CN114042438B - 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法 - Google Patents

一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法 Download PDF

Info

Publication number
CN114042438B
CN114042438B CN202111465457.6A CN202111465457A CN114042438B CN 114042438 B CN114042438 B CN 114042438B CN 202111465457 A CN202111465457 A CN 202111465457A CN 114042438 B CN114042438 B CN 114042438B
Authority
CN
China
Prior art keywords
graphene oxide
arsenic
stirring
iii
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111465457.6A
Other languages
English (en)
Other versions
CN114042438A (zh
Inventor
迟子芳
刘馨阳
孙飞扬
张鹏东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202111465457.6A priority Critical patent/CN114042438B/zh
Publication of CN114042438A publication Critical patent/CN114042438A/zh
Application granted granted Critical
Publication of CN114042438B publication Critical patent/CN114042438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法,该材料是由Fe3O4负载GO,并通过As和Sb离子表面印迹法制得,具体将GO分散到超纯水中,在厌氧条件下倒入FeCl3和FeSO4溶液,缓慢滴加氨水制得MGO;将As(III)和Sb(III)模板离子和MMA一起溶于超纯水中,加入MGO,并加入EGDMA,升温至60℃,加入AIBN搅拌,得到的交联产物用乙醇和去离子水分别反复清洗,再用NaOH清洗,将制备好的材料烘干制得。本发明所制聚合物对地下水的砷、锑污染具有特异性识别效果,有效的提高了铁基吸附材料对砷和锑的吸附性能,磁特性有利于聚合物材料在地下水中的定向迁移和回收,适合应用于地下水砷、锑污染原位修复。

Description

一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚 合物及其制备方法
技术领域
本发明属于地下水污染原位修复技术领域,具体涉及一种可磁性分离的修复试剂,特别涉及一种具有磁分离特性的氧化石墨烯表面砷锑双印迹聚合物及其制备方法,所制印迹聚合物可作为纳米修复材料应用于地下水污染原位修复。
背景技术
随着世界工业的快速发展,人类的生产活动和社会行为给自然环境带来了一定程度的威胁,其中,地下水砷、锑污染已成为当前重点关注的问题。砷、锑从自然环境进入到地下水中,进行迁移和富集,再通过不同的途径进入人体,对人体造成不同程度的损害。所以,为了减少对环境和人类健康的影响,对地下水砷、锑污染的修复已迫在眉睫。
现有除砷、锑方法主要包括:氧化法、混凝沉淀法、离子交换法、膜分离法和生物法。但是,对于地下水环境而言,吸附法是在砷污染地下水原位修复中应用较为广泛的方法。以Fe3O4为代表的铁系纳米吸附材料因其廉价易获得且比表面积大而备受关注。但实际应用时其修复效果有待提高,主要原因在于:(1)Fe3O4表面能高,分散性差,注入到地下水中容易团聚,导致迁移距离短修复范围有限;(2)吸附剂对目标污染物没有选择性,对砷的吸附效率低,导致修复试剂用量大,易造成地下水二次污染;(3)传统吸附法是将污染物吸附固定在吸附剂表面,而非真的去除,容易受到地下水环境的变化造成污染物的解吸重新进入到环境中,造成二次污染。因此,如何增强吸附剂对As(III)和Sb(III)的选择性和吸附能力,提高迁移性和修复效率,并从地下水环境中去除砷、锑是亟待解决的问题。
中国专利CN110423302A公开了一种磁性表面分子印迹聚合物及其制备方法及应用。该方法以AP为模板分子、以甲基丙烯和4-乙烯基吡啶为功能单体,在交联剂和引发剂作用下与纳米磁性颗粒反应而制得的。所述磁性表面分子印迹聚合物与检测电极复合得到的传感器,用于AP检测时具有灵敏度高、准确性高、选择性好及稳定性好等优点。中国专利CN10906919B还公开了一种基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器及其制备方法及应用。制备方法所需的原材料成本低廉,合成工艺简单,可大批量制备;得到的电化学传感器对水环境中Cu(II)的检测具有高选择性、高灵敏度、良好的重复性和再现性。中国专利CN111729658A和CN111760561A还公开了一种基于MCM-41分子筛表面的Cr(III)和As(III)离子印迹材料的制备方法及应用。该方法以N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷为功能单体,环氧氯丙烷为交联剂,MCM-41分子筛为载体,采用表面印迹法制备基于MCM-41分子筛表面的Cr(III)和As(III)离子印迹材料。该离子印迹材料具有特定的三维空穴结构,机械性能好且易洗脱,可用于水体中Cr(III)和As(III)离子的特异性识别和选择性去除。中国专利CN110508262A公布了一种铅镉离子印迹磁性SBA-15微粒及其制备方法,以CoFe2O4/SBA-15为载体,没食子酸和乙二胺为功能单体,制备铅镉离子印迹磁性SBA-15微粒。中国专利CN106824048A和CN106861651A公布了以磁性Fe3O4为载体的镧、铈、镨或钕、钐、铕、钆、铽或镝的三明治结构磁性介孔印迹材料。中国专利CN108084337A公布了选择性识别蛋白质的纸基双印迹材料及制备方法与应用,在氧化石墨烯-血晶素复合物固定在滤纸材料表面,制备蛋白质和3,3',5,5'-四甲基联苯胺双印迹材料。中国专利CN110511423A公布了双模板表面分子印迹材料同时脱除水溶性茶提取物中吡虫啉和啶虫脒的方法,以改性硅胶为载体进行印迹材料制备。
但是,上述方法分别采用多孔材料,高分子聚合物、滤纸等材料合成了印迹聚合物。虽然提高了吸附剂的选择性和目标污染物的去除效率,但实际应用在地下水环境中,材料不仅要具备优异的除污性能,同时还要具备抗团聚和方便回收利用等特性。
发明内容
本发明的目的就在于针对上述现有技术的不足,提供一种除砷、锑效率高、迁移效果好的地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物,还涉及一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物的制备方法,以解决定向修复地下水中砷锑污染的问题。
本发明的目的是通过以下技术方案实现的:
一种地下介质中可磁性分离的氧化石墨烯表面砷、锑双印迹聚合物,是以高度分散的氧化石墨烯作为四氧化三铁的载体,As(III)和Sb(III)作为模板离子,MMA作为功能单体,EGDMA作为交联剂,AIBN作为引发剂,通过表面印迹法制得,其粒径范围在10~20nm之间。
一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物的制备方法,包括以下步骤:
A、将0.3-0.86g氧化石墨烯(GO)超声分散到0.45L的超纯水中,获得稳定的氧化石墨烯悬浮液;
B、将2.916g的三氯化铁(FeCl3)和2.502g的硫酸亚铁(FeSO4·7H2O)溶解于50ml的去离子水中,在室温条件下缓慢倒入步骤A所得氧化石墨烯悬浮液中搅拌;
C、将B步骤所得溶液的温度升高至60℃,采用原位沉淀法在厌氧条件下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,再继续升高温度至90℃并连续搅拌4小时;
D、采用磁铁收集步骤C所得溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将洗涤过后的产物用真空干燥箱60℃烘干,得到Fe3O4/GO(MGO)材料;
E、将2mmol As(III)和Sb(III)模板离子溶于50ml超纯水中,加入18mmol的甲基丙烯酸(MMA)搅拌6小时进行预聚合;
F、向步骤E中的混合溶液中加入0.2g步骤D所得MGO和80mmol乙二醇二甲基丙烯酸酯(EGDMA)并将温度升高至60℃,再加入0.1g偶氮二异丁腈(AIBN)进行搅拌,搅拌时间为24小时;
G、得到交联产物F用无水乙醇和去离子水分别反复清洗4~5次,再用0.5M的NaOH溶液洗脱模板离子,直至上清液检测不到模板离子,再用去离子水反复清洗材料,直至上清液为中性,最后将洗好的材料用真空干燥箱在60℃下烘干,得到印迹材料Fe3O4/GO-As(III)/Sb(III)-IIP;
进一步地,步骤A,所述氧化石墨烯是通过改进的Hummers法制备的表面带有含氧官能团的石墨烯。
进一步地,步骤B,所述搅拌方式为机械搅拌,搅拌速度为700~800rpm,搅拌时间为40min。
进一步地,步骤C,所述滴加速度为4mL/min,搅拌方式为机械搅拌,搅拌速度为700~800rpm。
进一步地,步骤C,所述厌氧条件是以氮气为保护气。
进一步地,所述步骤E和步骤F中的搅拌方式为恒温加热磁力搅拌器,搅拌速度为700~800rpm。
与现有技术相比,本发明的有益效果是:
本发明所制备的Fe3O4/GO-As(III)/Sb(III)-IIP,由于氧化石墨烯的存在,能够降低四氧化三铁颗粒的团聚,使其稳定性和分散性大幅度提高;
本发明所制备的Fe3O4/GO-As(III)/Sb(III)-IIP,由于四氧化三铁的存在,使得材料具有一定的磁性,可结合外部磁场的驱动力,对地下水砷、锑污染进行定向修复和迁移,实现砷、锑和材料从地下环境中的去除和回收;
本发明所制备的Fe3O4/GO-As(III)/Sb(III)-IIP,是采用的表面离子印迹技术是基于传统离子印迹制备技术发展起来的,表面印迹法将配合物负载在具有孔道的载体表面,从而把识别位点设计在聚合物表面,避免了模板离子被包埋地太深或者太紧,有利于目标离子的洗脱和再结合;
本发明所制备的Fe3O4/GO-As(III)/Sb(III)-IIP,与传统的吸附剂相比,Fe3O4/GO-As(III)/Sb(III)-IIP具有特异性识别作用,对污染物有选择性吸附,仅吸附目标污染物;
本发明所制备的Fe3O4/GO-As(III)/Sb(III)-IIP,经过五次碱洗脱后,仍具有良好的吸附效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明Fe3O4/GO-As(III)/Sb(III)-IIP的合成流程图;
图2为本发明Fe3O4/GO-As(III)/Sb(III)-IIP的透射电镜图;
图3A-图3D为本发明Fe3O4/GO-As(III)/Sb(III)-IIP和Fe3O4/GO-NIP吸附前后的扫描电镜图;
图4为制备不同负载比的Fe3O4/GO的磁分离特性图;
图5为本发明Fe3O4/GO-As(III)/Sb(III)-IIP和Fe3O4/GO的X射线衍射图谱;
图6为本发明Fe3O4/GO-As(III)/Sb(III)-IIP和Fe3O4/GO-NIP去除As(III)和Sb(III)情况图;
图7为本发明Fe3O4/GO-As(III)/Sb(III)-IIP的再生利用图。
具体实施方式
下面结合实施例对本发明作进一步说明:
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
本发明地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物,以高度分散且稳定的氧化石墨烯为四氧化三铁的载体,三价砷和三价锑作为模板离子通过表面印迹法制备出磁性氧化石墨烯表面砷印迹聚合物,该材料粒径范围在10~20nm之间;由于材料是印迹聚合物,因此对砷和锑具有专一的选择吸附特性;材料中四氧化三铁的存在使得材料具有磁分离的特征,这样就可以在外加磁场的条件下,实现快速分离和定向迁移;氧化石墨烯有效克服了材料团聚问题。
上述地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物的制备方法,包括以下步骤:
A、将0.3-0.86g GO超声分散到0.45L的超纯水中,直至GO均匀分散在超纯水中即可停止,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,为了能与A混合均匀,需要预搅拌40min;
C、升高B步骤溶液的温度至60℃,采用原位沉淀法在厌氧条件下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将洗涤过后的产物用真空干燥箱60℃烘干,从而得到Fe3O4/GO(MGO)材料;
E、将2mmol As(III)和Sb(III)模板离子溶于50ml超纯水中。然后加入18mmol的MMA搅拌6小时进行预聚合;
F、向步骤E中的混合溶液中加入0.2g MGO和80mmol EGDMA并将温度升高至60℃,然后加入0.1g AIBN进行搅拌,搅拌时间为24小时;
G、得到交联产物F用无水乙醇和去离子水分别反复清洗4~5次,再用0.5M的NaOH溶液洗脱模板离子,直到上清液检测不到模板离子,然后用去离子水反复清洗材料,直到上清液为中性,最后将洗好的材料用真空干燥箱在60℃下烘干,得到印迹材料Fe3O4/GO-As(III)/Sb(III)-IIP;
非印迹聚合物Fe3O4/GO-NIP的制备过程,除了不添加As(III)和Sb(III)模板离子,其余的制备过程均与上述保持一致。
实施例1
A、将0.3g GO超声分散到450mL的超纯水中,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,并机械搅拌40min;
C、升高B步骤溶液的温度至60℃,在氮气保护下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将产物放入真空干燥箱中60℃烘干,从而得到Fe3O4/GO(MGO)材料,其中GO与Fe3O4的质量比为0.14:1。
实施例2
A、将0.54g GO超声分散到450mL的超纯水中,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,并机械搅拌40min;
C、升高B步骤溶液的温度至60℃,在氮气保护下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将产物放入真空干燥箱中60℃烘干,从而得到Fe3O4/GO(MGO)材料,其中GO与Fe3O4的质量比为0.25:1。
实施例3
A、将0.86g GO超声分散到450mL的超纯水中,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,并机械搅拌40min;
C、升高B步骤溶液的温度至60℃,在氮气保护下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将产物放入真空干燥箱中60℃烘干,从而得到Fe3O4/GO(MGO)材料,其中GO与Fe3O4的质量比为0.40:1。
实施例4
A、将0.3g GO超声分散到450mL的超纯水中,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,并机械搅拌40min;
C、升高B步骤溶液的温度至60℃,在氮气保护下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将产物放入真空干燥箱中60℃烘干,从而得到Fe3O4/GO(MGO)材料,其中GO与Fe3O4的质量比为0.14:1;
E、将2mmol As(III)和Sb(III)模板离子溶于50ml超纯水中,然后加入18mmol的MMA搅拌6小时进行预聚合;
F、向步骤E中的混合溶液中加入0.2g MGO和80mmol EGDMA并将温度升高至60℃,然后加入0.1g AIBN进行搅拌,搅拌时间为24小时;
G、将步骤F所得交联产物用无水乙醇和去离子水分别反复清洗4~5次,再用0.5M的NaOH溶液洗脱模板离子,直到上清液检测不到模板离子,然后用去离子水反复清洗材料,直到上清液为中性,最后将洗好的材料置于真空干燥箱中60℃烘干,得到印迹材料Fe3O4/GO14%-As(III)/Sb(III)-IIP。
实施例5
A、将0.3g GO超声分散到450mL的超纯水中,时间大约为1小时,然后获得稳定的GO悬浮液;
B、将2.916g的FeCl3和2.502g的FeSO4·7H2O溶解于50ml的去离子水中,然后在室温条件下缓慢倒入A悬浮液中,并机械搅拌40min;
C、升高B步骤溶液的温度至60℃,在氮气保护下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,然后继续升高温度至90℃并连续搅拌4小时;
D、用磁铁收集步骤C溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将产物放入真空干燥箱中60℃烘干,从而得到Fe3O4/GO(MGO)材料,其中GO与Fe3O4的质量比为0.14:1;
E、将0.2g MGO,18mmol MMA和80mmol EGDMA分别加入到50ml的去离子水中,并搅拌6小时进行预聚合;然后将温度升高至60℃,加入0.1g AIBN进行搅拌,搅拌时间为24小时;
F、将步骤F所得交联产物用无水乙醇和去离子水分别反复清洗4~5次,再用0.5M的NaOH溶液洗脱模板离子,直到上清液检测不到模板离子,然后用去离子水反复清洗材料,直到上清液为中性,最后将洗好的材料置于真空干燥箱中60℃烘干,得到非印迹材料Fe3O4/GO-NIP。
如图1所示,本发明制备的流程是先负载后印迹。如图2所示,本发明中添加的氧化石墨烯能够很好地改善Fe3O4由于范德华力和自身的磁性导致的团聚问题。如图3A和图3B所示,印迹聚合物表面存在特异性空穴,能够对溶液中的As(III)和Sb(III)具有专一性识别吸附。如图3C和图3D所示,非印迹聚合物表面难以观察出多孔结构,呈现无规律的粗糙表面,且吸附前后无显著变化,表明非印迹聚合物对As(III)和Sb(III)没有选择吸附性。如图4所示,当GO与Fe3O4的质量比为0.14:1时,材料表现出良好的磁响应性。如图5所示,MGO和MGO-As(III)/Sb(III)-IIP衍射峰位置基本一致,说明交联过程中并没有改变材料的基本结构。图6为MGO-As(III)/Sb(III)-IIP和MGO-NIP去除As(III)和Sb(III)的情况图,在相同时间内IIP吸附量大约是NIP的两倍。图7为本发明Fe3O4/GO-As(III)/Sb(III)-IIP的再生利用图。由图可知,本发明经过5次重复利用后,对As(III)和Sb(III)吸附量略有下降,说明洗脱过程中不会影响材料的印迹空穴结构,有利于MGO-As(III)/Sb(III)-IIP在原位地下水中的循环使用。
本发明由于氧化石墨烯表面具有丰富的含氧官能团和较大的层间距,使其可以作为Fe3O4的支撑载体。其次,GO较大的比表面积增加了印迹空穴和污染物的接触面积,同时克服了Fe3O4因自身磁性而导致的团聚问题。再次,本发明采用表面离子印迹技术,将模板离子印迹在MGO的表面上,避免了因包埋太深或太紧造成后续模板离子的洗脱困难。本发明与传统吸附剂相比,具有对As(III)和Sb(III)专一性识别作用,只吸附目标污染物As(III)和Sb(III),大大提高了除As(III)和Sb(III)的效率。此外,由于Fe3O4的存在,使得本发明在外加磁场的驱动下可以实现定向迁移和回收,减少因残留而造成地下水环境的二次污染。本发明所制备的磁性氧化石墨烯表面砷锑双印迹聚合物提高了对As(III)和Sb(III)吸附稳定性和本身的迁移性,适合作为一种修复试剂应用于地下水砷、锑污染原位修复领域。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (2)

1.一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物的制备方法,其特征在于:是以高度分散的氧化石墨烯作为四氧化三铁的载体,AsIII和SbIII作为模板离子,MMA作为功能单体,EGDMA作为交联剂,AIBN作为引发剂,通过表面印迹法制得,所制地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物粒径范围在10~20nm之间,制备方法具体包括以下步骤:
A、将0.3g氧化石墨烯超声分散到0.45L的超纯水中,获得稳定的氧化石墨烯悬浮液;
B、将2.916g的三氯化铁和2.502g的硫酸亚铁溶解于50ml的去离子水中,在室温条件下缓慢倒入步骤A所得氧化石墨烯悬浮液中搅拌;所述搅拌方式为机械搅拌,搅拌速度为700~800rpm,搅拌时间为40min;
C、将B步骤所得溶液的温度升高至60℃,采用原位沉淀法在厌氧条件下将氨水缓慢滴加到溶液里,使溶液中的pH大于10,再继续升高温度至90℃并连续搅拌4小时;所述滴加速度为4mL/min,搅拌方式为机械搅拌,搅拌速度为700~800rpm;所述厌氧条件是以氮气为保护气;
D、采用磁铁收集步骤C所得溶液里的产物,用乙醇和超纯水分别反复洗涤3次,然后将洗涤过后的产物用真空干燥箱60℃烘干,得到Fe3O4/GO即MGO材料;
E、将2mmolAsIII和SbIII模板离子溶于50ml超纯水中,加入18mmol的MMA搅拌6小时进行预聚合;搅拌方式为恒温加热磁力搅拌器,搅拌速度为700~800rpm;
F、向步骤E中的混合溶液中加入0.2g步骤D所得MGO和80mmol EGDMA并将温度升高至60℃,再加入0.1g AIBN进行搅拌,搅拌时间为24小时;搅拌方式为恒温加热磁力搅拌器,搅拌速度为700~800rpm,其中GO与Fe3O4的质量比为0.14:1;
G、得到交联产物F用无水乙醇和去离子水分别反复清洗4~5次,再用0.5M的NaOH溶液洗脱模板离子,直至上清液检测不到模板离子,再用去离子水反复清洗材料,直至上清液为中性,最后将洗好的材料用真空干燥箱在60℃下烘干,得到印迹材料Fe3O4/GO-AsIII/SbIII-IIP。
2.根据权利要求1所述的一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物的制备方法,其特征在于:步骤A,所述氧化石墨烯是通过改进的Hummers法制备的表面带有含氧官能团的石墨烯。
CN202111465457.6A 2021-12-03 2021-12-03 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法 Active CN114042438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111465457.6A CN114042438B (zh) 2021-12-03 2021-12-03 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111465457.6A CN114042438B (zh) 2021-12-03 2021-12-03 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN114042438A CN114042438A (zh) 2022-02-15
CN114042438B true CN114042438B (zh) 2024-03-22

Family

ID=80212321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111465457.6A Active CN114042438B (zh) 2021-12-03 2021-12-03 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN114042438B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382515B (zh) * 2022-08-22 2024-05-28 太原理工大学 一种选择性吸附镓离子的石墨烯基表面离子印迹材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757896A (zh) * 2009-11-13 2010-06-30 南京医科大学 磺酰脲类除草剂纳米硅胶表面分子印记聚合物的制备方法
CN102151554A (zh) * 2011-01-26 2011-08-17 上海交通大学 具有选择性复合吸附树脂的制备方法
CN104262536A (zh) * 2014-09-15 2015-01-07 江苏大学 一种活性/可控氧化石墨烯表面离子印迹聚合物及其制备方法与应用
CN105214617A (zh) * 2015-09-10 2016-01-06 南京大学 高效选择重金属离子的表面印迹壳聚糖微球及其制备方法
CN108435133A (zh) * 2018-04-17 2018-08-24 吉林大学 一种可磁性分离的氧化石墨烯负载铁锰复合氧化物除砷材料及其制备方法
CN110508262A (zh) * 2019-07-29 2019-11-29 肇庆学院 一种铅镉离子印迹磁性sba-15微粒及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757896A (zh) * 2009-11-13 2010-06-30 南京医科大学 磺酰脲类除草剂纳米硅胶表面分子印记聚合物的制备方法
CN102151554A (zh) * 2011-01-26 2011-08-17 上海交通大学 具有选择性复合吸附树脂的制备方法
CN104262536A (zh) * 2014-09-15 2015-01-07 江苏大学 一种活性/可控氧化石墨烯表面离子印迹聚合物及其制备方法与应用
CN105214617A (zh) * 2015-09-10 2016-01-06 南京大学 高效选择重金属离子的表面印迹壳聚糖微球及其制备方法
CN108435133A (zh) * 2018-04-17 2018-08-24 吉林大学 一种可磁性分离的氧化石墨烯负载铁锰复合氧化物除砷材料及其制备方法
CN110508262A (zh) * 2019-07-29 2019-11-29 肇庆学院 一种铅镉离子印迹磁性sba-15微粒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: Potential effect of external magnetic field";Zifang Chi等;Journal of Environmental Chemical Engineering;第9卷;第1-10页 *
"离子印迹聚合物选择性去除水体中锑(Ⅲ)的研究";方俐俐;中国优秀硕士学位论文全文数据库工程科技Ⅰ辑;B027-1251 *

Also Published As

Publication number Publication date
CN114042438A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
Yao et al. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water
Liu et al. Multifunctional nanocomposites Fe3O4@ SiO2-EDTA for Pb (II) and Cu (II) removal from aqueous solutions
Talbot et al. pH-sensitive magnetic alginate/γ-Fe2O3 nanoparticles for adsorption/desorption of a cationic dye from water
Yi et al. Key role of FeO in the reduction of Cr (VI) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse
Zhang et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles
Wang et al. Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water
Zhang et al. Novel environment-friendly magnetic bentonite nanomaterials functionalized by carboxymethyl chitosan and 1-(2-pyridinylazo)-2-naphthaleno for adsorption of Sc (III)
Li et al. Fe–colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions
CN104530334A (zh) 一种SiO2/GO表面金属离子印迹聚合物的制备方法及应用
Szewczuk-Karpisz et al. Simultaneous adsorption of Cu (II) ions and poly (acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements
CN114042438B (zh) 一种地下介质中可磁性分离的氧化石墨烯表面砷锑双印迹聚合物及其制备方法
CN106745317A (zh) 一步法制备多孔四氧化三铁磁性纳米微球的方法及其应用
CN104258816A (zh) 一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法
CN108435133A (zh) 一种可磁性分离的氧化石墨烯负载铁锰复合氧化物除砷材料及其制备方法
Wang et al. Nanomagnetic polyhedral oligomeric silsesquioxanes composite derived sulfur-containing adsorbents for effective elimination of hexavalent chromium and organic cationic dyes from water
Yu et al. Green synthesis of ion-imprinted macroporous composite magnetic hydrogels for selective removal of nickel (II) from wastewater
Jabasingh et al. Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams
Mahamadi Will nano-biosorbents break the Achilles’ heel of biosorption technology?
He et al. A reusable Fe3O4/GO-COOH nanoadsorbent for Ca2+ and Cu2+ removal from oilfield wastewater
Zhou et al. Light induced growth of polyelectrolyte brushes on kaolinite surface with superior performance for capturing valuable rare-earth Ce3+ from wastewater
Jingyi et al. Preparation of biochar-based composites and their adsorption performances for characteristic contaminants in wastewater
CN108047361B (zh) 一种磁性螯合树脂、其制备方法及其在复合污染水体净化中的应用
Huang et al. Highly effective and selective removal of lead ions by polymer-grafted silica-coated acid-resistant magnetic chitosan composites
Wei et al. Synthesis of a green ALG@ KLN adsorbent for high-efficient recovery of rare earth elements from aqueous solution
Xiao et al. Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U (VI)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant