CN114050726A - 一种mos管开关过程中源漏极电压振荡的处理方法 - Google Patents

一种mos管开关过程中源漏极电压振荡的处理方法 Download PDF

Info

Publication number
CN114050726A
CN114050726A CN202111367021.3A CN202111367021A CN114050726A CN 114050726 A CN114050726 A CN 114050726A CN 202111367021 A CN202111367021 A CN 202111367021A CN 114050726 A CN114050726 A CN 114050726A
Authority
CN
China
Prior art keywords
test
source
drain
buffer
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111367021.3A
Other languages
English (en)
Inventor
王淇森
王振华
胡翔宇
朱晓军
孙世杰
王群伟
岳银恒
代东雷
靳鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuji Group Co Ltd
Original Assignee
Xuji Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuji Group Co Ltd filed Critical Xuji Group Co Ltd
Priority to CN202111367021.3A priority Critical patent/CN114050726A/zh
Publication of CN114050726A publication Critical patent/CN114050726A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明涉及一种MOS管开关过程中源漏极电压振荡的处理方法,该方法包括测量MOS管关断时,漏源极电压VDS的振荡周期T1;在MOS管漏源极两端并联缓冲电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1;根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值;将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。本发明提供的技术方案,在电路运行的过程中,根据运行参数来实时确定MOS管并联RC缓冲电路中缓冲电容和缓冲电阻的参数,能够取得更好的振荡抑制效果。

