CN114054037A - 石蜡加氢催化剂及其制备方法 - Google Patents

石蜡加氢催化剂及其制备方法 Download PDF

Info

Publication number
CN114054037A
CN114054037A CN202010769659.9A CN202010769659A CN114054037A CN 114054037 A CN114054037 A CN 114054037A CN 202010769659 A CN202010769659 A CN 202010769659A CN 114054037 A CN114054037 A CN 114054037A
Authority
CN
China
Prior art keywords
hydrogenation catalyst
paraffin
preparation
paraffin hydrogenation
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010769659.9A
Other languages
English (en)
Inventor
吴显军
王刚
倪术荣
徐伟池
葛冬梅
孙发民
夏恩冬
郭金涛
李凤铉
李瑞峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202010769659.9A priority Critical patent/CN114054037A/zh
Publication of CN114054037A publication Critical patent/CN114054037A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G73/00Recovery or refining of mineral waxes, e.g. montan wax
    • C10G73/42Refining of petroleum waxes
    • C10G73/44Refining of petroleum waxes in the presence of hydrogen or hydrogen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种石蜡加氢催化剂及其制备方法,该石蜡加氢催化剂由载体和负载于载体上的活性组分组成;载体由氧化铝组成;活性组分包括Ni和/或Mo和/或W,本发明采用具有较大孔径的双介孔氧化铝载体,改善了重油物料大分子的扩散。且本发明的石蜡加氢催化剂在处理劣质的石蜡、微晶蜡原料时,具有突出的效果。

Description

石蜡加氢催化剂及其制备方法
技术领域
本发明涉及一种催化剂及其制备方法,特别涉及一种用于石蜡加氢催化剂及其制备方法。
背景技术
石蜡、微晶蜡是从石油的减压馏分油或减压渣油中分离出来的一种石油产品,加工过程需经过糠醛精制、酮苯脱油脱蜡等多道工艺过程,粗石蜡中含有硫氮化合物、稠环芳烃、胶质、沥青质和金属杂质,因此必须对原料蜡进行加氢精制,以改善其颜色及光安定性、降低稠环芳烃含量,而加氢精制技术的核心就是高性能的加氢精制催化剂。
为提高石蜡产品经济效益,国内炼厂新建石蜡加氢装置,增加石蜡牌号,生产食品级石蜡。部分企业计划拓展石蜡原料,充分利用减三线、减四线等重质蜡料的加工量,增加高熔点石蜡、微晶蜡产品产量,减少粗石蜡产量,致使现有石蜡加氢装置处理量进一步增大,精制难度加大,同时为了节能降耗、降低生产成本,部分炼厂采用反序蜡为原料,停掉石蜡白土精制装置,这就导致原料蜡中含有的胶质、沥青质、金属等杂质全部在加氢反应器中脱除,对加氢催化剂性能提出了更高的要求。常规的加氢精制催化剂其催化剂平均孔径在10nm以下,石蜡原料中的劣质重质分子很难接触加氢活性中心,杂质很难有效脱除。针对这一难题,需开发具有双介孔的载体,大的介孔有利于原料深度加氢,而小的介孔则为反应产物提供多的扩散通道。通过不同介孔的匹配实现反应物料的快速扩散传质,实现深度加氢要求。
CN 100579652C介绍了一种石蜡加氢精制催化剂及其制备方法和应用。以CrO3-Al2O3为载体,以镍为主要活性金属组分。该方法制备创新点在于对氧化铝进行改性,过程简单、原料损耗小,该发明所制备的载体具有较大的比表面积,但是其可几孔径集中在7~9nm,该孔径分布不利于石蜡分子的扩散传质。
CN 100446856C公开了一种石油蜡加氢精制催化剂及其制备方法,该催化剂载体由氧化铝和氟组成:活性组分包括Ni元素,和选自MoO3、WO3中两种或任意一种的物质。通过载体改性减弱了载体与活性组分的相互作用,改善金属活性组分的分散状态及相互作用,提高活性组分的利用效率,但金属的分散还可以进一步改善。
CN 102485847B公开了一种石油蜡加氢精制的方法:加氢精制催化剂日氧化铝为载体,洁性组分为NiO和MoO3、WO3中的一种或两种,同时该催化剂具有双峰孔结构,该催化剂在制备过程中使用醇醚以及醇磷酸酯作为扩孔剂,该类扩孔剂加入量大且不可回收利用,推高了催化剂制备成本。
CN 102485847B公开了一种石蜡加氢精制催化剂制备方法,该催化剂氧化铝载体具有双峰孔结构,大孔孔道的孔壁具有弱的表面酸性,小孔孔道的孔壁具有相对较强的表面酸性。该发明具有制备方法简单的优点,但是该催化剂载体孔径在20~40nm的比例偏低,需通过制备方法改进进一步提高较大孔径介孔的比例。
CN102311804B公开了一种石蜡一段加氢精制方法,该技术采用还原型镍系催化剂,该类催化剂具有活性高的优点,但是耐杂质能力较弱,在处理劣质石蜡原料时容易造成催化剂中毒。
发明内容
本发明的目的是提供一种石油蜡加氢精制催化剂的制备方法,通过采用两种常见介孔模板剂,制备过程中对前躯体的PH进行摆动调变,通过双模板剂和PH摆动的综合方法,模板剂添加量少,实现双孔分布的氧化铝载体制备的低成本化,该载体制备的催化剂提高了石蜡大分子在催化剂内部的扩散传质,在处理劣质石蜡、微晶蜡原料时,有突出的效果。
本发明提供的石蜡加氢催化剂的制备方法,包括以下步骤:
(1)取P123溶解于酸溶液中搅拌,调节溶液PH值为2~3,加入无机铝盐,静置老化,得到凝胶溶液,其中P123与无机铝盐的物质的量之比为1:10~100;
(2)向凝胶溶液中加入植物单宁,搅拌1~2h,然后加入碱性物质,调节pH值为6~8,老化2~4h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体,其中植物单宁与无机铝盐的物质的量之比为1:10~50;
(3)将SB粉、含硅化合物和步骤(2)的氧化铝前躯体混合均匀,然后挤条、干燥、焙烧,制得氧化铝载体;
(4)将步骤(3)制得的氧化铝载体浸渍在含有Ni、Mo和W中的至少一种活性金属以及助剂的浸渍液中,然后干燥、焙烧,制得石蜡加氢催化剂。
本发明的石蜡加氢催化剂的制备方法,其中,酸溶液为无机酸溶液或有机酸溶液,无机酸为硝酸和硫酸中的至少一种。
本发明的石蜡加氢催化剂的制备方法,其中,碱性物质为碱、可溶性碳酸盐、可溶性碳酸氢盐。
本发明的石蜡加氢催化剂的制备方法,其中,无机铝盐为硝酸铝、硫酸铝和氧化铝中的至少一种。
本发明的石蜡加氢催化剂的制备方法,其中,植物单宁为杨梅单宁、落叶松单宁和黑荆树单宁中的至少一种。
本发明的石蜡加氢催化剂的制备方法,其中,步骤(3)中,SB粉、含硅化合物、氧化铝前躯体的加入的质量比为1~5:5~20:1~5。
本发明的石蜡加氢催化剂的制备方法,其中,步骤(3)中,干燥温度为100~120℃,干燥时间为2~4h2,焙烧温度为550~600℃,焙烧时间为3~4h。
本发明的石蜡加氢催化剂的制备方法,其中,步骤(4)中,干燥温度为100~120℃,干燥时间为2~4h,焙烧温度为550~600℃,焙烧时间为3~4h。
本发明的石蜡加氢催化剂的制备方法,其中,步骤(4)中,助剂为柠檬酸。
本发明的石蜡加氢催化剂的制备方法,其中,步骤(1)中,P123溶解于酸溶液的温度为30~40℃,加入无机铝盐静置老化时间3~5h。
本发明还提供一种上述制备方法制得的石蜡加氢催化剂,该石蜡加氢催化剂包括氧化铝载体和活性组分,活性组分为NiO和MoO3、WO3中的一种或两种,NiO含量为石蜡加氢催化剂总质量的2~7%,MoO3和/或WO3含量为石蜡加氢催化剂总质量的15~35%,SiO2含量是石蜡加氢催化剂总质量的1~9%;石蜡加氢催化剂的比表面积为120m2/g~280m2/g,孔容为0.30ml/g~1.5ml/g,具有双峰孔结构,孔直径为5nm~14nm的孔占总孔容的30%~50%,孔直径为20nm~60nm的孔占总孔容的30%~50%。
植物单宁具有类似表面活性剂的双电层结构,在溶液中以胶束存在,分子中的孤对电子可以与Al3+进行络合,而植物单宁起到软模板作用,在焙烧后形成大的介孔结构。本发明所制备的石蜡加氢催化剂的特点在于采用具有较大孔径的双介孔氧化铝载体,改善了重油物料大分子的扩散。本发明的石蜡加氢催化剂可以处理劣质的石蜡、微晶蜡原料,尤其是高芳烃含量的原料。使用本催化剂生产的石蜡,可达到食品级石蜡标准(GB 7189-94)。使用本发明所制备的石蜡加氢催化剂所生产的微晶蜡,可达到食品级微晶蜡标准(SH/T0013-1999)。
具体实施方式
以下对本发明的实施例作详细说明。以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例,下列实施例中未注明具体条件的实验方法,通常按照常规条件。
实施例1
(1)在40℃温度下,取10g P123溶解于2mol/L HNO3溶液中,搅拌后加150g硝酸铝,静置老化4h,得到凝胶溶液;
(2)向步骤(1)凝胶溶液加入7.5g杨梅单宁,搅拌1h,然后加入NaOH,调节pH值为8,老化3h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体;
(3)将15g SB粉、130g步骤(2)所得氧化铝前躯体、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZA-1。
(4)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CA-1。
实施例2
(1)在40℃温度下,取12g P123溶解于2mol/L HNO3溶液中,搅拌后加150g硝酸铝,静置老化4h,得到凝胶溶液;
(2)向步骤(1)凝胶溶液加入8g落叶松单宁,搅拌1h,然后加入NaHCO3,调节pH值为8,老化3h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体;
(3)将10g SB粉、135g步骤(2)所得氧化铝前躯体、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZA-2。
(4)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CA-2。
实施例3
(1)在40℃温度下,取10g P123溶解于2mol/L HNO3溶液中,搅拌后加160g硝酸铝,静置老化4h,得到凝胶溶液;
(2)向步骤(1)凝胶溶液加入8.0g杨梅单宁,搅拌1h,然后加入Na2CO3,调节pH值为8,老化3h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体;
(3)将20g SB粉、125g步骤(2)所得氧化铝前躯体、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZA-3。
(4)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CA-3。
比较例1
(1)在40℃温度下,取10g P123溶解于2mol/L HNO3溶液中,搅拌后加150g硝酸铝,静置老化4h,得到凝胶溶液;
(2)向步骤(1)凝胶溶液加入NaOH,调节pH值为8,老化3h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体;
(3)将15g SB粉、130g步骤(2)所得氧化铝前躯体、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZB-1。
(4)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CB-1。
比较例2
(1)取7.5g杨梅单宁溶解于水中,然后加入NaOH,调节pH值为8,老化3h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体;
(2)将15g SB粉、130g步骤(2)所得氧化铝前躯体、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZB-2。
(3)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CB-2。
比较例3
(1)将15g SB粉、130g大孔氧化铝、10g硅溶胶、4.5g田菁粉、4.5g柠檬酸、3wt%的稀硝酸100ml混捏均匀,用挤条机挤压成型,120℃烘干,空气下600℃焙烧处理后,得到A12O3载体,记作ZB-3。
(2)用一定量偏钨酸铵、硝酸镍、氧化钼、柠檬酸配成水溶液,其中WO3浓度为70g/100ml,硝酸镍浓度为5g/100ml,氧化钼浓度为10g/100ml,柠檬酸浓度为10g/100ml,将该溶液与100g Al2O3载体等体积浸渍,120℃干燥,然后在600℃下焙烧,得到催化剂CB-3。
比较例4
按CN 102485847B所公开的制备方法制备蜡加氢催化剂
(1)ZB-4载体的制备
(a)弱表面酸性的大孔A12O3的制备
称取500g的拟薄水铝石粉、15g田箐粉、15g柠檬酸、50g脂肪醇醚磷酸酯、
Figure BDA0002614631040000071
的稀硝酸350ml混捏均匀,110℃烘干,空气下750℃焙烧处理,冷却后研磨成>150目粉末备用。
(b)称取1000g的拟薄水铝石粉、加入由(a)制备的大孔A12O3 300g,30g田箐粉、30g柠檬酸、100g硅溶胶(SiO2浓度30wt.%)、
Figure BDA0002614631040000072
的稀硝酸700ml混捏均勻,用挤条机挤压成型,110℃烘干,空气下600℃焙烧处理后,得到A12O3载体。
(2)W-Mo-Ni-P浸渍液的配制
配置1000ml溶液,称量125g三氧化钼(工业级)和60g碱式碳酸镍(工业级)加入到600ml水中,搅拌均匀后加入40g磷酸(85wt.%),煮沸2小时,加入200g硝酸镍,继续煮沸15分钟,冷却至室温,加入410g偏钨酸铵,全部溶解后加入稀氨水将溶液PH值调至4.0。将溶液转移到容量瓶中,加水定容到1000ml,得到W-Mo-Ni-P溶液。
(3)CB-4催化剂的制备
称取500g A12O3载体,量取375ml步骤(2)所配制的溶液,等体积浸溃30分钟,110℃干燥2小时,460℃焙烧,得到催化剂CB-4。
表1各实施例与对比例载体的性质
Figure BDA0002614631040000081
由表1各实施例与对比例所得载体的性质可以看出,在孔径分布上,实施例所得载体在5nm~20nm以及20nm~60nm范围内,所占的比例要大于对比例所得载体,更多比例的大孔径更有利于石蜡分子的扩散传质。从表2各实施例与对比例催化剂的组成来看,实施例与对比例各个催化剂在催化剂组成上基本一致,而在催化剂的孔容、比表面积以及平均孔径上实施例催化剂均要优于对比例。
表2各实施例与对比例催化剂的组成
Figure BDA0002614631040000091
表3各实施例与对比例催化剂的常规蜡料活性评价结果
Figure BDA0002614631040000092
注:(1)硫化条件:催化剂首先在290℃氢气气氛下用含有2(体积)%的CS2的大庆加氢裂化煤油进行预硫化20小时,然后进原料。
反应条件:反应温度250℃,压力7.0MPa,空速(体积)l.0h-1,氢油(体积)比300。
各实施例与对比例催化剂的常规蜡料活性评价结果列于表3,由表3可以看出,采用具有更多介孔分布的氧化铝载体的实施1、实施例2所得到的产品的含油量以及光安定性均优于比较例所得到的产品,该结果与实施例催化剂在制备过程中改善了劣质蜡中大分子的扩散传质,使得催化剂具有高的加氢活性有关。

Claims (11)

1.一种石蜡加氢催化剂的制备方法,其特征在于,该制备方法包括以下步骤:
(1)取P123溶解于酸溶液中搅拌,调节溶液PH值为2~3,加入无机铝盐,静置老化,得到凝胶溶液,其中P123与无机铝盐的物质的量之比为1:10~100;
(2)向凝胶溶液中加入植物单宁,搅拌1~2h,然后加入碱性物质,调节pH值为6~8,老化2~4h后抽滤,所得滤饼进行干燥,制得氧化铝前躯体,其中植物单宁与无机铝盐的物质的量之比为1:10~50;
(3)将SB粉、含硅化合物和步骤(2)的氧化铝前躯体混合均匀,然后挤条、干燥、焙烧,制得氧化铝载体;
(4)将步骤(3)制得的氧化铝载体浸渍在含有Ni、Mo和W中的至少一种活性金属以及助剂的浸渍液中,然后干燥、焙烧,制得石蜡加氢催化剂。
2.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述酸溶液为无机酸溶液或有机酸溶液,所述无机酸为硝酸和硫酸中的至少一种。
3.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述碱性物质为碱、可溶性碳酸盐、可溶性碳酸氢盐。
4.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述无机铝盐为硝酸铝、硫酸铝和氧化铝中的至少一种。
5.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述植物单宁为杨梅单宁、落叶松单宁和黑荆树单宁中的至少一种。
6.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述步骤(3)中,SB粉、含硅化合物、氧化铝前躯体的加入的质量比为1~5:5~20:1~5。
7.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述步骤(3)中,干燥温度为100~120℃,干燥时间为2~4h,焙烧温度为550~600℃,焙烧时间为3~4h。
8.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述步骤(4)中,干燥温度为100~120℃,干燥时间为2~4h,焙烧温度为550~600℃,焙烧时间为3~4h。
9.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述步骤(4)中,助剂为柠檬酸。
10.根据权利要求1所述的石蜡加氢催化剂的制备方法,其特征在于,所述步骤(1)中,P123溶解于酸溶液的温度为30~40℃,加入无机铝盐静置老化时间为3~5h。
11.一种根据权利要求1-10任一所述的制备方法制得的石蜡加氢催化剂,其特征在于,包括氧化铝载体和活性组分,所述活性组分为NiO和MoO3、WO3中的一种或两种,所述NiO含量为石蜡加氢催化剂总质量的2~7%,所述MoO3和/或WO3含量为石蜡加氢催化剂总质量的15~35%,所述SiO2含量是石蜡加氢催化剂总质量的1~9%;所述石蜡加氢催化剂的比表面积为120m2/g~280m2/g,孔容为0.30ml/g~1.5ml/g,具有双峰孔结构,孔直径为5nm~14nm的孔占总孔容的30%~50%,孔直径为20nm~60nm的孔占总孔容的30%~50%。
CN202010769659.9A 2020-08-03 2020-08-03 石蜡加氢催化剂及其制备方法 Pending CN114054037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010769659.9A CN114054037A (zh) 2020-08-03 2020-08-03 石蜡加氢催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010769659.9A CN114054037A (zh) 2020-08-03 2020-08-03 石蜡加氢催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN114054037A true CN114054037A (zh) 2022-02-18

Family

ID=80231693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010769659.9A Pending CN114054037A (zh) 2020-08-03 2020-08-03 石蜡加氢催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114054037A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027706A (en) * 1998-05-05 2000-02-22 Board Of Trustees Operating Michigan State University Porous aluminum oxide materials prepared by non-ionic surfactant assembly route
JP2009102592A (ja) * 2007-10-25 2009-05-14 Kaneka Corp 触媒組成物および硬化性組成物
CN101863499A (zh) * 2010-05-31 2010-10-20 中南大学 一种大孔-介孔氧化铝的制备方法
CN102485847A (zh) * 2010-12-03 2012-06-06 中国石油天然气股份有限公司 一种石油蜡加氢精制的方法
US20170121612A1 (en) * 2014-06-13 2017-05-04 IFP Energies Nouvelles Mesoporous and macroporous catalyst for hydroconversion of residues and preparation method
CN110465259A (zh) * 2019-09-17 2019-11-19 陕西科技大学 多级孔TiO2材料、制备方法及其在吸附蛋白质中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027706A (en) * 1998-05-05 2000-02-22 Board Of Trustees Operating Michigan State University Porous aluminum oxide materials prepared by non-ionic surfactant assembly route
JP2009102592A (ja) * 2007-10-25 2009-05-14 Kaneka Corp 触媒組成物および硬化性組成物
CN101863499A (zh) * 2010-05-31 2010-10-20 中南大学 一种大孔-介孔氧化铝的制备方法
CN102485847A (zh) * 2010-12-03 2012-06-06 中国石油天然气股份有限公司 一种石油蜡加氢精制的方法
US20170121612A1 (en) * 2014-06-13 2017-05-04 IFP Energies Nouvelles Mesoporous and macroporous catalyst for hydroconversion of residues and preparation method
CN110465259A (zh) * 2019-09-17 2019-11-19 陕西科技大学 多级孔TiO2材料、制备方法及其在吸附蛋白质中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王家寰等: "石蜡加氢精制催化剂进展及FV催化剂的开发应用", 工业催化, vol. 8, no. 3, 31 May 2000 (2000-05-31), pages 46 - 51 *

Similar Documents

Publication Publication Date Title
CN102310003B (zh) 一种加氢裂化催化剂及其制备方法
CN102728374B (zh) 加氢处理催化剂的制备方法
CN102728373B (zh) 一种加氢处理催化剂的制备方法
CN103191773B (zh) 一种制备加氢裂化催化剂的方法
CN103285909B (zh) 一种含介-微孔分子筛的加氢裂化催化剂及其制备方法
CN104556124B (zh) 一种氟硼酸铵改性y型分子筛及其制备方法
CN111592023A (zh) 一种含硼拟薄水铝石的制备方法
CN112742425B (zh) 一种加氢催化剂及其制备方法
CN111099616A (zh) 一种改性y型分子筛及其制备方法和应用
CN103801346A (zh) 一种制备加氢处理催化剂的方法
CN103801312A (zh) 一种加氢处理催化剂的制备方法
CN114054037A (zh) 石蜡加氢催化剂及其制备方法
CN102451699B (zh) 加氢处理催化剂的制备方法
CN111686748B (zh) 渣油加氢脱金属催化剂的制备方法
CN107344108A (zh) 一种提高加氢裂化尾油粘度指数的催化剂及其制备方法
CN106669863A (zh) 加氢改质催化剂载体的改性方法
CN114471593B (zh) 加氢精制催化剂的制备方法
CN107344109B (zh) 生产优质加氢裂化尾油的加氢裂化催化剂及其制备方法
CN114433209B (zh) 一种柴油加氢改质催化剂及其制备方法和应用
CN106669796A (zh) 一种加氢改质催化剂的制备方法
CN106669795A (zh) 加氢改质催化剂的制备方法
CN107344116B (zh) 加氢裂化催化剂及其制法和应用
CN111686750A (zh) 一种加氢脱金属催化剂的制备方法
CN102451700B (zh) 一种加氢处理催化剂的制备方法
CN114433117B (zh) 一种重质柴油馏分加氢精制催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination