CN114047169B - 一种基于金属纳米团簇的硫化氢检测方法 - Google Patents

一种基于金属纳米团簇的硫化氢检测方法 Download PDF

Info

Publication number
CN114047169B
CN114047169B CN202111405820.5A CN202111405820A CN114047169B CN 114047169 B CN114047169 B CN 114047169B CN 202111405820 A CN202111405820 A CN 202111405820A CN 114047169 B CN114047169 B CN 114047169B
Authority
CN
China
Prior art keywords
metal
hydrogen sulfide
fluorine
ligand
nanoclusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111405820.5A
Other languages
English (en)
Other versions
CN114047169A (zh
Inventor
胡高飞
李梁雨
汪乐余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111405820.5A priority Critical patent/CN114047169B/zh
Publication of CN114047169A publication Critical patent/CN114047169A/zh
Application granted granted Critical
Publication of CN114047169B publication Critical patent/CN114047169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种基于金属纳米团簇的硫化氢检测方法,选用含氟配体2,3,5,6‑四氟苯硫酚,利用硫醇基团固有的金属螯和能力和氟取代基的强吸电子能力,用该配体作为还原剂,诱导铜离子在简单温和的条件下快速形成形貌规整、结构稳定的铜纳米团簇,利用该团簇固有的自组装诱导发光特性,实现对硫化氢的荧光检测。本发明在金属纳米团簇的制备过程中,选用一种还原性含氟配体,合成及纯化过程简单快速,反应条件温和;制备的金属纳米团簇Cu‑F‑S本身具有自组装诱导发光特性,与亲金属的硫化氢作用后生成极小的硫化亚铜颗粒,氟配体释放,团簇本身规整结构被破坏;因此Cu‑F‑S能够对H2S实现荧光淬灭的快速响应,同时具有较高的灵敏度和选择性。

Description

一种基于金属纳米团簇的硫化氢检测方法
技术领域
本发明属于现代分析检测技术领域,特别是涉及一种基于金属纳米团簇的硫化氢检测方法。
背景技术
硫化氢(H2S)是自然界中最简单的巯基化合物,一种易燃、有腐蚀性及恶臭味的有毒气体,来源于金属冶炼、天然气、盐酸制造等工业及日常活动,长期以来作为典型的环境污染物受到广泛关注。即使是低浓度的硫化氢也会给人类健康带来风险,伤害呼吸系统和中枢神经系统。另一方面,近年来,H2S被认为是继一氧化氮、一氧化碳后第三种内源性气体信号分子,广泛存在于多种组织中,参与人体内各项生理过程,如血管舒张和神经传递调节,同时,H2S的失调和水平畸变可表征糖尿病等疾病的发生和发展。因此,需要开发方便可靠、灵敏度高、选择性好的H2S检测方法,目前已有常规色谱法(GC/HPLC)、电感耦合等离子体发射光谱法(ICP-OES)、比色法、电化学和荧光法。其中,色谱法和光谱法通常需要繁琐复杂的样品预处理过程,有一定的局限性,比色法相对来说操作简单,但选择性不够优异。电化学传感器由于电极反应对环境较为敏感,对硫化氢的定量稳定性相对较低。荧光法是一种灵敏度高的检测方法,同时具有较低的背景干扰,快速准确,易于定量化。
由几个到一百个原子组成的金属纳米团簇(NCs)具有独特的电子、几何结构及物化性质,在生物学、化学、纳米技术领域具有潜在应用。金属纳米团簇通常由金属核和有机配体组成,前者作为发射中心,后者作为封端剂、稳定剂和还原剂,使团簇稳定并与特定介质相容。金属核与配体之间的配位通常导致配体-金属电荷转移(LMCT)和配体-金属-金属电荷转移(LMMCT),通过以金属为中心的三重态产生辐射驰豫,显示出类分子发光特性。与常规有机染料和半导体量子点相比,金属纳米团簇具有超细尺寸、大斯托克斯位移、低毒性的特点,是制造发光二极管的优势材料。此外,由于LMCT和LMMCT依赖于NCs-NCs、配体-配体和NCs-配体相互作用,金属纳米团簇自组装成规则结构后,发光强度和稳定性能够获得增强。
基于此,可结合硫化氢的强亲金属性和金属纳米团簇的光致发光特性,构建一种能实现硫化氢响应的金属纳米团簇,实现H2S的特异性荧光检测。
检测硫化氢气体有以下三种方法:第一种就是使用硫化氢气体检测仪;第二种方法是使用化学分析方法,但是不够安全和精准;常用快速化学分析方法包括醋酸铅检测管法和醋酸铅指示纸法,主要是通过化学试剂观察反应后的颜色,因此不仅慢,而且色卡比对也没有气体检测仪的数值显示更精准;第三种是气体速测管,成本和安全性、准确性介于硫化氢气体检测仪和化学分析法之间。但是现有技术中缺少一种快速响应且同时具有较高灵敏度和选择性的检测方法。
发明内容
为了克服上述问题,本发明提供了一种基于苯硫酚配体与金属离子间的配位作用,在温和条件下快速形成金属纳米团簇的策略,构建响应快速、灵敏度高、抗干扰能力强的硫化氢检测方法。
本发明所采用的技术方案是:
一种基于金属纳米团簇的硫化氢检测方法,选用含氟配体2,3,5,6-四氟苯硫酚,利用硫醇基团固有的金属螯和能力和氟取代基的强吸电子能力,用该配体作为还原剂,诱导铜离子在简单温和的条件下快速形成形貌规整、结构稳定的铜纳米团簇,利用该团簇固有的自组装诱导发光特性,实现对硫化氢的荧光检测。
其中,具体制备步骤为:称取一定量的Cu(NO3)2·3H2O溶于乙醇中,配制成浓度为0.01moL·L-1的硝酸铜溶液;取5mL上述溶液,剧烈搅拌下加入25μL 2,3,5,6-四氟苯硫酚,溶液由浅蓝色变为黄色,将混合溶液在35℃下搅拌30分钟,通过离心分离出黄色沉淀,用乙醇洗涤2次,将产物分散在5mL乙醇中,即得金属纳米团簇Cu-F-S。
本发明的优点如下:
1、在金属纳米团簇的制备过程中,选用一种还原性含氟配体,合成及纯化过程简单快速,反应条件温和。
2、制备的金属纳米团簇Cu-F-S本身具有自组装诱导发光特性,与亲金属的硫化氢作用后生成极小的硫化亚铜颗粒,氟配体释放,团簇本身规整结构被破坏;因此Cu-F-S能够对H2S实现荧光淬灭的快速响应,同时具有较高的灵敏度和选择性,适用于生物及食品等复杂介质中硫化氢的特异性定量分析检测。
附图说明
图1为本发明实施例1中金属纳米团簇Cu-F-S的合成及硫化氢响应示意图;
图2为本发明实施例1中金属纳米团簇Cu-F-S的(a)TEM照片和(b)X射线衍射图谱;
图3为本发明实施例2中金属纳米团簇Cu-F-S与不同浓度NaHS作用后的荧光发射光谱,其中NaHS浓度从上到下依次为0,45,91,136,182,273,364,455,545,636,909μM;
图4为本发明实施例2总金属纳米团簇Cu-F-S与不同浓度NaHS作用后的TEM照片;
图5为本发明实施例2中金属纳米团簇Cu-F-S(a)与过量NaHS作用后的X射线衍射图谱和(b)与1mM NaHS作用前(1)和后(2)的19F NMR谱示意图;
图6为本发明实施例3中金属纳米团簇Cu-F-S的(a)荧光强度比值随响应时间的变化关系,(b)线性拟合曲线和(c)选择性考察示意图。
具体实施方式
以下通过具体实施例来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。该领域的技术熟练人员根据上述苯发明内容对本发明做出的一些非本质的改进和调整,仍属于本发明保护范围。
实施例1
金属纳米团簇Cu-F-S的制备:
称取一定量的Cu(NO3)2·3H2O溶于乙醇中,配制成浓度为0.01moL·L-1的硝酸铜溶液。取5mL上述溶液,剧烈搅拌下加入25μL 2,3,5,6-四氟苯硫酚(TFTP),溶液立即由浅蓝色变为黄色。将混合溶液在35℃下搅拌30分钟,通过离心分离出黄色沉淀,用乙醇洗涤2次,将产物分散在5mL乙醇中,即得金属纳米团簇Cu-F-S。
实施例2
金属纳米团簇Cu-F-S对H2S的响应性能验证及检测机理探究:
取100μL Cu-F-S,加入不同体积的乙醇和NaHS水溶液(10mM),使NaHS终浓度分分别为0,45,91,136,182,273,364,455,545,636,909μM,摇晃使其充分反应,测定在激发波长为432nm时的荧光发射光谱,验证Cu-F-S对H2S的响应性能;
取100μL Cu-F-S,加入不同体积的乙醇和NaHS水溶液(10mM),使NaHS终浓度分分别为0,0.5,1mM,使用透射电子显微镜观察不同NaHS浓度下的样品形貌;
在Cu-F-S中加入过量NaHS水溶液,烘干产生的沉淀测得X射线衍射图谱,确定Cu-F-S与NsHS反应后的颗粒组成;
在放有重水毛细管的核磁管中依次加入100μL Cu-F-S和400μL超纯水,摇晃使其分散均匀,进行19F NMR测试;在另一根核磁管中加入100μL Cu-F-S、350μL超纯水和50μLNaHS水溶液(10mM),溶液迅速由黄色变为黄褐色,摇晃核磁管使Cu-F-S与NaHS充分反应,进行19F NMR测试。观察比较在有无NaHS存在时的19F NMR信号强度。
实施例3
金属纳米团簇Cu-F-S的响应时间、标准曲线、抗干扰能力测试:
取100μL Cu-F-S,加入800μL超纯水,混合均匀后加入100μL NaHS水溶液(100μM),测定在432nm激发下,25min内样品的荧光强度变化;
取100μL Cu-F-S,加入800μL超纯水,混合均匀后加入100μL不同浓度的NaHS水溶液,使NaHS终浓度为2,4,6,10,12,14,16μM,摇晃使其充分反应,测试在432nm激发下的荧光发射光谱,构建荧光强度变化与NaHS浓度的线性曲线;
为了验证Cu-F-S的抗干扰能力,选取一些常见干扰物质进行选择性测试。在管中全部依次加入100μL Cu-F-S和800μL超纯水,摇晃使其分散均匀后分别加入100μL浓度均为100μM的NaHS、CaCl2、KCl、K2SO4、K2HPO4、KH2PO4、谷胱甘肽(GSH)、半胱氨酸(Cys)、缬氨酸(Val)、葡萄糖(Glu)水溶液。摇晃使Cu-F-S与待测物质充分反应,测试在432nm激发下的荧光发射光谱,比较加入不同干扰物质的荧光强度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种基于金属纳米团簇的硫化氢检测方法,其特征在于:选用含氟配体2,3,5,6-四氟苯硫酚,利用硫醇基团固有的金属螯和能力和氟取代基的强吸电子能力,用该配体作为还原剂,诱导铜离子在简单温和的条件下快速形成形貌规整、结构稳定的铜纳米团簇,利用该团簇固有的自组装诱导发光特性,实现对硫化氢的荧光检测;
具体制备步骤为:称取一定量的Cu(NO3)2·3H2O溶于乙醇中,配制成浓度为0.01moL·L-1的硝酸铜溶液;取5mL上述溶液,剧烈搅拌下加入25μL 2,3,5,6-四氟苯硫酚,溶液由浅蓝色变为黄色,将混合溶液在35℃下搅拌30分钟,通过离心分离出黄色沉淀,用乙醇洗涤2次,将产物分散在5mL乙醇中,即得金属纳米团簇Cu-F-S。
CN202111405820.5A 2021-11-24 2021-11-24 一种基于金属纳米团簇的硫化氢检测方法 Active CN114047169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111405820.5A CN114047169B (zh) 2021-11-24 2021-11-24 一种基于金属纳米团簇的硫化氢检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111405820.5A CN114047169B (zh) 2021-11-24 2021-11-24 一种基于金属纳米团簇的硫化氢检测方法

Publications (2)

Publication Number Publication Date
CN114047169A CN114047169A (zh) 2022-02-15
CN114047169B true CN114047169B (zh) 2024-03-26

Family

ID=80210714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111405820.5A Active CN114047169B (zh) 2021-11-24 2021-11-24 一种基于金属纳米团簇的硫化氢检测方法

Country Status (1)

Country Link
CN (1) CN114047169B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144352B (zh) * 2023-01-09 2023-11-24 西华师范大学 一种硫化物可视化检测的金银双金属纳米团簇及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229658A (zh) * 2018-08-06 2019-09-13 浙江师范大学 一种原位生成具有双层壳结构铜纳米团簇及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229658A (zh) * 2018-08-06 2019-09-13 浙江师范大学 一种原位生成具有双层壳结构铜纳米团簇及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Detection of hydrogen sulfide through photoluminescence quenching of penicillamine-copper nanocluster aggregates;Jia-Ying Ma;《Nanotechnology》(第25期);第1-6页 *
Highly Bright Self-Assembled Copper Nanoclusters: A Novel Photoluminescent Probe for Sensitive Detection of Histamine;Ailing Han;《Analytical Chemistry》(第90期);第9060-9065页 *

Also Published As

Publication number Publication date
CN114047169A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
Shang et al. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots
Zhang et al. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples
Feng et al. Self-assembled tetraphenylethylene macrocycle nanofibrous materials for the visual detection of copper (II) in water
Wang et al. Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes
Li et al. Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer
Chen et al. Colorimetric sensing of copper (II) based on catalytic etching of gold nanorods
Chen et al. Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles
Tan et al. Detection of glutathione with an “off–on” fluorescent biosensor based on N-acetyl-L-cysteine capped CdTe quantum dots
Ding et al. One-pot synthesis of dual-emitting BSA–Pt–Au bimetallic nanoclusters for fluorescence ratiometric detection of mercury ions and cysteine
CN114047169B (zh) 一种基于金属纳米团簇的硫化氢检测方法
Ren et al. Fabrication of silver nanoclusters with enhanced fluorescence triggered by ethanol solvent: a selective fluorescent probe for Cr 3+ detection
Sakamaki et al. Colorimetric determination of Pb 2+ in perfect aqueous solution using carminic acid as a selective chemosensor
Deng et al. One-step hydrothermal synthesis of nitrogen-doped carbon dots for high-sensitivity visual detection of nitrite and ascorbic acid
Lan et al. A Rhodamine-based Dual Chemosensor for the Simultaneous Detection of Fe3+ and Cu2+
Li Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry
Zhu et al. Enhanced spectrofluorimetric determination of hypochlorite based on the catalytic oxidation of thiamine to thiochrome in the presence of trace ferrocyanide
de la Riva et al. Determination of trace levels of mercury in water samples based on room temperature phosphorescence energy transfer
Megarajan et al. Rapid and selective colorimetric sensing of Au 3+ ions based on galvanic displacement of silver nanoparticles
CN110655919B (zh) 一种铜离子荧光探针及其制备方法与应用
Lei et al. Nano-fluorescent probes based on DNA-templated copper nanoclusters for fast sensing of thiocyanate
Sasikumar et al. Facile preparation of dihydrolipoic acid-stabilized red-emitting silver nanoclusters as a sensitive fluorometric probe for sulfide ions detection
Lv et al. A stable and sensitive Au metal organic frameworks resonance Rayleigh scattering nanoprobe for detection of SO32–in food based on fuchsin addition reaction
CN110658167B (zh) 基于银-金属有机骨架材料作为荧光探针应用于叶酸检测的方法
Safavi et al. Catalytic determination of traces of silver (I) using the oxidation of Janus green with peroxodisulfate
Liu et al. Determination of attogram quantities of silver via quenching of the solid substrate room-temperature phosphorescence of rhodamine B based on the catalysis of its oxidation by potassium persulfate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant