CN114068199A - 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备 - Google Patents

一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备 Download PDF

Info

Publication number
CN114068199A
CN114068199A CN202111087240.6A CN202111087240A CN114068199A CN 114068199 A CN114068199 A CN 114068199A CN 202111087240 A CN202111087240 A CN 202111087240A CN 114068199 A CN114068199 A CN 114068199A
Authority
CN
China
Prior art keywords
gnts
nicop
electrode material
ultra
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111087240.6A
Other languages
English (en)
Inventor
李镇江
赵健
李环宇
张振辉
刘原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202111087240.6A priority Critical patent/CN114068199A/zh
Publication of CN114068199A publication Critical patent/CN114068199A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种超长循环N/P‑GNTs@NiCoP复合超级电容器正极材料,属新能源存储领域。本发明采用一步磷化法在N/P‑GNTs表面上沉积了NiCoP纳米颗粒,并且NiCoP纳米颗粒通过N‑Ni/Co和P‑Ni/Co键牢固地锚定在N/P‑GNTs表面上,得到具有界面键合效应的N/P‑GNTs@NiCoP复合超级电容器正极材料;本发明制得的N/P‑GNTs@NiCoP复合材料呈现出超长的循环稳定性,在50Ag‑1下循环75000圈后仍能维持保持原比电容的90%,这为构筑新一代高性能超级电容器提供了优质的候选正极材料。

Description

一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其 制备
技术领域
本发明涉及新能源存储领域,具体涉及一种超长循环N/P-GNTs@NiCoP复合超级电容器正极材料。
技术背景
超级电容器是近年来发展起来的一种新型储能器件,具有功率密度高、充电速度快、循环使用寿命长、工作温度范围广、安全性能好及环保等优点,在新能源汽车、微型通讯设备、重型机械、航空航天等领域具有广阔的应用前景(中国发明专利,申请号201810202685.6)。然而,与充电电池相比,超级电容器的能量密度较低,这严重地制约了其工业化生产进程(Energy&Environmental Science,2016,9,102-106.Advanced EnergyMaterials,2019,9,1802928)。众所周知,超级电容器的性能完全依赖于其电极材料,因此,设计并构筑一种新型的且具有优异电化学性能的电极材料对提高超级电容器的能量密度具有十分重要的意义。
近年来,传统碳材料(如活性炭)常被用作超级电容器电极材料,由于其理论比电容较低,严重制约超级电容器的商业化进程,因此,研究人员往往通过设计新型正极材料来提高超级电容器的能量密度和功率密度。近年来,研究人员试图用NiMoO4,CoNi-MOF,NiCoP/NiCo-OH,MoS2,Fe2O3,NiCoSe2等过渡金属化合物作为正极材料,这主要是由于它们具有较高的理论比电容,优异的氧化还原特性和电化学活性,并且原料丰富、环境友好及价格低廉等优势(Nature Communications,2017,8,14264.Advanced Energy Materials,2017,7,1700294.Advanced Functional Materials,2018,28,1800036.NatureNanotechnology,2015,10,313-318.中国发明专利,申请号201310058911.5;中国发明专利,申请号201611200095.7)。然而,这些化合物都存在及循环稳定性和倍率差的缺点。为了克服上述问题,研究人员往往利用导电性较好及比表面积较大的碳材料作为骨架与其进行复合,有效地改善了其比电容低的缺陷(Advanced Energy Materials,2018,8,1702247.Nano Energy,2017,35,331-340.Energy&Environmental Science,2016,9,1299-1307)。尽管上述制备出的复合电极材料比电容比单一活性材料的高,但其循环稳定性和倍率性能仍不能满足新型高性能超级电容器的需求,极大地阻碍了其在超级电容器中的实际应用。其原因可能是由于上述骨架与活性材料的复合都是简单的物理吸附作用,复合电极材料在大电流充放电过程时,电解液中离子快速的嵌入/脱出使其体积产生明显的膨胀/收缩,同时,较大的交变应力循环可使其产生应力集中现象,进而导致活性材料的粉化甚至从骨架表面脱落,造成整个电极结构的严重坍塌。因此,如何构筑具有牢固的键合作用力且有利于电子快速传导的骨架材料-活性材料的固-固界面,并系统探究上述固-固界面的引入对复合电极材料的高倍率性能以及长循环寿命的影响规律,是该领域面临的巨大挑战,也是超级电容器未来规模化应用所必须克服的瓶颈问题。
众所周知,石墨烯管不仅具有良好的机械性能与物理化学稳定性、大的长径比及比表面积、优异的导电性与抗腐蚀抗氧化特性,并且它们互相缠结,可以构成一种特殊的网络结构。因此,石墨烯管构成的网络结构不仅使活性材料均匀分散,还可以在充放电过程中为电子传导提供了多种传输渠道;此外,石墨烯管的管径较大(150~200nm),可作为一种特殊的离子“储存器”,保证了电解液离子的稳定供应,并加快离子向电极活性层内部的扩散,这使它们成为极具竞争力的超级电容器复合电极的骨架材料(Advanced Materials,2014,26,1378-1386.Nano Lett.,2010,10,4844.Advanced Materials,2015,27,5943-5949.Advanced Functional Materials,2018,28,1705714)。更重要的是,对石墨烯管骨架进行N/P共掺杂,可以有效地调节其表面电子结构,不可避免地产生更多的孤对电子,从而诱导过渡金属化合物活性材料与骨架之间形成强的化学键。这种特殊的化学键合可以在它们的界面上产生典型的内部电场,有助于提高界面的电子传递速率和倍率特性;同时,这种坚固的电极结构可大大地缓解结构应变,消除在循环过程中的体积膨胀或缩小,保证了电极材料的长期循环寿命。此外,NiCoP作为一类重要的过渡金属化合物电极材料,由于元素Ni/Co和P都是多价态的,有利于进行法拉第氧化还原反应储存电荷,同时,与同类氧化物相比,它们可以呈现类似于金属的导电性,具有更高的电荷转移速率。因此,纳米NiCoP键合在N/P共掺杂石墨烯管(N/P-GNTs)管时有望大幅提升此复合正极材料的长期循环稳定性。
发明内容
本发明的目的是为了解决掺杂石墨烯@过渡金属磷化物复合电极材料循环稳定性差等缺点。
本发明的目的是通过以下技术方案实现:
(1)N/P-GNTs@NiCoP复合材料的制备:
将0.1445gNi(NO3)2·6H2O和0.2990gCo(NO3)2·6H2O溶解在15ml去离子水和15ml乙醇的混合溶液中,搅拌30min,以获得均匀的悬浮液,然后在上述混合溶液中置入沉积有N-GNT(1cm2)的石墨基片;其次,逐滴添加1.5mL植酸(PA)到上述混合溶液,随后在75℃下真空干燥3h,最后将其在800~1000℃下在Ar气氛下煅烧1h,得到N/P-GNTs@NiCoP。
(2)N/P-GNTs@NiCoP复合材料的电化学性能测试:
首先,配制浓度为2MKOH溶液作为电解质溶液,然后,以沉积有N/P-GNTs@NiCoP纳米复合电极材料、Pt电极和甘汞电极分别作为工作电极、对电极和参比电极,利用电化学工作站分别对所得复合电极材料的恒电流充放电(GCD)等进行测试,获得其循环稳定性。
本发明所公开的N/P-GNTs@NiCoP复合电极材料与现电极材料相比,其优越性在于:
(1)本发明中,所制备的一种新型复合电极材料是由NiCoP纳米颗粒键合在N、P共掺杂GNTs上,且该电极材料表现出超长的循环稳定性。
(2)本发明中,NiCoP纳米颗粒与P掺杂N-GNTs是在一步磷化过程中实现的,且NiCoP纳米颗粒通过N-Ni/Co和P-Ni/Co化学键与N/P-GNTs相结合。这种特殊的界面化学键一方面能在大电流下及时地进行电子传导,更重要的是保证此复合电极的结构稳定性,从而提高其超长的循环性。
附图说明
下面结合附图及实施例对本发明作进一步说明。
图1为N/P-GNTs@NiCoP复合材料的SEM和TEM照片。
图2为N/P-GNTs@NiCoP复合材料的XRD图谱。
图3为N/P-GNTs@NiCoP复合材料的N1sXPS图谱。
图4为N/P-GNTs@NiCoP复合材料的P2pXPS图谱。
图5为N/P-GNTs@NiCoP复合材料的循环稳定性。
具体实施方式
实施例1
N-GNTs的制备
分别称取12.6g三聚氰胺和1.4g硅粉混合体作为原料,石墨片和硝酸镍作为基板和催化剂,采用化学气相沉积法在石墨基片上制备N掺杂石墨烯管。具体步骤为:首先将硝酸镍滴到石墨基片上浸湿在空气中自然干燥,重复三次;再将三聚氰胺与硅粉混合体粉末和带有催化剂的石墨基片以此放入石墨反应室内,将其置于真空炉内密封好真空炉盖,接通电源及循环水系统,随后启动真空系统,抽真空至50-80Pa,将高纯氩气通入真空炉内至常压后再次抽取真空,重复操作3次;随后使真空炉在抽取真空状态下以10℃/min的升温速率升温至200℃并保温10min;然后通入高纯氩气至常压,使真空炉以10℃/min的升温速率升温至1200℃并保温30分钟;最后关闭调压器,使真空炉水冷至室温。
N/P-GNTs@NiCoP复合材料的制备
首先,分别称取0.1445gNi(NO3)2·6H2O和0.2990gCo(NO3)2·6H2O,然后将其溶解在15ml去离子水和15ml乙醇的混合溶液中,搅拌30min,以获得均匀的悬浮液;其次,再在上述混合溶液中加入一块带有N-GNT(1cm2)的石墨基片,并逐滴添加1.5mL植酸(PA),随后将混合溶液在75℃下真空干燥3h;最后,将干燥好的固体混合物在800~1000℃下Ar气氛下煅烧1h,不仅获得了颗粒状NiCoP还进行了P掺杂N-GNTs,并且获得的NiCoP通过N-Ni/Co键和P-Ni/Co键牢固地键合在N/P-GNTs表面(N/P-GNTs@b-NiCoP)。同时,采用相同工艺在得到了纯NiCoP,并在N/P-GNTs的表面上涂覆了NiCoP,得到N/P-GNTs@c-NiCoP。N/P-GNTs@NiCoP复合材料的SEM和TEM照片分别见图1;N/P-GNTs@NiCoP复合材料的XRD、N1sXPS和P2pXPS表征结果分别见图2、图3和图4。
N/P-GNTs@NiCoP复合材料的电化学性能测试
以N/P-GNTs@NiCoP复合电极材料为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在2mol·L-1的KOH溶液中,测定其循环稳定性,见图5,从图5中可以看出,循环75000圈后,仍能保持原始比电容的90%,这说明此电极材料具有优异的超长循环稳定性。

Claims (3)

1.一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备,其特征在于:以N/P-GNTs为骨架材料,采用一步磷化法在其表面沉积NiCoP纳米颗粒得到具有界面键合效应的N/P-GNTs@NiCoP复合超级电容器正极材料,且它们的界面之间以N-Ni/Co和P-Ni/Co键相结合。
2.根据权利要求1所述的一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备,其特征在于:将0.1445gNi(NO3)2·6H2O和0.2990g Co(NO3)2·6H2O溶解在15ml去离子水和15ml乙醇的混合溶液中,搅拌30min,以获得均匀的悬浮液,然后在上述混合溶液中置入沉积有N-GNT(1cm2)的石墨基片;其次,逐滴添加1.5mL植酸(PA)到上述混合溶液,随后在75℃下真空干燥3h,最后将其在800~1000℃下在Ar气氛下煅烧1h,得到N/P-GNTs@NiCoP。
3.根据权利要求1所述的一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备,其特征在于:所述复合电极材料呈现出超长的循环稳定性,在50Ag-1下循环75000圈后仍能维持保持原比电容的90%。
CN202111087240.6A 2021-09-16 2021-09-16 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备 Pending CN114068199A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111087240.6A CN114068199A (zh) 2021-09-16 2021-09-16 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111087240.6A CN114068199A (zh) 2021-09-16 2021-09-16 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备

Publications (1)

Publication Number Publication Date
CN114068199A true CN114068199A (zh) 2022-02-18

Family

ID=80233865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111087240.6A Pending CN114068199A (zh) 2021-09-16 2021-09-16 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备

Country Status (1)

Country Link
CN (1) CN114068199A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101351A (zh) * 2022-02-22 2022-09-23 青岛科技大学 一种超高倍率超级电容器复合正极材料NiSe2@CoSe2及其构筑
CN115497752A (zh) * 2022-09-02 2022-12-20 青岛科技大学 一种超级电容器复合正极材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101351A (zh) * 2022-02-22 2022-09-23 青岛科技大学 一种超高倍率超级电容器复合正极材料NiSe2@CoSe2及其构筑
CN115497752A (zh) * 2022-09-02 2022-12-20 青岛科技大学 一种超级电容器复合正极材料的制备方法
CN115497752B (zh) * 2022-09-02 2024-03-15 青岛科技大学 一种超级电容器复合正极材料的制备方法

Similar Documents

Publication Publication Date Title
Lan et al. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes
Zhang et al. Metal–organic framework derived porous CuO/Cu 2 O composite hollow octahedrons as high performance anode materials for sodium ion batteries
CN108376767B (zh) 一种红磷/氮掺杂石墨烯复合负极材料及其制备方法和应用
Yang et al. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors
Li et al. A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
He et al. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors
Wang et al. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage
Wang et al. Palladium nanoparticle functionalized graphene nanosheets for Li–O 2 batteries: enhanced performance by tailoring the morphology of the discharge product
Zhang et al. Si/C composites as negative electrode for high energy lithium ion batteries
Wu et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance
Wu et al. N-Doped gel-structures for construction of long cycling Si anodes at high current densities for high performance lithium-ion batteries
CN114068199A (zh) 一种超长循环复合超级电容器正极材料N/P-GNTs@NiCoP及其制备
CN111146416A (zh) 氮掺杂硅基材料及其制备方法和在电池中的应用
CN111785946B (zh) 负极活性材料及其制备及应用
CN110336002A (zh) 一种用于锂离子电池的氮掺杂碳包覆氧化锌复合纳米材料
CN108807911A (zh) 一种铝离子电池及其制备方法
CN106887572A (zh) 一种锑‑碳复合材料及其制备方法和应用
Ling et al. Urchin-like NiCoP coated with a carbon layer as a high-performance electrode for all-solid-state asymmetric supercapacitors
Hu et al. Efficient synergy of MOF-derived CoTe2 polyhedron anchoring on CNTs as anode materials for Na-ion storages
Hu et al. Transition metal oxide@ hydroxide assemblies as electrode materials for asymmetric hybrid capacitors with excellent cycling stabilities
Zhang et al. Sn/P@ G-CNTs composites as high-performance anode materials for sodium-ion batteries
Yao et al. Facile route to high-mass-loading amorphous NiCo-MOFs as high-performance electrode materials for asymmetric supercapacitors
Xu et al. Semi‐Coherent Heterointerface Engineering via In Situ Phase Transition for Enhanced Sodium/Lithium‐Ions Storage
Sun et al. Preparation of V-Doped LiFePO4/C as the optimized cathode material for lithium ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination