CN114055865B - 一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 - Google Patents
一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 Download PDFInfo
- Publication number
- CN114055865B CN114055865B CN202111392659.2A CN202111392659A CN114055865B CN 114055865 B CN114055865 B CN 114055865B CN 202111392659 A CN202111392659 A CN 202111392659A CN 114055865 B CN114055865 B CN 114055865B
- Authority
- CN
- China
- Prior art keywords
- fiber
- heat shield
- mold
- inner mold
- ceramic matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
- B32B9/007—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/06—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/08—Interconnection of layers by mechanical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/14—Casings modified therefor
- F01D25/145—Thermally insulated casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/18—Aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Ceramic Engineering (AREA)
- Combustion & Propulsion (AREA)
- Laminated Bodies (AREA)
- Woven Fabrics (AREA)
Abstract
本发明公开了一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,包括以下步骤:先制备隔热屏模具的内模和外模,然后将单层单向纤维布在内模上缠绕一周并固定,再将纤维束与热熔胶线原位替换,重复操作,即得到纤维预制体,最后将纤维预制体夹持在内模和外模之间,然后用缝合线将内模、纤维预制体和外模缝合为一体,即完成纤维预制体成型。本发明可大大降低纤维预制体成型过程中的纤维损伤,显著提升预制体贴模率,同时能够显著降低生产升本、缩短制备周期,此外,制得的纤维预制体可采用化学气相渗透法、树脂浸渗裂解法或者熔体浸渗法,进行后续陶瓷基体的致密化工序,其工艺适应性较好。
Description
技术领域
本发明涉及陶瓷基复合材料热防护领域技术领域,具体涉及一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法。
背景技术
在航空发动机的涡轮与尾喷管之间安装加力燃烧室,是先进军用飞机短时增大飞行速度、提高机动性的主要技术手段之一。在加力工作状态下,加力燃烧室核心燃气温度一般可达2000K以上,远远超过了发动机机匣可承受的温度极限,需要在加力燃烧室和机匣之间内设计隔热屏结构,将核心燃气与机匣隔离开,同时引入部分外涵道气流辅助冷却隔热屏结构,保证发动机机匣处于安全的使用温度环境,因此,隔热屏是加力燃烧室中的关键部件之一,其一旦失效,将会造成发动机机匣烧穿等灾难性后果。
目前,隔热屏常用的高温合金材料存在耐热温度不高于1100℃、重量大等问题,而能够耐较高温度的碳纤维增强碳基体复合材料又存在高温易氧化的缺点。随着先进航空发动机对推重比、加力燃烧室效率等指标的提高,密度仅为高温合金的1/3-1/4、使用温度比高温合金高150-350℃、耐酸碱腐蚀、高强韧的陶瓷基复合材料被公认为是先进航空发动机加力燃烧室隔热屏的首选材料之一,隔热屏依据横向与纵向截面形状的不同,主要分为平板隔热屏、横向波纹板隔热屏与纵向波纹隔热屏,纵向波纹隔热屏沿发动机轴向存在周期性波浪状起伏,其具有外涵道引气冷却效果好、冷气需求量小、热变形协调能力强等优点,因此大部分先进航空发动机均采用了纵向波纹隔热屏方案,一般地,纵向波纹隔热屏为轴向长度约2-3m,直径约1m的回转体构件。采用陶瓷基复合材料制备隔热屏构件时,第一个工艺流程就是纤维预制体的成型,纤维预制体的成型是通过内、外模具的合模操作实现将多层纤维布(通常为碳化硅纤维布)在预定刚性曲面上的贴合和压紧,对于陶瓷基复合材料回转体构件,其纤维预制体在成型方式上通常采用二维编织纤维布缠绕成型,或者三维编织成型,但对于在轴向存在周期性波浪状起伏的纵向波纹隔热屏结构,当采用二维编织纤维布缠绕成型的工艺途径时,由于二维编织碳化硅纤维布面内刚度较大,纤维布难以在轴向和环向两个方向上同时弯曲,如采用较大的载荷强行合模成型,不仅会损伤纤维完整性,也容易在波纹的波峰和波谷处出现分层和褶皱缺陷,且纤维布的贴模率较低,难以保证构件尺寸精度,当采用三维编织成型方式时,其虽可实现纵向波纹状结构,但是面向较大尺寸的复杂型面纤维预制体,其编织周期较长、工艺成本较高,导致工业批量生产的经济性差。
发明内容
为了解决上述技术问题,本发明的目的是提供一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,以解决现有陶瓷基复合材料纵向波纹隔热屏纤维预制体成型难度大、贴模率低的问题。
本发明解决上述技术问题的技术方案如下:提供一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,包括以下步骤:
(1)采用耐高温材料,以隔热屏的内、外型面为参考,分别制备定型模具的内模和外模;其中,内模和外模具有若干与其型面垂直的通气孔;
(2)将单层单向纤维布在内模上缠绕一周并固定;其中,单层单向纤维布的径向纤维束沿内模的轴向排列,纬向热熔胶线沿内模的环向排列;
(3)另取与径向纤维束材质相同的替换纤维束,将其与纬向热熔胶线的一端连接,然后沿内模的环向,将纬向热熔胶线的另一端向缓慢抽出,直至将纬向热熔胶线完全抽出,完成替换纤维束沿内模的环向原位替换,得到单层纤维布;
(4)重复步骤(2)和(3),直至纤维布的层叠厚度达到隔热屏设计厚度的1.1-1.3倍,即得到纤维预制体;
(5)将纤维预制体夹持在内模和外模之间,再将内模和外模连接并固定,然后以通气孔作为缝合路径,用缝合线将内模、纤维预制体和外模缝合为一体,得陶瓷基复合材料纵向波纹隔热屏的纤维预制体。
本发明的有益效果为:本发明创新性地采用单向纤维布贴合内模缠绕铺层的方法,同时实现了纤维布在轴向和环向的弯曲,利用单向纤维布本体内部的热熔胶线,原位引入环向纤维束,增强了隔热屏预制体的环向强度。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步,步骤(1)中耐高温材料为电极石墨或高纯石墨。
进一步,高纯石墨是指石墨的含碳量>99.99%。
进一步,步骤(1)中通气孔的直径为3-10mm。
进一步,步骤(1)中定型模具的轴向高度不低于隔热屏高度的1.1-1.5倍,定型模具壁厚为5-15mm。
进一步,步骤(1)中定型模具的内模和外模均为沿隔热屏环向分布的若干个扇形段零件的组合。
进一步,步骤(2)中单层单向纤维布的原材料为碳化硅纤维和/或碳纤维。
进一步,步骤(2)中是用胶粘剂涂覆将单层单向纤维布固定。
进一步,步骤(2)中将单层单向纤维布在内模上缠绕一周之前,内模经过防粘连处理。
进一步,防粘连处理具体步骤为:是将防粘纤维布缠绕并粘接在内模上,然后将单层单向纤维布缠绕并粘接在防粘纤维布上。
进一步,粘接是用胶粘剂涂覆进行粘接。
进一步,胶粘剂为聚乙烯醇环保胶。
进一步,防粘纤维布为碳纤维布。
进一步,步骤(4)中在重复步骤(2)时,相邻层的单层单向纤维布缠绕的接口相互错开的环向弧长为100-150mm。
进一步,步骤(5)中内模和外模采用与定型模具材质相同的螺栓/螺母进行连接并固定。
进一步,步骤(5)中缝合线为碳纤维束或碳化硅纤维束。
本发明还提供上述方法制得的陶瓷基复合材料纵向波纹隔热屏的纤维预制体。
本发明具有以下有益效果:
一、采用单向纤维布贴合内模型面缠绕铺层的方法,同时实现了纤维布在轴向和环向的弯曲,与二维编织纤维布相比,本发明所用单向纤维布的面内刚度可降低30-45%,更便于在波纹模具上缠绕定型,因此,采用本发明技术可以在预制体定型时显著降低纤维的损伤,同时可将预制体的贴模率提升至95%以上;与三维编织成型相比,本发明所述方法可降低预制体生产升本20-35%、缩短制备周期20-25%。
二、本发明创新性地利用单向纤维布本体内部的热熔胶线,原位引入环向纤维,采用这种方法引入的环向纤维可与隔热屏本身的波浪状起伏型面完好贴合,通过调整引入的环向纤维体积分数,可增强隔热屏预制体的环向强度20-50%。
三、采用本发明成型方法得到的纤维预制体,可采用化学气相渗透法、树脂浸渗裂解法或熔体浸渗法进行后续陶瓷基体的致密化工序,其工艺适应性较好。
附图说明
图1为本发明陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法示意图。
其中,1、内模;2、单层单向纤维布;3、径向纤维束;4、纬向热熔胶线;5、替换纤维束。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,包括以下步骤:
(1)采用高纯石墨,以隔热屏的内、外型面为参考,分别制备定型模具的内模1和外模;其中,内模1和外模具有若干与其型面垂直的直径为5mm的通气孔,定型模具的轴向高度为隔热屏构件高度的1.12倍,定型模具壁厚为10mm,定型模具的内模1和外模均为沿隔热屏环向分布的6个扇形段零件的组合;
(2)将二维编织的碳纤维平纹布缠绕在内模1上,并用聚乙烯醇环保胶完成二维编织的碳纤维平纹布与内模1的粘接;
(3)将聚乙烯醇环保胶涂覆在二维编织的碳纤维平纹布外表面,再将单层单向碳化硅纤维布在内模1上缠绕一周,并粘接在二维编织的碳纤维平纹布上;其中,单层单向碳化硅纤维布径向碳化硅纤维束沿内模1的轴向排列,纬向热熔胶线4沿内模1的环向排列;
(4)另取碳化硅纤维束,将其与纬向热熔胶线4的一端连接,然后沿内模1的环向,将纬向热熔胶线4的另一端向缓慢抽出,直至将纬向热熔胶线4完全抽出,完成碳化硅纤维束沿内模1的环向原位替换,得到单层碳化硅纤维布;
(5)重复步骤(3)和(4),直至碳化硅纤维布的层叠厚度达到隔热屏设计厚度的1.15倍,即得到纤维预制体;其中,在重复步骤(3)时,相邻层的单向碳化硅纤维布缠绕的接口相互错开的环向弧长为130mm;
(6)将纤维预制体夹持在内模1和外模之间,再采用材料为高纯石墨的螺栓/螺母,将内模1和外模连接并固定,然后以通气孔作为缝合路径,用碳化硅纤维束缝合线将内模1、纤维预制体和外模缝合为一体,完成陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型。
实施例2:
一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,包括以下步骤:
(1)采用电极石墨,以隔热屏的内、外型面为参考,分别制备定型模具的内模1和外模;其中,内模1和外模具有若干与其型面垂直的直径为3mm的通气孔,定型模具的轴向高度为隔热屏构件高度的1.1倍,定型模具壁厚为5mm,定型模具的内模1和外模均为沿隔热屏环向分布的6个扇形段零件的组合;
(2)将二维编织的碳纤维平纹布缠绕在内模1上,并用聚乙烯醇环保胶完成二维编织的碳纤维平纹布与内模1的粘接;
(3)将聚乙烯醇环保胶涂覆在二维编织的碳纤维平纹布外表面,再将单层单向碳纤维布在内模1上缠绕一周,并粘接在二维编织的碳纤维平纹布上;其中,单向碳纤维布径向碳纤维束沿内模1的轴向排列,纬向热熔胶线4沿内模1的环向排列;
(4)另取碳纤维束,将其与纬向热熔胶线4的一端连接,然后沿内模1的环向,将纬向热熔胶线4的另一端向缓慢抽出,直至将纬向热熔胶线4完全抽出,完成碳纤维束沿内模1的环向原位替换,得到单层碳纤维布;
(5)重复步骤(3)和(4),直至碳纤维布的层叠厚度达到隔热屏设计厚度的1.1倍,即得到纤维预制体;其中,在重复步骤(3)时,相邻层的单向碳纤维布缠绕的接口相互错开的环向弧长为100mm;
(6)将纤维预制体夹持在内模1和外模之间,再采用材料为电极石墨的螺栓/螺母将内模1和外模连接并固定,然后以通气孔作为缝合路径,用碳纤维束缝合线将内模1、纤维预制体和外模缝合为一体,完成陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型。
实施例3:
一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,包括以下步骤:
(1)采用高纯石墨,以隔热屏的内、外型面为参考,分别制备定型模具的内模1和外模;其中,内模1和外模具有若干与其型面垂直的直径为10mm的通气孔,定型模具的轴向高度为隔热屏构件高度的1.5倍,定型模具壁厚为15mm,定型模具的内模1和外模均为沿隔热屏环向分布的6个扇形段零件的组合;
(2)将二维编织的碳纤维平纹布缠绕在内模1上,并用聚乙烯醇环保胶完成二维编织的碳纤维平纹布与内模1的粘接;
(3)将聚乙烯醇环保胶涂覆在二维编织的碳纤维平纹布外表面,再将单层单向碳化硅纤维布在内模1上缠绕一周,并粘接在二维编织的碳纤维平纹布上;其中,单向碳化硅纤维布径向碳化硅纤维束沿内模1的轴向排列,纬向热熔胶线4沿内模1的环向排列;
(4)另取碳化硅纤维束,将其与纬向热熔胶线4的一端连接,然后沿内模1的环向,将纬向热熔胶线4的另一端向缓慢抽出,直至将纬向热熔胶线4完全抽出,完成碳化硅纤维束沿内模1的环向原位替换,得到单层碳化硅纤维布;
(5)重复步骤(3)和(4),直至碳化硅纤维布的层叠厚度达到隔热屏设计厚度的1.3倍,即得到纤维预制体;其中,在重复步骤(3)时,相邻层的单向碳化硅纤维布缠绕的接口相互错开的环向弧长为150mm;
(6)将纤维预制体夹持在内模1和外模之间,再采用高纯石墨材料的螺栓/螺母将内模1和外模连接并固定,然后以通气孔作为缝合路径,用碳纤维束缝合线将内模1、纤维预制体和外模缝合为一体,完成陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型。
效果验证
采用二维平纹编织碳化硅纤维布,在纵向波纹隔热屏内模具上进行缠绕成型,其在环向波谷部位难以贴模,综合贴模率约为45-60%,直接接触模具的首层铺层存在显著的褶皱和分层现象,按照典型隔热屏的15层铺层计算,纤维损伤率不低于6.7%。
采用本发明方法进行预制体成型操作,其单向纤维布的面内刚度相比二维平纹编织纤维布降低30-45%,可同时实现在波纹模具波峰和波谷部位上的贴合,综合贴模率约为95%;与三维编织成型相比,本发明所述方法可降低预制体生产升本20-35%、缩短制备周期20-25%;此外,通过调整引入的环向纤维体积分数,可增强隔热屏预制体的环向强度20-50%。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,包括以下步骤:
(1)采用耐高温材料,以隔热屏的内、外型面为参考,分别制备定型模具的内模(1)和外模;其中,内模(1)和外模均具有若干与其型面垂直的通气孔;
(2)将单层单向纤维布(2)在内模(1)上缠绕一周并固定;其中,单层单向纤维布(2)的径向纤维束(3)沿内模(1)的轴向排列,纬向热熔胶线(4)沿内模(1)的环向排列;
(3)另取与径向纤维束(3)材质相同的替换纤维束(5),将其与纬向热熔胶线(4)的一端连接,然后沿内模(1)的环向,将纬向热熔胶线(4)的另一端向缓慢抽出,直至将纬向热熔胶线(4)完全抽出,完成替换纤维束(5)沿内模(1)的环向原位替换,得到单层纤维布;
(4)重复步骤(2)和(3),直至纤维布的层叠厚度达到隔热屏设计厚度的1.1-1.3倍,即得到纤维预制体;
(5)将纤维预制体夹持在内模(1)和外模之间,再将内模(1)和外模连接并固定,然后以通气孔作为缝合路径,用缝合线将内模(1)、纤维预制体和外模缝合为一体,得陶瓷基复合材料纵向波纹隔热屏的纤维预制体。
2.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(1)中耐高温材料为电极石墨或高纯石墨。
3.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(2)中单层单向纤维布(2)的原材料为碳化硅纤维和/或碳纤维。
4.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(2)中是用胶粘剂涂覆将单层单向纤维布(2)固定。
5.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(2)中将单层单向纤维布(2)在内模(1)上缠绕一周之前,内模(1)经过防粘连处理。
6.根据权利要求5所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,防粘连处理具体步骤为:将防粘纤维布缠绕并粘接在内模(1)上,然后将单层单向纤维布(2)缠绕并粘接在防粘纤维布上。
7.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(4)中在重复步骤(2)时,相邻层的单层单向纤维布(2)缠绕的接口相互错开的环向弧长为100-150mm。
8.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(5)中内模(1)和外模采用与定型模具材质相同的螺栓/螺母进行连接并固定。
9.根据权利要求1所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法,其特征在于,步骤(5)中缝合线为碳纤维束或碳化硅纤维束。
10.根据权利要求1-9任一项所述的陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法制得的陶瓷基复合材料纵向波纹隔热屏的纤维预制体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111392659.2A CN114055865B (zh) | 2021-11-23 | 2021-11-23 | 一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111392659.2A CN114055865B (zh) | 2021-11-23 | 2021-11-23 | 一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114055865A CN114055865A (zh) | 2022-02-18 |
CN114055865B true CN114055865B (zh) | 2022-09-27 |
Family
ID=80279355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111392659.2A Active CN114055865B (zh) | 2021-11-23 | 2021-11-23 | 一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114055865B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115180963A (zh) * | 2022-06-27 | 2022-10-14 | 西安鑫垚陶瓷复合材料有限公司 | 一种陶瓷基复合材料混合器预制体及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106967934B (zh) * | 2016-11-29 | 2018-03-27 | 北京航空航天大学 | 蓝宝石纤维增强陶瓷基多相复合材料及其制备方法与应用 |
CN107553928A (zh) * | 2017-08-07 | 2018-01-09 | 南京航空航天大学 | 一种连续纤维增强树脂基复合材料层合管件及加工方法 |
US12110256B2 (en) * | 2018-08-03 | 2024-10-08 | Safran Ceramics | Method for manufacturing a part made from CMC |
CN109336603A (zh) * | 2018-11-22 | 2019-02-15 | 西安鑫垚陶瓷复合材料有限公司 | 一种纤维布曲面预制件的成型模具及成型方法 |
CN110950662A (zh) * | 2019-11-20 | 2020-04-03 | 中国人民解放军国防科技大学 | 一种陶瓷基复合材料及其制备方法 |
CN112279664A (zh) * | 2020-11-04 | 2021-01-29 | 西安鑫垚陶瓷复合材料有限公司 | 一种连续纤维增强陶瓷基复合材料高强度连接件制备工艺 |
-
2021
- 2021-11-23 CN CN202111392659.2A patent/CN114055865B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114055865A (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114055865B (zh) | 一种陶瓷基复合材料纵向波纹隔热屏的纤维预制体成型方法 | |
CN103322854B (zh) | 一种复合材料发射筒及其制备方法 | |
CN107686364A (zh) | 核燃料包壳管及其制备方法 | |
US9539787B2 (en) | Multilayer woven fibrous structure including a hollow tubular part, production method thereof and composite part comprising same | |
CN111875401B (zh) | 一种缠绕成型高强高纯炭/炭复合材料回转体的制备方法 | |
CN114198223B (zh) | 一种一次固化成型的全复合材料发动机喷管 | |
CN113427793B (zh) | 高强度耐高温复合材料进气道及其成型方法 | |
CN113956061A (zh) | 一种连续纤维增强陶瓷基复合材料螺钉的制备方法 | |
CN108591322B (zh) | 一种汽车复合材料螺旋弹簧制备方法 | |
CN104948901A (zh) | 具有薄壁金属内衬结构的高温高压气瓶的制造方法 | |
KR102059879B1 (ko) | 섬유강화 세라믹 복합소재 허니컴 및 이의 제조방법 | |
CN114484506B (zh) | 用于陶瓷基复合材料单头部火焰筒的定型模具及制备方法 | |
CN113862773B (zh) | 一种长寿命导流筒及其制备方法 | |
CN113898798A (zh) | 一种抗内压纤维编织缠绕拉挤复合管及其制备方法 | |
CN115716345B (zh) | 基于热塑预浸料的可展豆荚杆结构连续生产线及其方法 | |
CN210126324U (zh) | 一种新型高强度纤维拉挤管道 | |
CN216112581U (zh) | 一种抗内压纤维编织缠绕拉挤复合管 | |
CN206572205U (zh) | 智能化二维碳纤维复合材料耐压气瓶 | |
CN115320132A (zh) | 一种一体化成型复合材料喷管的界面柔性处理方法 | |
CN111098526B (zh) | 一种高强度耐压圆弧顶封头工件的制备方法 | |
CN113001924A (zh) | 一种圆管编织专用高性能热塑性预浸带及其成型方法 | |
CN220952180U (zh) | 一种编织坩埚预制体 | |
US4807531A (en) | Contemporary composite polar boss | |
CN221348773U (zh) | 一种碳纤维材料空气压缩储能罐 | |
CN110307182A (zh) | 一种碳纤维和膨胀材料复合式涵道风扇风筒及其成型方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |