CN114045540B - 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用 - Google Patents

碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用 Download PDF

Info

Publication number
CN114045540B
CN114045540B CN202111232106.0A CN202111232106A CN114045540B CN 114045540 B CN114045540 B CN 114045540B CN 202111232106 A CN202111232106 A CN 202111232106A CN 114045540 B CN114045540 B CN 114045540B
Authority
CN
China
Prior art keywords
tetracarboxylic acid
chitosan
pyrene tetracarboxylic
carbon
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111232106.0A
Other languages
English (en)
Other versions
CN114045540A (zh
Inventor
孔泳
景鹏婧
吴大同
蔡文蓉
李俊瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202111232106.0A priority Critical patent/CN114045540B/zh
Publication of CN114045540A publication Critical patent/CN114045540A/zh
Application granted granted Critical
Publication of CN114045540B publication Critical patent/CN114045540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Abstract

本发明属于电化学传感器和分子识别技术领域,具体涉及一种碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用。该制备方法包括,将碳纳米管、3,4,9,10‑芘四羧酸在乙醇中分散均匀,离心,将沉淀洗涤烘干后分散于水中,得到碳纳米管/芘四羧酸水溶液;将碳纳米管/芘四羧酸水溶液涂于玻碳电极表面,干燥,制得碳纳米管/芘四羧酸修饰玻碳电极;以壳聚糖为手性试剂,以碳纳米管/芘四羧酸修饰玻碳电极为工作电极,通过电沉积在玻碳电极表面制备碳纳米管/芘四羧酸/壳聚糖手性材料。本发明制备方法简单,制备的碳纳米管/芘四羧酸/壳聚糖手性材料既具有手性,又具有良好的导电性,能够用于快速识别色氨酸的对映体。

Description

碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用
技术领域
本发明属于电化学传感器和分子识别技术领域,具体涉及一种碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用。
背景技术
氨基酸在所有生物体中都起着重要的作用,是蛋白质和代谢中间体的基础。除甘氨酸外,其它氨基酸都具有手性。氨基酸对映体识别的研究可以提供重要的信息,有助于更好地理解生物系统中的手性识别,并进一步促进生物化学和药物研究的进展。常用的手性分离技术包括高效液相色谱法、气相色谱法和毛细管电泳法。但这些方法大多需要昂贵的手性柱和复杂的样品预处理过程,并不适合于实时分析。电化学手性识别技术由于具有成本低、速度快、灵敏度高等优点受到了人们的广泛关注,但现有的电化学手性材料还存在着制备方法复杂、导电性能差的缺点。
发明内容
为解决现有技术的不足,本发明的目的是提供一种碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,过程简单,制备的碳纳米管/芘四羧酸/壳聚糖手性材料既具有手性,又具有良好的导电性。
本发明的另一目的是提供一种碳纳米管/芘四羧酸/壳聚糖手性材料,既具有手性,又具有良好的导电性,能够用于快速识别色氨酸的对映体。
本发明的再一目的是提供一种碳纳米管/芘四羧酸/壳聚糖手性材料在制备电化学传感器中的应用。
为解决现有技术的不足,本发明提供的技术方案为:
碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,包括,
S1:将碳纳米管、3,4,9,10-芘四羧酸在乙醇中分散均匀,得到碳纳米管/芘四羧酸的乙醇溶液,将碳纳米管/芘四羧酸的乙醇溶液离心,得到的碳纳米管/芘四羧酸洗涤烘干后分散于水中,得到碳纳米管/芘四羧酸水溶液;
S2:将所述碳纳米管/芘四羧酸水溶液涂于玻碳电极表面,干燥,制得碳纳米管/芘四羧酸修饰玻碳电极;
S3:以壳聚糖为手性试剂,以所述碳纳米管/芘四羧酸修饰玻碳电极为工作电极,通过电沉积制备碳纳米管/芘四羧酸/壳聚糖手性材料。
优选的,所述步骤S1中,所述碳纳米管/芘四羧酸的乙醇溶液中,所述碳纳米管的浓度为0.5~1.5mg/mL,所述3,4,9,10-芘四羧酸的浓度为0.1~0.4mg/mL。
优选的,所述步骤S1中,所述碳纳米管/芘四羧酸的乙醇溶液中,所述碳纳米管的浓度为1mg/mL,所述3,4,9,10-芘四羧酸的浓度为0.3mg/mL。
优选的,所述步骤S1中,所述碳纳米管/芘四羧酸水溶液中,所述碳纳米管/芘四羧酸的浓度为1~3mg/mL。
优选的,所述步骤S2中,干燥温度为10~40℃,干燥时间为0.5~1.5h。
优选的,所述步骤S2中,干燥温度为20℃,干燥时间为1h。
优选的,所述步骤S3包括,
以碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银为参比电极,将所述工作电极、所述对电极、所述参比电极置于壳聚糖溶液中,通过恒电位沉积制备碳纳米管/芘四羧酸/壳聚糖手性材料;所述恒电位沉积的沉积电位为-0.3V~-0.6V,沉积时间为100~300s。
优选的,所述步骤S3中,所述恒电位沉积的沉积电位为-0.5V,沉积时间为200s;所述壳聚糖溶液的浓度为2mg/mL。
碳纳米管/芘四羧酸/壳聚糖手性材料,由前述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法制备而成。
前述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法制备的碳纳米管/芘四羧酸/壳聚糖手性材料在制备电化学传感器中的应用。
本发明的有益效果:
本发明提供的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法简单易行,通过非共价键将芘四羧酸修饰至碳纳米管表面,在避免强酸氧化对碳纳米管结构造成损伤的同时在碳纳米管表面引入较多的羧基,增加碳纳米管在水中的分散性,同时羧基可作为引入壳聚糖的良好结合位点;由于壳聚糖的天然手性环境和碳纳米管的良好电化学性能,本发明制备的碳纳米管/芘四羧酸/壳聚糖手性材料既具有手性,又具有良好的导电性,以其构建的电化学传感器对色氨酸对映体具有较好的识别能力。
附图说明
图1为实施例一中多壁碳纳米管、3,4,9,10-芘四羧酸、碳纳米管/芘四羧酸、壳聚糖、碳纳米管/芘四羧酸/壳聚糖手性材料的红外光谱图;
图2为实施例二中碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极、碳纳米管/芘四羧酸修饰玻碳电极的循环伏安图;
图3为实施例三中碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极在识别色氨酸对映体时的差分脉冲伏安图;
图4为实施例三中碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极和对比例一中碳纳米管/芘四羧酸修饰玻碳电极在识别色氨酸对映体时的氧化峰电流比值对比图。
具体实施方式
下面结合实施方式对本发明作进一步描述。以下实施方式仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明实施例提供一种碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,包括,
S1:将碳纳米管、3,4,9,10-芘四羧酸在乙醇中分散均匀,得到碳纳米管/芘四羧酸的乙醇溶液,将碳纳米管/芘四羧酸的乙醇溶液离心,将碳纳米管/芘四羧酸洗涤烘干后分散于水中,得到碳纳米管/芘四羧酸水溶液。
在本发明的可选实施例中,碳纳米管/芘四羧酸的乙醇溶液中,碳纳米管的浓度为0.5~1.5mg/mL,优选1mg/mL;3,4,9,10-芘四羧酸的浓度为0.1~0.4mg/mL,优选0.3mg/mL。
在本发明的可选实施例中,碳纳米管/芘四羧酸水溶液中,碳纳米管/芘四羧酸的浓度为1~3mg/mL,优选2mg/mL。
S2:将碳纳米管/芘四羧酸水溶液涂于玻碳电极表面,在10~40℃干燥0.5~1.5h,制得碳纳米管/芘四羧酸修饰玻碳电极。
在本发明的优选实施例中,干燥温度为20℃,干燥时间为1h。
S3:以壳聚糖为手性试剂,以碳纳米管/芘四羧酸修饰玻碳电极为工作电极,通过电沉积制备碳纳米管/芘四羧酸/壳聚糖手性材料。
在本发明的可选实施例中,以碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银为参比电极,将三电极体系置于2mg/mL壳聚糖溶液中,在-0.3V~-0.6V恒电位范围下沉积100~300s,在玻碳电极表面制备碳纳米管/芘四羧酸/壳聚糖手性材料。
在本发明的优选实施例中,恒电位沉积的沉积电位为-0.5V,沉积时间为200s。
碳纳米管由于其窄的尺寸分布、大的比表面积、良好的化学稳定性和优异的电化学性能而被广泛应用。芘四羧酸作为一种具有芳香芘基和四个羧基的双功能分子,可通过π-π堆积功能化碳纳米管,从而获得高度分散的羧基碳纳米管。将芘四羧酸和碳纳米管结合,能够在避免强酸氧化导致的碳纳米管的结构损伤和电导率损失的同时在碳纳米管表面引入大量羧基。壳聚糖是通过几丁质脱乙酰作用获得的天然多糖,存在天然的手性环境,壳聚糖因其优异的亲水性、易成膜、良好的粘附性和无毒等优点,具有较多的结合位点能够用于识别对映体,其氨基可与碳纳米管/芘四羧酸上的羧基形成氢键,且质子化的壳聚糖可与羧基通过静电作用结合。因此,本发明合成的碳纳米管/芘四羧酸/壳聚糖手性材料既具有良好的导电性,又具有较多的结合位点,能够用于快速识别对映体。
本发明通过差分脉冲伏安法来评估碳纳米管/芘四羧酸/壳聚糖手性材料对色氨酸对映体的识别效率:
RL/D=IL/ID
式中,RL/D表示色氨酸对映体氧化峰电流比值,IL和ID分别表示L-色氨酸和D-色氨酸在差分脉冲伏安图上的氧化峰电流值。
具体的,将碳纳米管/芘四羧酸/壳聚糖修饰的玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银电极为参比电极,将三电极体系分别置于20~30mL浓度为0.1~1mM的L-色氨酸和D-色氨酸溶液中10~60s,之后在0.3~1.2V的电化学窗范围内记录差分脉冲伏安图,通过计算氧化峰电流比值RL/D来评估手性识别效率。
本发明实施例还提供一种碳纳米管/芘四羧酸/壳聚糖手性材料,由前述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法制备而成。
本发明提供的碳纳米管/芘四羧酸/壳聚糖手性材料可用于制备电化学传感器,用于识别氨基酸对映体。
下述实施例中所用试剂均为市售。其中,多壁碳纳米管购自国药集团化学试剂有限公司,CAS号为308068-56-6,ID为5-10nm,OD为10-20nm,长度为0.5-2μm。壳聚糖购自国药集团化学试剂有限公司。玻碳电极购自上海越磁电子科技有限公司,型号为3mm。3,4,9,10-芘四羧酸购自麦克林试剂网。
实施例一:
制备碳纳米管/芘四羧酸/壳聚糖手性材料:
(1)称取10mg多壁碳纳米管和3mg 3,4,9,10-芘四羧酸于烧杯中,加入10mL无水乙醇,超声2h使其分散均匀,离心所得固体用无水乙醇、蒸馏水依次洗涤,烘干,取2mg所得固体分散于1mL水中,即得2mg/mL碳纳米管/芘四羧酸溶液;
(2)用移液枪移取5μL步骤(1)配制得到的碳纳米管/芘四羧酸溶液滴涂于玻碳电极表面,在30℃下干燥1h,即可得碳纳米管/芘四羧酸修饰玻碳电极;
(3)将步骤(2)制备的碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银电极为参比电极,将三电极体系置于2mg/mL壳聚糖溶液中,施加-0.5V的恒电位沉积200s,在30℃下干燥1h,即可在玻碳电极表面制得碳纳米管/芘四羧酸/壳聚糖手性材料。
参见图1,对于多壁碳纳米管,1533cm-1是典型的C=C伸缩振动峰。对于3,4,9,10-芘四羧酸,1754cm-1处的峰对应于羧酸基团中的C=O伸缩振动。在碳纳米管/芘四羧酸纳米复合材料的光谱中,观察到了多壁碳纳米管和3,4,9,10-芘四羧酸的上述特征峰,并且带中心向较低波数移动,这归因于非共价键将3,4,9,10-芘四羧酸修饰至多壁碳纳米管表面。在壳聚糖红外光谱图中,1650cm-1处对应于N-H键的弯曲振动吸收峰、885cm-1是典型的糖苷键峰;在碳纳米管/芘四羧酸/壳聚糖红外光谱图中,观察到了碳纳米管/芘四羧酸和壳聚糖的上述特征峰,并且1751cm-1和1650cm-1附近的谱带移动到较低的1730和1645cm-1,表明C=O和N-H基团之间存在相互作用,多壁碳纳米管/芘四羧酸和壳聚糖的复合成功。
实施例二:
将实施例一制备得到的碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极以及碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银电极为参比电极,将三电极体系静置在含有5mM铁氰化钾/亚铁氰化钾的0.1M氯化钾溶液中,在-0.2~0.6V的电化学窗口下采用循环伏安法对该修饰电极进行表征,扫速为0.1V/s,其结果如附图2所示,铁氰化钾/亚铁氰化钾在碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极以及碳纳米管/芘四羧酸修饰玻碳电极上显示出可逆对称的氧化还原峰。从图中可以看出,与碳纳米管/芘四羧酸修饰玻碳电极相比,铁氰化钾/亚铁氰化钾在碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极上的氧化还原峰电流有所下降,这是由于壳聚糖导电性能差,形成的壳聚糖膜阻碍了电子的传输。
实施例三:
采用实施例一制备得到的碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银电极为参比电极,将三电极体系组成电化学传感器,采用差分脉冲伏安法研究电化学传感器分别对色氨酸对映体的识别能力。
将电化学传感器分别置于25mL浓度为1mM L-色氨酸和D-色氨酸的0.1M pH为7.0的磷酸盐缓冲溶液中,静置10s后在0.3~1.2V的电化学窗范围内进行差分脉冲伏安法测试。如附图3所述,L-色氨酸在碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极上的氧化峰电流要远远高于D-色氨酸在碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极上的氧化峰电流(RL/D=1.72),说明本实施例提供的电化学传感器对色氨酸对映体具有良好的识别效果。
对比例一:
采用实施例一制备的碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银电极为参比电极,将三电极体系组成电化学传感器,采用差分脉冲伏安法研究电化学传感器分别对色氨酸对映体的识别。
将电化学传感器分别置于25mL浓度为1mM L-色氨酸和D-色氨酸的0.1M pH为7.0的磷酸盐缓冲溶液中,静置10s后在0.3~1.2V的电化学窗范围内记录差分脉冲伏安图。如附图4所示,色氨酸对映体在碳纳米管/芘四羧酸修饰玻碳电极上的氧化峰电流比值为1.00,说明色氨酸对映体在该碳纳米管/芘四羧酸修饰玻碳电极上无法识别,这是因为在修饰电极表面无手性位点所导致的。而色氨酸对映体在碳纳米管/芘四羧酸/壳聚糖修饰玻碳电极上的氧化峰电流比值可达1.72。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

1.碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,包括,
步骤S1:将碳纳米管、3,4,9,10-芘四羧酸在乙醇中分散均匀,得到碳纳米管/芘四羧酸的乙醇溶液,将碳纳米管/芘四羧酸的乙醇溶液离心,得到的碳纳米管/芘四羧酸洗涤烘干后分散于水中,得到碳纳米管/芘四羧酸水溶液;所述碳纳米管/芘四羧酸水溶液中,碳纳米管/芘四羧酸的浓度为1~3mg/mL;
步骤S2:将所述碳纳米管/芘四羧酸水溶液涂于玻碳电极表面,干燥,制得碳纳米管/芘四羧酸修饰玻碳电极;
步骤S3:以壳聚糖为手性试剂,以所述碳纳米管/芘四羧酸修饰玻碳电极为工作电极,通过电沉积制备碳纳米管/芘四羧酸/壳聚糖手性材料;
所述壳聚糖的氨基与碳纳米管/芘四羧酸上的羧基形成氢键,且质子化的壳聚糖与碳纳米管/芘四羧酸上的羧基通过静电作用结合。
2.根据权利要求1所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S1中,所述碳纳米管/芘四羧酸的乙醇溶液中,所述碳纳米管的浓度为0.5~1.5mg/mL,所述3,4,9,10-芘四羧酸的浓度为0.1~0.4mg/mL。
3.根据权利要求2所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S1中,所述碳纳米管/芘四羧酸的乙醇溶液中,所述碳纳米管的浓度为1mg/mL,所述3,4,9,10-芘四羧酸的浓度为0.3mg/mL。
4.根据权利要求1所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S2中,干燥温度为10~40℃,干燥时间为0.5~1.5h。
5.根据权利要求4所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S2中,干燥温度为20℃,干燥时间为1h。
6.根据权利要求1所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S3包括,
以碳纳米管/芘四羧酸修饰玻碳电极为工作电极,以铂片电极为对电极,以银/氯化银为参比电极,将所述工作电极、所述对电极、所述参比电极置于壳聚糖溶液中,通过恒电位沉积制备碳纳米管/芘四羧酸/壳聚糖手性材料;所述恒电位沉积的沉积电位为-0.3V~-0.6V,沉积时间为100~300s。
7.根据权利要求6所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法,其特征在于,所述步骤S3中,所述恒电位沉积的沉积电位为-0.5V,沉积时间为200s;所述壳聚糖溶液的浓度为2mg/mL。
8.碳纳米管/芘四羧酸/壳聚糖手性材料,其特征在于,由权利要求1~7中任意一项权利要求所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法制备而成。
9.权利要求1~7中任意一项权利要求所述的碳纳米管/芘四羧酸/壳聚糖手性材料的制备方法制备的碳纳米管/芘四羧酸/壳聚糖手性材料在制备电化学传感器中的应用。
CN202111232106.0A 2021-10-22 2021-10-22 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用 Active CN114045540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111232106.0A CN114045540B (zh) 2021-10-22 2021-10-22 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111232106.0A CN114045540B (zh) 2021-10-22 2021-10-22 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN114045540A CN114045540A (zh) 2022-02-15
CN114045540B true CN114045540B (zh) 2023-05-02

Family

ID=80205680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111232106.0A Active CN114045540B (zh) 2021-10-22 2021-10-22 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN114045540B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908273B (zh) * 2023-09-14 2023-11-28 宁波检验检疫科学技术研究院(宁波国检贸易便利化服务中心) 一种食品中有害物质的快速检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131287A1 (en) * 2014-06-13 2017-05-11 Massachusetts Institute Of Technology Saccharide responsive optical nanosensors
CN104792844B (zh) * 2015-04-01 2018-02-02 常州大学 一种壳聚糖‑碳量子点复合膜修饰电极的制备及其应用于电化学识别色氨酸对映体
CN105758915B (zh) * 2016-03-02 2018-01-02 常州大学 一种羧甲基纤维素‑壳聚糖复合材料的制备及其修饰电极电化学法识别色氨酸对映体
CN107014879B (zh) * 2017-04-12 2019-06-14 西北师范大学 一种手性识别材料修饰电极的制备及应用
CN108017725B (zh) * 2018-01-18 2020-05-12 西北师范大学 多壁碳纳米管-n-羧甲基壳聚糖手性材料的制备及应用

Also Published As

Publication number Publication date
CN114045540A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
Gan et al. Electrochemical sensors based on graphene materials
Xu et al. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode
CN104820005B (zh) 一种基于壳聚糖/环糊精双核铜的手性传感器及其制备方法
Jo et al. Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids
Hasanzadeh et al. Poly-dopamine-beta-cyclodextrin: a novel nanobiopolymer towards sensing of some amino acids at physiological pH
Zhu et al. Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes
Ratnam et al. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review
Yu et al. Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube–chitosan composite modified glassy carbon electrode
Li et al. Carboxyl-functionalized mesoporous molecular sieve/colloidal gold modified nano-carbon ionic liquid paste electrode for electrochemical determination of serotonin
CN1201146C (zh) 一种测定多巴胺的电化学传感器
CN105866205A (zh) 基于金纳米粒子-巯基化石墨烯修饰电极的电化学dna生物传感器的构建及应用
CN109187680B (zh) 基于铜离子改性环糊精/聚精氨酸/碳纳米管的手性传感器及其制备方法
CN102850795A (zh) 一种二茂铁接枝聚乙烯亚胺-石墨烯复合材料的制备方法
CN114045540B (zh) 碳纳米管/芘四羧酸/壳聚糖手性材料、制备方法及应用
Sun et al. Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode
Mo et al. Electrochemical recognition for tryptophan enantiomers based on 3, 4, 9, 10-perylenetetracarboxylic acid–chitosan composite film
Babaei et al. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single‐Walled Carbon Nanotubes Nanocomposite
Niu et al. Chiral voltammetric sensor for tryptophan enantiomers by using a self‐assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite
Guo et al. 3, 4, 9, 10-Perylene tetracarboxylic acid-multiwalled carbon nanotubes nanocomposites modified electrode for the simultaneous detection of adenine and guanine
Zeng et al. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode
CN108508068B (zh) 阴离子卟啉-碳纳米管修饰电极测her2基因特定序列
CN109490388B (zh) 一种功能化多壁碳纳米管手性复合材料的制备及应用
CN111398381A (zh) 一种识别非电活性氨基酸对映体的电化学识别方法
CN109187694B (zh) 二茂铁/多壁碳纳米管手性复合材料修饰电极的构建和应用
Wang et al. Electrochemical Study of the Interactions of DNA with Redox‐Active Molecules Based on the Immobilization of dsDNA on the Sol‐Gel Derived Nano Porous Hydroxyapatite‐Polyvinyl Alcohol Hybrid Material Coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220215

Assignee: Shandong Hongde Yuheng Information Technology Co.,Ltd.

Assignor: CHANGZHOU University

Contract record no.: X2023980051060

Denomination of invention: Chiral Materials, Preparation Methods and Applications of Carbon Nanotubes/Pyrenetetracarboxylic Acid/Chitosan

Granted publication date: 20230502

License type: Common License

Record date: 20231209