Description

一种MOS管开关过程中源漏极电压振荡的处理方法
技术领域
本发明涉及电力电子技术领域,尤其涉及一种MOS管开关过程中源漏极电压振荡的处理方法。
背景技术
电力电子器件MOS管是用栅极电压来控制漏极电流的,MOS管器件的显著特点在于:一是驱动电路简单,需要的驱动功率小;二是开关速度快,工作频率高。因此,MOS管器件在开关电源、DC/DC变换等电路中应用非常广泛。
由于MOS管器件寄生参数、驱动电路、PCB走线、硬开关电压电流大小等因素的存在,难免会遇到硬开关带来的漏源极电压VDS振荡的问题。漏源极电压VDS振荡严重的情况下,除了造成开关损耗之外,还可能会导致振荡电压超过MOS管漏源极电压VDS的最大耐压值,损坏MOS管,影响系统的稳定性。在硬件设计中,由于MOS管栅、漏、源极间寄生电容、极间寄生电感以及走线带来的杂散电感的存在,漏源极电压VDS振荡无法简单的通过器件选型,调整PCB走线布局来消除,只能通过一些方法去减小振荡。
目前,针对MOS管漏源极电压漏源极电压VDS振荡的处理方式,是在漏源极两端并联缓冲电路,以此来起到保护和改善开关性能。现有技术中针对不同的缓冲电路的理论研究较多,而如何去针对实际应用中的样机进行实测,来确定RC缓冲电路中的电阻R和电容C的具体参数,并未有详细介绍。
发明内容
基于现有技术的上述情况,本发明的目的在于提供一种MOS管开关过程中源漏极电压振荡的处理方法,根据电路实际测试的结果,来确定MOS管并联RC缓冲电路中电阻R和电容C的参数,结合电路的实际情况,具有较好的振荡抑制效果。
为达到上述目的,根据本发明的一个方面,提供了一种MOS管开关过程中源漏极电压振荡的处理方法,所述MOS管设置于开关电源电路中,包括:
测量MOS管关断时,漏源极电压VDS的振荡周期T1
在MOS管漏源极两端并联缓冲电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1
根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值;
将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。
进一步的,根据以下公式计算缓冲电阻Rtest的阻值:
Figure BDA0003361213400000021
其中,LP为杂散电感,CP为杂散电容。
进一步的,根据以下公式计算杂散电感和杂散电容:
Figure BDA0003361213400000022
Figure BDA0003361213400000023
所述缓冲电容Ctest的容值为使得漏源极电压VDS的振荡周期T2=2T1的值。
进一步的,将所述缓冲电容Ctest和缓冲电阻Rtest串联后,并联于所述MOS管的源漏极两端。
综上所述,本发明提供了一种MOS管开关过程中源漏极电压振荡的处理方法,该方法包括测量MOS管关断时,漏源极电压VDS的振荡周期T1;在MOS管漏源极两端并联缓冲电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1;根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值;将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。本发明提供的技术方案,在电路运行的过程中,根据运行参数来实时确定MOS管并联RC缓冲电路中电阻R和电容C的参数,由于不同的PCB布局、走线的长短等因素,都会影响电路中杂散电感和杂散电容的大小,所以结合电路的实际情况,根据实际测量来计算出电路中的等效电感和等效电容,能够取得更好的振荡抑制效果。
附图说明
图1是双向DC-DC的主动均衡控制电路的电路结构示意图;
图2是本发明实施例MOS管开关过程中源漏极电压振荡的处理方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
下面对结合附图对本发明的技术方案进行详细说明。根据本发明的一个实施例,提供了一种MOS管开关过程中源漏极电压振荡的处理方法,本发明实施例根据双向DC-DC的主动均衡控制电路的实际应用中遇到的MOS管VDS振荡问题,如何根据实际测量,来确定缓冲电阻和缓冲电容的参数,给出具体处理方法。本发明实施例的处理方法以双向DC-DC的主动均衡控制电路为例进行说明,本发明技术方案也可以应用于其他开关电源电路中,在此不做限定。双向DC-DC的主动均衡控制电路的电路结构示意图如图1所示,包括原边转换电路、副边转换电路,以及连接原边转换电路和副边转换电路的变压器T1。其中,原边转换电路包括开关管Q1和Q2,以及电容C1;副边转换电路包括开关管Q3和Q4,以及电感L1。本发明实施例处理方法中针对的MOS管为开关管Q3,其设置于该双向DC-DC的主动均衡控制电路的副边转换电路中。
图2中示出了本发明实施例MOS管开关过程中源漏极电压振荡的处理方法的流程图,该方法包括如下步骤:
S1、在施加RC缓冲电路之前,测量MOS管关断时,漏源极电压VDS的振荡周期T1,以及相应的频率f1
S2、在MOS管漏源极两端并联缓冲电容Ctest,并测量此时漏源极电压VDS的振荡周期T2。在MOS管漏源极只并联一个电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1,并联的电容Ctest在1nF~10nF之间选取比较合适。
S3、根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值。首先,根据以下公式计算杂散电感LP
Figure BDA0003361213400000041
然后,根据如下公式计算电路中杂散电容CP
Figure BDA0003361213400000042
则缓冲电阻Rtest可由以下公式计算:
Figure BDA0003361213400000043
漏源极电压VDS振荡的波形,可以理解为一个直流电压的基础上叠加一个正弦激励而产生的响应曲线,根据上述公式可以得到:
Figure BDA0003361213400000044
从而可以达到较好地抑制源漏极振荡的效果。
S4、将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。根据图1所示,将所述缓冲电容Ctest和缓冲电阻Rtest串联后,并联于所述MOS管的源漏极两端以抑制源漏极振荡。
实际应用中,电容和电阻的数值不要求很准,接近就行。选择合适的电容和电阻值组成RC缓冲电路可以很好的抑制源漏极震荡,但是实际电路中加入RC吸收本身会有消耗损耗,并且需要考虑到电阻R的功率和电容C的耐压,在调试中需要折中处理。
综上所述,本发明涉及一种MOS管开关过程中源漏极电压振荡的处理方法,该方法包括测量MOS管关断时,漏源极电压VDS的振荡周期T1;在MOS管漏源极两端并联缓冲电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1;根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值;将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。本发明提供的技术方案,在电路运行的过程中,根据运行参数来实时确定MOS管并联RC缓冲电路中电阻R和电容C的参数,由于不同的PCB布局、走线的长短等因素,都会影响电路中杂散电感和杂散电容的大小,所以结合电路的实际情况,根据实际测量来计算出电路中的等效电感和等效电容,能够取得更好的振荡抑制效果。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (5)

1.一种MOS管开关过程中源漏极电压振荡的处理方法,所述MOS管设置于开关电源电路中,其特征在于,包括:
测量MOS管关断时,漏源极电压VDS的振荡周期T1
在MOS管漏源极两端并联缓冲电容Ctest,通过对该缓冲电容的容值进行调整,使漏源极电压VDS的振荡周期T2=2T1
根据测试电容Ctest的容值、振荡周期T1和T2,计算缓冲电阻Rtest的阻值;
将所述缓冲电容Ctest和缓冲电阻Rtest并联于所述MOS管的源漏极两端以抑制源漏极振荡。
2.根据权利要求1所述的方法,其特征在于,根据以下公式计算缓冲电阻Rtest的阻值:
Figure FDA0003361213390000011
其中,LP为杂散电感,CP为杂散电容。
3.根据权利要求2所述的方法,其特征在于,根据以下公式计算杂散电感和杂散电容:
Figure FDA0003361213390000012
Figure FDA0003361213390000013
4.根据权利要求3所述的方法,其特征在于,所述缓冲电容Ctest的容值为使得漏源极电压VDS的振荡周期T2=2T1的值。
5.根据权利要求4所述的方法,其特征在于,将所述缓冲电容Ctest和缓冲电阻Rtest串联后,并联于所述MOS管的源漏极两端。
CN202111367021.3A 2021-11-18 2021-11-18 一种mos管开关过程中源漏极电压振荡的处理方法 Pending CN114050726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111367021.3A CN114050726A (zh) 2021-11-18 2021-11-18 一种mos管开关过程中源漏极电压振荡的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111367021.3A CN114050726A (zh) 2021-11-18 2021-11-18 一种mos管开关过程中源漏极电压振荡的处理方法

Publications (1)

Publication Number Publication Date
CN114050726A true CN114050726A (zh) 2022-02-15

Family

ID=80210026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111367021.3A Pending CN114050726A (zh) 2021-11-18 2021-11-18 一种mos管开关过程中源漏极电压振荡的处理方法

Country Status (1)

Country Link
CN (1) CN114050726A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149069A (zh) * 2019-04-30 2019-08-20 国网江苏省电力有限公司电力科学研究院 高效率高频逆变电路
EP3641115A1 (de) * 2018-10-18 2020-04-22 FRONIUS INTERNATIONAL GmbH Sperrwandler mit hohem wirkungsgrad

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641115A1 (de) * 2018-10-18 2020-04-22 FRONIUS INTERNATIONAL GmbH Sperrwandler mit hohem wirkungsgrad
CN110149069A (zh) * 2019-04-30 2019-08-20 国网江苏省电力有限公司电力科学研究院 高效率高频逆变电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
卞正达等: "针对碳化硅器件的高频逆变器缓冲电路设计", 电力工程技术, vol. 38, no. 6, pages 167 - 170 *
杨凤彪;杨怡君;闫英敏;赵霞;: "RC缓冲电路的优化设计", 电气开关, no. 05, pages 51 - 53 *

Similar Documents

Publication Publication Date Title
CN110661438B (zh) 具低功耗及低成本的电源转换装置
Fu et al. Parasitic modeling for accurate inductive switching simulation of converters using SiC devices
Christensen et al. Common mode current mitigation for medium voltage half bridge SiC modules
US10498218B2 (en) Switching circuit apparatus and electric power converter capable of reducing common mode noise in asymmetric circuit
Meng et al. High dv/dt noise modeling and reduction on control circuits of GaN-based full bridge inverters
TW201340562A (zh) 降壓式變換電路
Sochor et al. Commutation loop design for optimized switching behavior of CoolSiC (exp TM) MOSFETs using compact models
US7969225B2 (en) Circuit of reducing power loss of switching device
CN114050726A (zh) 一种mos管开关过程中源漏极电压振荡的处理方法
JP2019129610A (ja) 波形成形回路、半導体装置及びスイッチング電源装置
US20240106371A1 (en) Systems and methods for decoupling capacitor for inverter for electric vehicle
JP2009273272A (ja) インバータモジュール
US6590790B2 (en) Switching power supply device
Jones Characterization methodology, modeling, and converter design for 600 V enhancement-mode GaN FETs
US20210364555A1 (en) Current detection circuit applied to sic field effect transistor
Kim et al. Analysis of gate-noise in hard switching and soft switching for half-bridge structure using gan hemt
Zdanowski et al. High-frequency isolated DC-DC converter with GaN HEMTs
Lemmon et al. Technique for embedding current measurement and ringing suppression within multichip modules
EP4047818A1 (en) Switching module
Han et al. PZT-based mitigation of voltage overshooting and switching oscillation for SiC MOSFET
Wada Circuit implementation of power converter for high-speed switching operations
DeBoi et al. Bus snubber optimization for multi-chip power modules using spice simulations
JP4487682B2 (ja) コンデンサとその設置方法
US20170277215A1 (en) Electronic device, power source circuit, and integrated circuit
Meshkat et al. A fully integrated soft switched high frequency resonant DC‐DC voltage regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination