二种对比样即对比例1和对比例2中的纤维后,较空白组略有提升。而掺入实施例1~8制得的纤维的混凝土的抗折强度较空白组及对比例1、2均有显著提高。这表明本发明提供的端部具有微纤化结构的混凝土用增强聚合物纤维可优化纤维与水泥基体材料的界面粘结性能,进而表现为抗折强度的提升。

Claims (5)

1.一种端部具有微纤化结构的混凝土用增强聚合物纤维,其特征在于:其纤维本体为经熔融纺丝得到的聚合物粗纤维,纤维的一端或二端具有一定长度比例的多级微纤化结构,微纤化级数为1-4级;
所述聚合物粗纤维的直径不小于0.1mm,其中1级微纤的直径为聚合物粗纤维本体直径或等效直径的2%-10%;2-4级微纤直径以可生产出的微纤数量为上限;次级微纤在主体上或上一级微纤上的位置为随机分布,微纤为自由乱向分布;
当纤维仅有一端具有微纤化结构时,微纤化结构长度为聚合物粗纤维整体长度的5%-45%;当纤维二端同时具有微纤化结构时,微纤化结构总长度为聚合物粗纤维整体长度的10%~50%,且每一端一级微纤化长度均为聚合物粗纤维整体长度的5%-45%;
微纤化的方式分为化学溶剂法或物理微纤化法,化学溶剂法与物理微纤化法可单独使用或组合使用。
2.根据权利要求1所述的一种端部具有微纤化结构的混凝土用增强聚合物纤维,其特征在于,所述微纤化的化学溶剂法包括:
(1)首先将非微纤化区采用覆盖保护方式;
(2)当聚合物粗纤维为单一种类聚合物纤维时,选择该聚合物的良溶剂,控制溶剂量和溶解时间,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,单次或多次的操作来实现多级微纤化;
(3)当聚合物粗纤维为复合纤维时,选择聚合物复合纤维中某一组分的良溶剂,对微纤化区进行溶胀、溶解或腐蚀,去除溶剂与溶解物后,形成相应的微纤,单次或多次的操作来实现多级微纤化。
3.根据权利要求1所述的一种端部具有微纤化结构的混凝土用增强聚合物纤维,其特征在于,微纤化的物理法包括:将非微纤化区采用覆盖保护方式,采用开绒机对纤维进行微纤化,单次或多次的操作来实现多级微纤化。
4.根据权利要求2或3所述的一种端部具有微纤化结构的混凝土用增强聚合物纤维,其特征在于:所述聚合物粗纤维中的聚合物为聚丙烯、聚乙烯醇、聚乙烯、聚甲醛、聚酰胺及其它们的均聚物、共聚物和填充改性聚合物中的一种或多种复合型聚合物。
5.根据权利要求4所述的一种端部具有微纤化结构的混凝土用增强聚合物纤维,其特征在于,所述聚丙烯与聚乙烯的良溶剂均独立选自二甲苯、十氢萘或二氯乙烯;所述聚甲醛的良溶剂为六氟异丙醇;所述聚酰胺的良溶剂为二甲基甲酰胺;所述聚乙烯醇的良溶剂为水、甲酰胺或二甲亚砜。
CN202010831498.1A 2020-08-18 2020-08-18 一种端部具有微纤化结构的混凝土用增强聚合物纤维 Active CN114075048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010831498.1A CN114075048B (zh) 2020-08-18 2020-08-18 一种端部具有微纤化结构的混凝土用增强聚合物纤维

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010831498.1A CN114075048B (zh) 2020-08-18 2020-08-18 一种端部具有微纤化结构的混凝土用增强聚合物纤维

Publications (2)

Publication Number Publication Date
CN114075048A true CN114075048A (zh) 2022-02-22
CN114075048B CN114075048B (zh) 2022-07-12

Family

ID=80281446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010831498.1A Active CN114075048B (zh) 2020-08-18 2020-08-18 一种端部具有微纤化结构的混凝土用增强聚合物纤维

Country Status (1)

Country Link
CN (1) CN114075048B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197423B1 (en) * 1999-10-08 2001-03-06 W. R. Grace & Co.-Conn. Micro-diastrophic synthetic polymeric fibers for reinforcing matrix materials
CN101337781A (zh) * 2008-08-12 2009-01-07 江苏博特新材料有限公司 一种混凝土用聚丙烯粗纤维及其制备方法
CN101629332A (zh) * 2009-08-19 2010-01-20 江苏博特新材料有限公司 一种混凝土用聚丙烯粗纤维及其制备方法
CN102051704A (zh) * 2009-11-05 2011-05-11 李群胜 一种可弯折有机仿钢纤维
CN102674728A (zh) * 2012-05-15 2012-09-19 江苏博特新材料有限公司 一种混凝土用聚合物粗纤维及制备方法
CN110892111A (zh) * 2017-04-21 2020-03-17 飞博林科技有限公司 具有增强特性的微纤化纤维素及其制备方法
CN111003959A (zh) * 2019-10-25 2020-04-14 青岛理工大学 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197423B1 (en) * 1999-10-08 2001-03-06 W. R. Grace & Co.-Conn. Micro-diastrophic synthetic polymeric fibers for reinforcing matrix materials
CN101337781A (zh) * 2008-08-12 2009-01-07 江苏博特新材料有限公司 一种混凝土用聚丙烯粗纤维及其制备方法
CN101629332A (zh) * 2009-08-19 2010-01-20 江苏博特新材料有限公司 一种混凝土用聚丙烯粗纤维及其制备方法
CN102051704A (zh) * 2009-11-05 2011-05-11 李群胜 一种可弯折有机仿钢纤维
CN102674728A (zh) * 2012-05-15 2012-09-19 江苏博特新材料有限公司 一种混凝土用聚合物粗纤维及制备方法
CN110892111A (zh) * 2017-04-21 2020-03-17 飞博林科技有限公司 具有增强特性的微纤化纤维素及其制备方法
CN111003959A (zh) * 2019-10-25 2020-04-14 青岛理工大学 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法

Also Published As

Publication number Publication date
CN114075048B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
EP1299320B1 (en) Plastic fibers for improved concrete
EP2650125B1 (en) Fiber reinforced cementitious material and uses thereof
JP6263336B2 (ja) セメント硬化体のひび割れ自己治癒用合成繊維、それを含むセメント硬化体及びセメント硬化体のひび割れ補修方法
CN101629332A (zh) 一种混凝土用聚丙烯粗纤维及其制备方法
CN114075048B (zh) 一种端部具有微纤化结构的混凝土用增强聚合物纤维
US20170217835A1 (en) Stretched polyolefin fibers
KR100343339B1 (ko) 트위스트형 보강섬유 및 그의 제조방법
EP1230452B1 (en) Synthetic fibers and cementitious systems including same
CA2395360A1 (en) Architectural concrete having a reinforcing polymer and process to make same
US20220212990A1 (en) Method for manufacturing fiber composite for reinforcing concrete, and concrete comprising fiber composite manufactured thereby
EP3517515B1 (en) Fiber bundle for reinforcement of a cementitious matrix, its uses and method of obtention
CN215627655U (zh) 一种fz-sys井筒专用仿钢复合纤维
JPS6232144B2 (zh)
JP6040584B2 (ja) ポリエチレン繊維からなるセメント系構造物補強用短繊維、およびセメント系構造物
US20210387911A1 (en) Fiber for concrete reinforcement
WO2019126847A1 (pt) Fibra para reforço de fibrocimento, processo de produção da fibra, e, artigo de fibrocimento
KR101229869B1 (ko) 토목건축 자재용 보강 복합섬유 및 이의 제조방법
WO2020088822A1 (en) Fiber for concrete reinforcement
JP2020176035A (ja) セメント補強材
JPH0740538Y2 (ja) セメント系成形体補強用繊維束
CN2634000Y (zh) 用于混凝土/砂浆的抗裂抗渗增强纤维
EP1971561A2 (en) Composite materials containing hydraulic binders
CN201620109U (zh) 聚丙烯纤维单丝及由其制成的束状绞联合成粗纤维
KR101887814B1 (ko) 콘크리트 보강용 번들형 단섬유 및 이를 이용한 섬유보강 콘크리트 조성물
Purnell Reinforcing fibre materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant