CN114054011B - 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用 - Google Patents

一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN114054011B
CN114054011B CN202111311839.3A CN202111311839A CN114054011B CN 114054011 B CN114054011 B CN 114054011B CN 202111311839 A CN202111311839 A CN 202111311839A CN 114054011 B CN114054011 B CN 114054011B
Authority
CN
China
Prior art keywords
zinc oxide
graphene
photocatalytic material
oxide graphene
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111311839.3A
Other languages
English (en)
Other versions
CN114054011A (zh
Inventor
刘洪均
曹飞平
杨永生
唐孝生
曾国金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Agplus Environmental Protection Technology Co ltd
Original Assignee
Huizhou Agplus Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Agplus Environmental Protection Technology Co ltd filed Critical Huizhou Agplus Environmental Protection Technology Co ltd
Priority to CN202111311839.3A priority Critical patent/CN114054011B/zh
Publication of CN114054011A publication Critical patent/CN114054011A/zh
Application granted granted Critical
Publication of CN114054011B publication Critical patent/CN114054011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dentistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种六方柱状氧化锌石墨烯压电光催化材料及其绿色制备方法和应用,本发明的方法主要包括:(1)将氧化石墨烯与纯水混合均匀,并超声分散;(2)将醋酸锌与纯水混合均匀;(3)将步骤(1)与步骤(2)溶液混合搅拌后加入氨水调节pH,并升温至沸腾进行反应;(4)将反应产物分离、洗涤后,即得到六方柱状氧化锌石墨烯压电光催化材料。与现有技术相比,本发明氧化锌具有六方柱状结构,形态可控,结构稳定,催化效率高,具有良好的压电光电催化效应,能够在黑暗中实现有机污染物的高效降解及杀灭微生物,制备方法绿色和设备简单,成本低、便于大规模量产。

Description

一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和 应用
技术领域
本发明涉及化合物制备技术领域,尤其涉及一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用。
背景技术
在外加微弱的机械力作用下就可以诱导材料颗粒表面电荷的不对称分布;表面富集的非平衡电荷能够引发电化学反应,在温和条件下可实现水和氧气分子的活化以及活性氧物种(Reactive Oxygen Species,ROS)的产生,从而实现各类催化反应。
已报道的以BaTiO3为代表的压电催化材料展现出高效的催化效能,但其制备繁琐、昂贵,常需要电极极化的方式使材料产生压电效益,不宜于批量生产和应用。纳米氧化锌具有极高的化学活性及优异的催化性和光催化活性,常被用作催化材料、光化学用半导体材料。石墨烯是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
在已报道的氧化锌/石墨烯复合材料中(专利号:201310152776.0,201210434158.0),展现了较好的光催化效应,但是光催化剂的缺点是在光照下才能起到功效,大大限制了应用范围。因此,发展压电催化剂可有效克服上述困难,具有广阔应用前景。
发明内容
本发明所要解决的技术问题是提供一种具有压电光催化效应的六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用。
为解决以上技术问题,本发明采用的技术方案是:
本发明的一个目的在于提供一种六分柱状氧化锌石墨烯压电光催化材料,所述的六分柱状氧化锌石墨烯压电光催化材料为氧化锌呈六方柱状形貌并分散在片状石墨烯上。
本发明另一个目的在于提供了上述六分柱状氧化锌石墨烯压电光催化材料的制备方法,该方法具有简易,绿色,低成本的优点,具体包括以下步骤:
(1)将氧化石墨烯与纯水混合均匀,并超声分散;
(2)将醋酸锌与纯水混合均匀;
(3)将步骤(1)与步骤(2)溶液混合搅拌后加入氨水调节pH,并升温至沸腾进行反应;
(4)将反应产物分离、洗涤后,即得到六方柱状氧化锌石墨烯复合材料。
优选的,步骤(1)中超声仪器频率40KHz,功率100W;步骤(1)中得到的氧化石墨烯分散液浓度为2mg/mL~20mg/mL。
优选的,步骤(2)中得到的醋酸锌溶液浓度为0.1g/mL~0.3g/mL。
优选的,步骤(3)中调节pH>10,升温反应时间为1-1.5h。
优选的,步骤(4)中所述的分离方法为抽滤;步骤(4)中还包括对洗涤后的产品进行烘干。
本发明方法制得的六分柱状氧化锌石墨烯压电光催化材料作为抗菌剂在抗菌中的应用。
本发明方法制得的六分柱状氧化锌石墨烯压电光催化材料作为催化剂在黑暗环境中分解有机物的应用。
运用本发明的方案具有以下有益效果:
1、本发明的制备方法在水相中完成,所需设备简单,不需后续的高温煅烧,便于大规模量产,低成本、绿色环保。
2、本发明方法制得的六方柱状氧化锌石墨烯压电光催化材料结构稳定,可多次、反复使用,催化降解有机物。
3、本发明方法制得的六方柱状氧化锌石墨烯压电光催化材料能够有效利用机械能,具有优良的抗微生物性能。
4、光照可进一步加强六方柱状氧化锌石墨烯压电光催化材料的催化效能。
5、本发明方法制得的六方柱状氧化锌石墨烯压电光催化材料还具备裂解水产氢气、氧气,还原固定二氧化碳等催化效能。
6、本发明方法制得的六方柱状氧化锌石墨烯压电光催化材料能够有效利用机械能,具有优良的抗微生物性能。
综上所述,本发明利用石墨烯的高效电子传输效益,通过调控氧化锌的稳定微观结构,研究石墨烯的最小添加比例,设计、开发出的六方柱状氧化锌石墨烯材料具有压电催化效能高、易宏量制备、制备方法绿色、可重复多次使用、价格可控、具有高效抗菌效能等多种优势。
附图说明
图1为市售氧化石墨烯的扫描电镜图谱;
图2为实施案例1中的六分柱状氧化锌石墨烯压电光催化材料扫描电镜图片;
图3为实施案例1中的六分柱状氧化锌石墨烯压电光催化材料扫描电镜图片的局部放大图;
图4分别为实施案例1中的六分柱状氧化锌石墨烯压电光催化材料XRD图谱;
图5实施例4中不经处理的抑菌圈示意图;
图6实施例4中经超声处理的抑菌圈示意图;
图7为催化机理示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,但不构成对本发明保护范围的限制。
实施例1:将50ml浓度为10mg/ml的氧化石墨烯水分散液,在频率40KHz,功率100W条件下,超声分散0.5h。将100ml浓度为0.27g/ml的醋酸锌溶液与超声后的氧化石墨烯分散液混合,搅拌1h。在搅拌状态下缓慢加入30%浓度的氨水溶液,调节pH>10。升温沸腾反应1h,待溶液冷却后,抽滤并用纯水洗滤,60℃烘干即可。
如图4所示,通过分析可知,通过上述方法制备的六分柱状氧化锌石墨烯压电光催化材料中的氧化锌晶粒发育良好,无其他杂质峰,纯度高。
实施例2:将50ml浓度为20mg/ml的氧化石墨烯水分散液,在频率40KHz,功率100W条件下,超声分散0.5h。将100ml浓度为0.1g/ml的醋酸锌溶液与超声后的氧化石墨烯分散液混合,搅拌0.5h。在搅拌状态下缓慢加入30%氨水,调节pH>10。升温沸腾反应1h,待溶液冷却后,抽滤并用纯水洗滤,60℃烘干即可。
实施例3:配置5mg/L的亚甲基蓝溶液,分别取50ml亚甲基蓝溶液并加入0.1g六分柱状氧化锌石墨烯压电光催化材料,在不同条件下处理后,用分光光度计测其催化效应。结果如下表所示:
通过实施例3说明,六分柱状氧化锌石墨烯压电光催化材料通过在黑暗中搅拌、超声即可催化降解亚甲基蓝溶液,光照能够进一步加强其催化效能。
实施例4:采用抑菌圈实验测试六分柱状氧化锌石墨烯压电光催化材料的抗菌性能。先取大肠杆菌培养液(约1.0×106CFU/ml)涂布在营养琼胶平板上,在板中央分别放上0.1克,六分柱状氧化锌石墨烯压电光催化材料,在避光下,一组(图5,2块板)不经过任何处理,另一组(图6,2块板)在超声波清洗器(24kHz,40W)中超声10分钟后,同时放入培养箱中经过24小时培养,取出测量其抑菌圈。如5、6所示,对照样抑菌圈为1.3cm(图5,超声样抑菌圈为2.1cm(图6)。可以看到,本发明的六分柱状氧化锌石墨烯压电光催化材料有效的利用了超声波的能量,转化为活性氧物质,对其周边的微生物进行了杀灭,从而产生了更大的抑菌圈,验证了本发明六分柱状氧化锌石墨烯压电光催化材料的压电催化效益。
实施例5:取0.5g六分柱状氧化锌石墨烯压电光催化材料投入100ml约1.0×106CFU/ml大肠杆菌液中,避光环境下在不同的搅拌速度下225r/min震荡培养24小时后,进行大肠杆菌菌落数的测试。如表一所示,证明该材料有较强的抗菌能力。同时,增加实验中的震荡速度,可以提升材料的抗菌性能(抗菌率从93%提升至98.4%),再次证明了该材料的压电抗菌性能。
表一:氧化锌石墨烯压电材料在不同搅拌速度下的抗菌功效
证明本发明的六分柱状氧化锌石墨烯压电光催化材料有较强的抗菌能力。
图7为本发明催化材料的假设作用机理,氧化锌石墨烯复合压电光催化材料中的氧化锌显六方柱状结构,且均匀分布在石墨烯上。六方柱状氧化锌具有高比表面积、容易受压力变型的特性,可充分利用应力收集的空间,尽可能多的收集机械能;当在压电催化电极中形成压电势时,六方柱状氧化锌发生形变、弯曲,进而引起表面电荷的分离,石墨烯高效的电子运载效率,有效地促进压电载流子的分离,从而提高材料的压电催化效率。同时该氧化锌石墨烯复合结构,也可促进光生电子及光生空穴的电荷分离、抑制重组,提高该催化剂在光催化过程中量子产率,从而实现高压电光电催化效率。
在电荷、空穴分离后,其可分别诱导产生活性氧物质,进而产生消毒杀菌、降解有机污染物的效能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种六方柱状氧化锌石墨烯压电光催化材料的制备方法,其特征在于,包括以下步骤:
(1)将氧化石墨烯与纯水混合均匀,并超声分散;
(2)将醋酸锌与纯水混合均匀,得到醋酸锌溶液浓度为0.1g/mL~0.3g/mL;
(3)将步骤(1)与步骤(2)溶液混合搅拌后加入氨水调节pH>10,并升温至沸腾进行反应;
(4)将反应产物分离、洗涤后,即得到六方柱状氧化锌石墨烯复合材料。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中超声仪器频率40KHz,功率100W。
3.如权利要求1所述的制备方法,其特征在于:步骤(1)中得到的氧化石墨烯分散液浓度为2mg/mL~20mg/mL。
4.如权利要求1所述的制备方法,其特征在于:步骤(3)反应时间为1-1.5h。
5.如权利要求1所述的制备方法,其特征在于:步骤(4)中所述的分离方法为抽滤。
6.如权利要求1所述的制备方法,其特征在于:步骤(4)中还包括对洗涤后的产品进行烘干。
7.一种六方柱状氧化锌石墨烯压电光催化材料,其特征在于:如权利要求1-6任一项所述的制备方法制得。
8.如权利要求7所述的六方柱状氧化锌石墨烯压电光催化材料作为抗菌剂在抗菌中的应用。
9.如权利要求7所述的六方柱状氧化锌石墨烯压电光催化材料在黑暗环境中分解有机物的应用。
CN202111311839.3A 2021-11-08 2021-11-08 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用 Active CN114054011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111311839.3A CN114054011B (zh) 2021-11-08 2021-11-08 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111311839.3A CN114054011B (zh) 2021-11-08 2021-11-08 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114054011A CN114054011A (zh) 2022-02-18
CN114054011B true CN114054011B (zh) 2024-01-02

Family

ID=80274131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111311839.3A Active CN114054011B (zh) 2021-11-08 2021-11-08 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114054011B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580715A (zh) * 2012-01-10 2012-07-18 黑龙江大学 一种由膨胀石墨剥离制备氧化锌/石墨烯复合物的方法
CN103252227A (zh) * 2013-04-27 2013-08-21 北京交通大学 一种四针状氧化锌/石墨烯复合材料及其制备方法
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN104805421A (zh) * 2015-03-30 2015-07-29 广东工业大学 一种形貌可控的纳米氧化锌薄膜的制备方法
CN106359373A (zh) * 2016-08-29 2017-02-01 佛山市高明区尚润盈科技有限公司 一种多孔石墨烯负载氧化锌抗菌复合材料及其制备方法
JP2017145154A (ja) * 2016-02-15 2017-08-24 石原産業株式会社 酸化亜鉛粒子の製造方法及び放熱性組成物の製造方法
CN108283178A (zh) * 2017-12-29 2018-07-17 江苏大学 ZnO/Ag/石墨烯纳米复合材料及制备方法和应用
CN108435173A (zh) * 2018-04-02 2018-08-24 苏州凌科特新材料有限公司 一种抗菌光催化材料的制备方法
CN108568295A (zh) * 2017-03-07 2018-09-25 中国科学院上海硅酸盐研究所 一种砚状ZnO/石墨烯复合物光催化剂及其制备方法
CN109701515A (zh) * 2019-01-28 2019-05-03 中国建筑材料科学研究总院有限公司 空气净化用纳米氧化锌/石墨烯光催化复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580715A (zh) * 2012-01-10 2012-07-18 黑龙江大学 一种由膨胀石墨剥离制备氧化锌/石墨烯复合物的方法
CN103252227A (zh) * 2013-04-27 2013-08-21 北京交通大学 一种四针状氧化锌/石墨烯复合材料及其制备方法
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN104805421A (zh) * 2015-03-30 2015-07-29 广东工业大学 一种形貌可控的纳米氧化锌薄膜的制备方法
JP2017145154A (ja) * 2016-02-15 2017-08-24 石原産業株式会社 酸化亜鉛粒子の製造方法及び放熱性組成物の製造方法
CN106359373A (zh) * 2016-08-29 2017-02-01 佛山市高明区尚润盈科技有限公司 一种多孔石墨烯负载氧化锌抗菌复合材料及其制备方法
CN108568295A (zh) * 2017-03-07 2018-09-25 中国科学院上海硅酸盐研究所 一种砚状ZnO/石墨烯复合物光催化剂及其制备方法
CN108283178A (zh) * 2017-12-29 2018-07-17 江苏大学 ZnO/Ag/石墨烯纳米复合材料及制备方法和应用
CN108435173A (zh) * 2018-04-02 2018-08-24 苏州凌科特新材料有限公司 一种抗菌光催化材料的制备方法
CN109701515A (zh) * 2019-01-28 2019-05-03 中国建筑材料科学研究总院有限公司 空气净化用纳米氧化锌/石墨烯光催化复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts;M. Ahmad et al.;Ultrasonics Sonochemistry;第21卷;第761-773页 *
六方短棒状ZnO/氧化石墨烯复合材料的制备及其光催化性能;张迪;张江;李轩科;南辉;袁观明;董志军;丛野;李艳军;崔正威;;人工晶体学报(第04期);第572-578页 *
吴春霞等.紫外发光增强的石墨烯-氧化锌纳米复合物.发光学报.2014,第35卷(第6期),第701-705页. *
紫外发光增强的石墨烯-氧化锌纳米复合物;吴春霞等;发光学报;第35卷(第6期);第701-705页 *

Also Published As

Publication number Publication date
CN114054011A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
Wu et al. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants
Jing et al. Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation
EP3617146B1 (en) Linear porous titanium dioxide material and preparation and use thereof
Rao et al. Synthesis and characterization of ZnO nanoflowers using C hlamydomonas reinhardtii: A green approach
Yang et al. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation
CN101811689A (zh) 一种三维网状纳米碳纤维及其制备方法和用途
Ding et al. Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation
CN113000056A (zh) 一种基于MXene掺杂的复合材料及其制备方法
Zhu et al. Multiple-cores@ shell clustered carbon dots/P25/rGO nanocomposite as robust visible-light photocatalyst for organic pollutant degradation and water disinfection
Zhang et al. The synergetic enhancement of piezo catalytic performance to remove tetracycline by K2Ti6O13/TiO2 composite
CN114177910B (zh) 一种氧化铜氧化锌复合压电光催化材料及其制备方法和应用
CN108654671B (zh) 一种复合光催化剂及其制备方法和应用
Akinnawo Synthesis, modification, applications and challenges of titanium dioxide nanoparticles
CN111359631B (zh) 一种超高活性改性CdS材料压电催化材料的制备方法及应用
Chen et al. Efficient degradation of ciprofloxacin by Cu2O/g-C3N4 heterostructures with different morphologies driven under the visible light
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
Yu et al. Piezoelectric Effect Modulates Nanozyme Activity: Underlying Mechanism and Practical Application
CN114054011B (zh) 一种六分柱状氧化锌石墨烯压电光催化材料及其制备方法和应用
Pan et al. Insights into efficient bacterial inactivation over nano Ag/graphdiyne: dual activation of molecular oxygen and water molecules
CN114260026A (zh) 一种表面拉电子基团修饰的超薄石墨相氮化碳纳米片光催化材料及其制备方法和应用
Kamalam et al. Tin oxide-graphene oxide (SnO2/GO) nanocomposite: A promising photocatalyst for rhodamine-B dye degradation
CN111774075A (zh) 一种BiOI/MoS2异质结复合光催化剂及其制备方法和应用
Zhao et al. Dual-strategy modification on g-C3N4 for highly efficient inactivation of Microcystis aeruginosa under visible light
CN102698734A (zh) 一种降解苯系污染物的无定形钽酸光催化剂及其制备方法
Wu et al. Recent advances of BiFeO3-based catalysts based on the piezoelectric built-in electric field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant